
Git Analytics for Engineering Leaders.

https://usehaystack.io/?utm_source=book%20of%20eng&utm_medium=inside%20pdf&utm_campaign=link
https://usehaystack.io/?utm_source=book%20of%20eng&utm_medium=inside%20pdf&utm_campaign=link

Book of
Engineering
Management

Hint: They’re already in git.

Top questions,
how to find the answers,
and things JIRA won’t tell you.

2

Are we on track to deliver? 5
Spotting Blockers 7
Visualizing Risks 10

How fast do we deliver? 12
Understanding Throughput 14
Measuring Merge Rate 15

Where are our bottlenecks? 16

Debugging your Process 18
Surfacing Inefficiencies 20

When are we productive? 21
Protecting ‘Deep Work’ 23
Avoiding Burnout 25

How well do we code review? 27
Balancing Speed vs. Quality 29
Encouraging Best Practices 32

How well do we share knowledge? 35
Fixing the Bus Factor 37
Facilitating Communication 38

Table of Contents

Are we on track
to deliver?
How to spot blockers,
visualize risk,
and keep sprints on track.

4

Look for these healthy patterns when checking your sprint status:
1. Steady rise in Merged Pull Requests
2. Increasing towards the team average

A constant rise in Merged Pull Requests shows a healthy pattern of
opening and closing manageable chunks of work. It typically shows
that the team is moving at a consistent rate and not running into
critical blockers.

Note the team’s Average Number of Merged Pull Requests (horizontal
line in the chart above). The horizontal line shows the team’s typical
output. Each sprint, you can see how the current sprint matches up to
the team’s historical performance to make sure you’re on track.

Are we on track to deliver?

What to look for

Time

Current Sprint

M
er

ge
d

Pu
ll

Re
qu

es
ts

Average

Merged Pull Requests This Sprint

The number of Merged Pull Requests helps visualize if
you’re on track to hit your goals.

5

Look for these healthy patterns when checking your sprint status:

1. Oscillation in Open Pull Requests
2. Rise in Open Pull Requests near the middle of the sprint
2. Open Pull Requests staying within the min/max range

Oscillating Open Pull Requests signals a healthy pattern of
opening and closing manageable chunks of work. A rise in Open
Pull Requests near the middle of the sprint shows that your team
is on pace to deliver.

Keeping Open Pull Requests within the team’s average range
(shown in the chart above) ensures that your team is taking on
the appropriate amount of work.

Are we on track to deliver?

What to look for

Time

Current Sprint

O
pe

n
Pu

ll
Re

qu
es

ts

Open Pull Requests This Sprint

The number of Open Pull Requests helps visualize if you’re
on track to his your goals

Average

6

Look for these unhealthy patterns in your Sprint Report that can
signal your team is getting stuck:

1. Unusually Long Time Spent in Development

Long Time Spent in Development can signal many things.
Although it’s not always a bad thing to spend a long time in
development, we can use this as a way to surface some potential
bottlenecks before they derail the sprint.

Long development time can signal complex work, a developer is
stuck and may need assistance, scope creep, changes in priority
or even poorly written tickets. It’s important to follow up on long
time in development to determine the root cause.

Spotting Blockers

What to look for

Development Time

Might be stuck

Pu
ll

Re
qu

es
ts

Long Time In Development

Visualizing Time Spent in Development helps quickly
assess if your team is getting stuck.

7

Look for these unhealthy patterns in your Sprint Report that can
signal your team is getting stuck:

1. Churn appearing late in the sprint

Late Churn can signal many things. Sometimes late churn can be
very healthy. Take the situation of an engineer quickly writing a
proof of concept feature then proceeding to clean up and refactor
his recent work. This is a great habit!

Having said that, late Churn can appear in a few more
(undesirable) ways. Late churn can often be caused by changes in
scope, poorly written tickets or even a developer being too much
of a perfectionist. In each case, you’ll want to watch out for late
churn, follow-up, and make sure it doesn’t derail your sprint.

Spotting Blockers

What to look for

Development Time

Late Churn
Ch

ur
n

Late Churn

Visualizing Churn helps quickly assess the type of work
your team is doing.

8

Look for these unhealthy patterns in your Sprint Report that can
signal your team is getting stuck:

1. Unusually Long Time Spent in Review

Long Time Spent in Review can signal many things. Although code
review is a healthy (and necessary) part of the development
process we want to make sure to keep an eye on it.

Long review times can signal large/complex pull requests, idle
time blocked by the reviewer and even changes in priority that
cause features to get left idle and waiting in the pipeline. In any
case, we should follow up and clear up any bottlenecks that might
be there.

Spotting Blockers

What to look for

Review Time

Might be stuck

Pu
ll

Re
qu

es
ts

Long Time In Review

Visualizing Time Spent in Review helps quickly assess if
your team is getting stuck.

9

Look for these unhealthy patterns in your Sprint Report that can
signal your team is getting stuck:

1. Unusually High Number of Open Pull Requests

It’s often the case that developers open pull requests, wait for
review and move onto the next item in the sprint. This is great
since no time is wasted but if left unchecked this situation can
lead to overwork and pile ups of incomplete work that can derail
your sprint.

Too many Open Pull Requests can signal taking on too much
work, scope creep, change in priorities and unexpected
issues/bugs coming into the sprint. It’s good to keep an eye out of
the number of Open Pull Requests since it’s a great indicator of
your team’s current workload.

Overload Risk

What to look for

Review Time

Too Much Concurrent Work

Visualizing the number Open Pull Requests this sprint
helps quickly assess if your team is doing too much.

Time

Typical
Throughput

Overwork Risk

O
pe

n
Pu

ll
Re

qu
es

ts

10

Look for these unhealthy patterns in your Sprint Report that can
signal your team is off track:

1. Large number of Pull Requests opened late in the sprint
2. Small number of Open Pull Requests throughout the sprint

It’s often the case that developers aim to finish work by the end of
the sprint. This can sometimes lead to opening pull requests too
late, which can put your sprint at risk of missing deadlines.

Late pull requests are not always a signal that you’re at risk of but
it is a good indicator to watch out for. Late pull requests can often
run into snags in the review, QA, and deployment process that can
cause the work to be delayed.

Also note the number of Open Pull Requests throughout the
sprint. Be wary of stagnation as it’s an early indicator that you
may run into backload risk.

Backload Risk

What to look for

Late Pull Requests

Visualizing the number Open Pull Requests throughout the
sprint helps quickly assess if your team is on track.

Time

Backload Risk

O
pe

n
Pu

ll
Re

qu
es

ts

11

How fast do
we deliver?

How to measure speed,
understand throughput,
and visualize trends

12

Look for these healthy patterns in your Output Report that can
signal your team is consistent or improving over time:

1. Oscillating / Consistent Cycle Time
2. Decreasing Cycle Time

Cycle time is the time from first commit to merging of the pull
request. This gives you a high level view of how quickly your team
is delivering. It allows you to visualize the effect of recent
changes, track them over time, and see how well your team is
improving.

How fast do we deliver?

What to look for

Cycle Time

Cycle Time can help visualize how quickly your team
delivers and how that changes over time.

Time

Cy
cl

e
Ti

m
e

What if it’s increasing?
If you see Cycle Time increasing over time, it may be an early
indication of inefficiency and opportunities to improve. This can
often be caused by technical debt, lack of proper infrastructure or
additional tooling or resources needed.

Improving over time

13

Merged Pull Requests helps understand how much work
your team typically finishes during a sprint..

Look for these healthy patterns in your Output Report that show
your team’s typical throughput:

1. Consistent Merged Pull Requests over time
2. Merged Pull Requests remaining within the typical
throughput range

Having a consistent amount of Merged Pull Requests shows
consistency in your team’s throughput. This generally shows that
your team is consistent in planning, execution and is a good
indicator of healthy sprint planning and estimations.

Merged Pull Requests helps assess how much work your team
can typically do in a more objective way than velocity or story
points.

Measuring Throughput

What to look for

Merged Pull Requests per Sprint

Time

Typical
Throughput

M
er

ge
d

Pu
ll

Re
qu

es
ts

14

Look for these unhealthy patterns in your Process Report:

1. Large Time Spent in Review

Review is the time spent in the code review process. Although
code review is a necessary part of the process, inefficiencies can
often cause delivery delays and increases in Cycle Time.

Long Time Spent in Review can happen for a variety of reasons.
Idle waiting time, team review culture, perfectionism and
knowledge gaps are some of the most common reasons for
bloated review times.

If you see your team is spending large amounts of time in review,
head over to your Code Review Report to debug the issue.

Time spent in Review helps show how long your team
spends reviewing code during the review process.

Debugging Process

What to look for

Time Spent in Review

ReviewDevelopment

Rework

15

Merge Rate helps understand how much work your team
typically starts and finishes during a sprint.

It’s typically healthy for a team to open and close the same
amount of pull requests. Typically what you want to see is::

1. High Merge Rate (>90%)

A High Merge Rate indicates that the team is opening and closing
the same amount of work. This is typically a good indicator of
well scoped work that fits into the sprint cycle.

Having a Low Merge Rate indicates that Open Pull Requests are
rolling over from one sprint to the next. Although this can differ
from project to project and team to team, it’s generally best
practice to break up larger projects into manageable chunks that
can be completed during the sprint cycle. Merge Rate is a great to
way to measure if work is rolling over from sprint to sprint.

Measuring Merge Rate

What to look for

Complete Pull Requests per Sprint

All Pull
Requests

Merged Pull
Requests

Incomplete Pull
Requests

16

Where are the
bottlenecks?

How to debug your process,
surface inefficiencies,
and promote best practices

17

Visualizing the entire Development Process allows you to
spot bottlenecks at a glance.

Look for these healthy patterns in your Process Report that show
your team’s typical throughput:

1. Majority of time spent on development work
2. Consistent work throughout the sprint

Most of the development process should be spent developing
features rather than reviewing code. Make sure your team is
spending a healthy proportion of time on development vs. review.

Showing consistent work (commits, comments, etc) shows a
healthy sprint. Of course, there are always exceptions but we’ve
seen this generally indicates that the team is moving along
quickly, efficiently, and without blockers.

Where are the bottlenecks?

What to look for

Development Process

Commits

Pull Request
MergedFirst Commit

Comments

Pull Request
Opened

18

Look for these unhealthy patterns in your Process Report:

1. Large amount of Rework

Rework is the time spent in development after the review process
has already begun. This can happen for a variety of reasons, but
you want to make sure your team isn’t spending too much time in
Rework.

Not all Rework is bad but be sure it’s not a consistent habit for
your team. Generally spikes in rework tend to indicate sprint
changes, poorly written tickets, bugs/defects found in the review
process or overly critical code review (perfectionism).

If you see any of these patterns, make sure to work with your
engineering and product teams to find the core issue and reduce
the time spent in Rework.

Time spent in Rework helps show how long your team
spends reworking code during the review process.

Debugging Process

What to look for

Time Spent in Rework

Review
Development

Rework

19

Visualizing Commits over time can show inefficiencies in
the process.

Look for these healthy patterns in your Process Report that show
your team’s typical throughput:

1. Large gaps in commit timeline

Gaps in the commit timeline are useful to visualize. This can
happen for a variety of reasons (not all bad) such as taking time
to design or architect proper solutions.

Although not all cases are bad, keep an eye out for large gaps in
the timeline. They can often be an early indicator for a developer
being stuck or moved to a different project. It’s a good way to
visualize the effect of blockers and changes in the sprint.

Surfacing Inefficiencies

What to look for

Commits Over Time

Commits

Pull Request
OpenedFirst Commit

20

When are we
productive?

How to protect ‘deep work’,
promote consistency,
and avoid burnout

21

Visualizing your team’s Activity Heatmap allows you to
visualize when your team is most productive.

Look for these healthy patterns in your Process Report that show
your team’s typical throughput:

1. Large blocks of activity (at least 4 hours)

The activity heatmaps gives you a high level view of how your
team works. You can easily see how your team’s work is affected
by things such as meetings, deployment schedules and even a
noisy office culture.

Use the Activity Heatmap and work with your team to remove
unnecessary distractions. Use the heatmap to optimize meeting
times, deployment schedules and anything else that proves to be
a distraction to your team.

When are we productive?

What to look for

Activity Heatmap

Mon Wed Fri

9am

5pm

22

Protecting ‘Deep Work’

Mon Wed Fri

9am

5pm

Potential
Disruption

Visualizing gaps in your team’s Activity Heatmap to surface
potential disruptions.

Look for these unhealthy patterns in your Output Report that show
disruptions in your team’s productive time:

1. Gaps in activity
2. Small, sporadic periods of activity

Deep work is important for developers. It allows them to focus
and do their best work. Although meetings can be useful, it’s
important to know when they are cutting out of your team’s most
productive times.

Use the Activity Heatmap to understand when your team works.
Work with them to optimize meeting schedules, deployment
trains and anything else that might be getting in their way.

What to look for

Gaps in Activity

23

Promote Consistency

Mon Wed Fri

9am

5pm

Activity Spikes

Visualizing spikes in your team’s Activity Heatmap and
surface opportunities to optimize.

Look for these unhealthy patterns in your Output Report that show
disruptions in your team’s productive time:

1. Inconsistent activity

The graph above is from a team that has a scheduled deployment
every Wed. As you can see, Mon and Tues is when most of the
work happens.

Use the Activity Heatmap to understand when your team works
and why that is. In the case above, you may want to try a
Tues/Thurs deployment schedule and measure if it improves your
team’s consistency throughout the sprint.

What to look for

Activity Spikes

24

Review Rate is the percentage of merged pull requests that
have been reviewed. Use Review Rate to see how
comprehensive your team’s review process is.

Look for these unhealthy patterns in your Code Review Report that
show how well your team reviews code:

1. Low Review Rate (<100%)

A Low Review Rate indicates that the team is merging unreviewed
code. This is typically done through self-merging which shows a
lack of quality control.

Sometimes this can be necessary as it allows code to be merged
quickly but this is not a healthy long term practice. Preferably
every new code addition goes through the review process.
Self-merging can cause increase in defects, prevents knowledge
sharing and over emphasizes speed over quality.

Moving Too Fast

What to look for

Low Review Rate

Merged Pull
Requests

Reviewed Pull
Requests

Unreviewed
Pull Requests

25

Look for these unhealthy patterns in your Output Report that show
your team’s workload:

1. Abnormal activity outside working hours

Every person has different preferences on when they like to work.
With that said, keep an eye out for abnormal working times as
they can be an early signal of burnout.

If your team seems to be consistently working through the
weekend, it’s a good idea to dive into why that is. This can be a
personal preference in some cases, but make sure it’s not a
consistent pattern.

Rest is good for productivity. Make sure your team is getting the
breaks they need and prevent burnout.

Avoid Burnout

Visualizing Throughput can show if your team is
overloaded with work.

What to look for

Unsustainable Working Patterns

Mon Wed Fri

9am

5pm

Risk of
Overwork

Risk of
Overwork

26

Look for these unhealthy patterns in your Output Report that show
your team’s workload:

1. Active pull requests above typical threshold

Your team’s workload can often change for a variety of reasons.
With that said, it’s good to keep track of how much work you’re
taking on.

If your team seems to be taking on more than their typical
throughput, it’s a good idea to dive into why that is. This can often
be due to automation, refactors or optimization in the process.

If none of these are the cause, then your team may be taking on
an unsustainable amount of work. It’s good to keep an eye on this
and make sure that the workload doesn’t stay above their
throughput for long periods of time as it may result in burnout.

Avoid Burnout

Visualizing Throughput can show if your team is
overloaded with work.

What to look for

Work Overload

Time

Typical
Throughput

Overwork Risk

Pu
ll

Re
qu

es
ts

27

How well do
we review
code?
Balancing speed vs. quality,
reinforcing best practices,
and creating a healthy review culture

28

Visualizing your team’s Review Timeline gives you a high
level picture of how your team collaborates and reviews
code.

Look for these healthy patterns in your Code Review Report that
show your team’s typical throughput:

1. First comment soon after opening
2. Healthy comment activity prior to merging

The first pull request comment shows the first activity in the
review process. Preferably this happens soon after the pull
request was opened to reduce the amount of idle time in review.

Look for comment activity to show how your team engages
during the code review process. Preferably your team
collaborates through comments and moves quickly to merge the
pull request.

How well do we review code?

What to look for

Review Timeline

First
Comment

Opened
Pull Request

Merged
Pull Request

29

Look at Time to Review to see how well your team is
balancing speed and quality in the review process.

Look for these healthy patterns in your Code Review Report that
show how well your team balances speed vs. quality:

1. Small Pull Requests with quick Time to Review

Sometimes larger pull requests are necessary but it’s good to
make an effort to break these into smaller chunks. Large pull
requests can have a few negative effects on the review process.

Large pull requests can be overwhelming, prone to mistakes,
difficult to review and time consuming. This can often cause
slower response times and more bugs slipping through the
cracks. Make sure to emphasize smaller, manageable pull
requests with your team to encourage a healthier review process.

Balancing Speed vs. Quality

What to look for

Size vs. Time to Review

Speed

Si
ze

30

Visualize Pull Request Size and Time to Review together to
understand how well your team is balancing speed and
quality.

Look for these unhealthy patterns in your Code Review Report that
show how well your team balances speed vs. quality:

1. Large PR Size, Short Time to Review
2. Small PR Size, Long Time to Review

Large pull requests will take more time to review. You should
always aim for smaller pull requests but in the case where this is
necessary, make sure they aren’t getting through code review too
quickly. This can indicate that the reviewer did not spend
adequate amount of time reviewing.

Small pull requests should be smaller, easier to review and
therefore move through the review process faster. Watch out for
small pull requests that have long review times. There are a lot of
reasons this may occur from perfectionism to idle review time. Be
sure to follow up on these pull requests when you see them
stagnating.

Moving Too Fast

What to look for

Size vs. Time to Review

Time to Review

Pu
ll

Re
qu

es
t S

iz
e

Too Fast

Sweet Spot
Too Slow

31

Response Time is calculated from Pull Request Open to the First
Comment. Look for these unhealthy patterns in your Code Review
Report:

1. Long Response Time

Long Response Time means the pull request is idle in review for
longer than necessary. This can happen for a variety of reasons
such as large pull request size, too much concurrent work, or an
imbalance in review distribution.

If you see Long Response Time, it’s good to meet with your team
and discuss ways to reduce this time. Automation, formalizing
review etiquette and onboarding more reviewers are common
ways to help reduce review Response Time.

Pull Request Response Time is used to measure how long
it takes the team to start the code review process after
opening a Pull Request.

Best Practices

What to look for

Response Time

First
Comment

Opened
Pull Request

Merged
Pull Request

Waiting for
Review

32

Look for these unhealthy patterns in your Code Review Report:

1. Large Pull Request Size

Large Pull Requests are sometimes necessary but be sure this
isn’t the typical behavior. Large pull requests are difficult to
review, prone to oversights and time consuming.

If you’re seeing your team consistently open large pull requests, it
may be time to deep dive and figure out why that is. It’s important
to emphasize smaller pull requests in the code review process as
it will help decrease Cycle Time and the number of released
defects.

Visualize Pull Request Size to see how well your team
breaks up their work.

Best Practices

What to look for

Pull Request Size

Large Pull
Request

33

Look for these unhealthy patterns in your Code Review Report:

1. Uneven distribution of Assigned Pull Requests

Uneven distribution of Assigned Pull Requests can quickly show
who is overloaded with code reviews. This can cause longer
response times, rushed reviews and overwork.

Imbalanced code review assignments can also be an early signal
that your team has knowledge gaps. You’ll want to balance out
your code review assignments and assign multiple reviewers to
each pull request.

This typically helps decrease the potential knowledge gaps on the
team and onboard additional developers onto the project. These
efforts will help increase the review quality while decreasing
response time. It also has the added benefit of decreasing
knowledge gaps and speeding up Cycle Time in the long run.

Visualize Review Distribution to see how well your team
divides up their work.

Best Practices

What to look for

Review Distribution

Overworked

Assigned Pull Requests

Re
vi

ew
er

s

34

How well do
we share
knowledge?
How to spot bus factor risk,
encourage communication,
and fix knowledge gaps

35

Look for these healthy patterns in your Code Review Report that
show how well your team distributes knowledge:

1. Balanced distribution of repository
a. Contributors
b. Reviewers

Having a healthy balance of repository contributors and reviewers
shows strong team knowledge transfer.

More contributors that understand the code shows that
knowledge is distributed. Having more developers reviewing code
helps to keep knowledge gaps from forming overtime while
onboarding new developers onto the code base to reduce bus
factor.

Visualize how well your team shares knowledge in the
Code Review Report.

How well do we share knowledge?

What to look for

Knowledge Sharing

36

Look for these unhealthy patterns in your Code Review Report that
show how balanced your team’s knowledge is:

1. Unbalanced distribution of contributors

Having an imbalance of contributors across repositories signals a
low bus factor and lack of knowledge distribution. This is typically
a bad sign.

Not only is this risky if a sole developer decides to leave the
company but it also leads to increased cycle time, review time
and inconsistency in performance. Having knowledge gaps also
tends to produce overwork, burnout and stagnation in work that
can lead to developer unhappiness.

If you see this situation, it’s important you take the steps to fix it.
Try onboarding more developers onto the repository to provide
support. It also helps to assign multiple reviewers to pull requests
to help spread the knowledge.

Use Number of Contributors per Repository to quickly see
where they may be knowledge gaps and risk of a low bus
factor.

Spotting Bus Factor

What to look for

Number of Contributors

Bus Factor Risk

Re
po

si
to

ry

Number of Contributors

37

Look for these unhealthy patterns in your Code Review Report that
show how your team distributing knowledge:

1. Low number of reviewers

Having a low number of reviewers on a repository is typically a
bad sign. This is an early signal that there are knowledge silos
within a team.

Having a low number of reviewers on a repository typically
increases response time, review time and cycle time. It also
increases the risk of overwork and imbalanced workload.

If you see this pattern, make sure multiple reviewers are being
assigned to pull requests. This helps spread the knowledge over
time and reduce the burden for the existing reviewers.

Use Number of Reviewers per Repository to quickly see
where they may be gaps in communication.

Encouraging Communication

What to look for

Number of Reviewers

Not enough reviewers
Re

po
si

to
ry

Number of Contributors/Reviewers

Min Number of Reviewers

38

About Haystack

We are a team of experienced CTOs, engineering managers, and
software engineers. After working with hundreds of engineering
leaders, we’ve identified common patterns hidden in most software
teams.

We created this company, and this book, to help engineering leaders
identify common patterns to look out for so as to maximize
productivity, and minimize burnout.

Haystack was founded in April 2019 in hopes to build advanced
pattern recognition solutions built directly into your Git that will take
the manual aspects out of detecting these key moments in your
team's life.

For more information:
visit us at usehaystack.io
reach out to us at sales@haystack.io

mailto:sales@haystack.io

