# **PREOMICS**

# iST-NHS Sample Preparation Kit 96x

## Pelleted cells & precipitated protein



#### Introduction

Sample preparation is one of the essential steps of bottom-up proteomics. The PreOmics iST sample preparation kit is designed to assist researchers achieving best results with few sample preparation steps and little hands-on time. For sample-specific protocols and optimization visit www.preomics.com/downloads or contact info@preomics.com.

#### **Kit Contents**

The iST-NHS kit provides a streamlined solution for reliable sample preparation compatible with chemical labeling. It includes all chemicals to denature, reduce and alkylate proteins, as well as the enzymes to perform a tryptic digestion and a final peptide cleanup.

| Component    | Сар        | Quantity | <b>Buffer Properties</b> |        |       | es       | Description                                                     | Storage |
|--------------|------------|----------|--------------------------|--------|-------|----------|-----------------------------------------------------------------|---------|
|              |            |          | Organic                  | Acidic | Basic | Volatile |                                                                 |         |
| DIGEST       |            | 24x      |                          |        |       |          | Trypsin/LysC mix to digest proteins.                            | -20°C   |
| RESUSPEND    | $\bigcirc$ | 4x 2 mL  |                          |        |       | •        | Reconstitutes lyophilized proteolytic enzymes.                  | RT      |
| LYSE-NHS     |            | 12x 2 mL |                          |        | •     |          | Denatures, reduces and alkylates proteins.                      | RT      |
| STOP         |            | 12x 1 mL | •                        | •      |       | •        | Stops the enzymatic activity.                                   | RT      |
| WASH 1       |            | 12x 2 mL | •                        | •      |       | •        | Cleans peptides from hydrophobic contaminants.                  | RT      |
| WASH 2       |            | 12x 2 mL |                          | •      |       | •        | Cleans peptides from hydrophilic contaminants.                  | RT      |
| ELUTE        |            | 12x 2 mL | •                        |        | •     | •        | Elutes the peptides from the cartridge.                         | RT      |
| LC-LOAD      | $\circ$    | 12x 1 mL |                          | •      |       | •        | Loads peptides on reversed-phase LC-MS column.                  | RT      |
|              |            |          |                          |        |       |          |                                                                 |         |
| CARTRIDGES   |            | 96x      |                          |        |       |          | Cartridge for 1 to 100 $\mu\text{g}$ protein starting material. | RT      |
| WASTE PLATE  |            | 1x       |                          |        |       |          | Deep well plate for collecting waste after washes.              | RT      |
| MTP PLATE    |            | 1x       |                          |        |       |          | LoBind plate for collecting peptides after elution.             | RT      |
| ADAPTER PLAT | ΓΕ         | 1x       |                          |        |       |          | Enables cartridges to be placed on top of 96w plates            | s. RT   |
| ADAPTER      |            | 8x       |                          |        |       |          | Enables a cartridge to be placed into a tube.                   | RT      |

## **Pre-Requisites** Common lab equipment is required for the sample preparation.

| Equipment         | Quantity and Description                                                                               |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| PIPETTE           | Careful sample handling and pipetting reduces contaminations and improves quantification.              |  |  |  |  |  |  |
| SAMPLE            | Pelleted cells or precipitated protein. For other sample types contact PreOmics for adapted protocols. |  |  |  |  |  |  |
| 96 WELL PLATES    | 96 deep well & 96 well skirted plates to balance WASTE & MTP PLATES in centrifuge.                     |  |  |  |  |  |  |
| HEATING BLOCK     | Two MTP plate heaters are recommended to support protein denaturation and digestion.                   |  |  |  |  |  |  |
| CENTRIFUGE        | Swing-bucket centrifuges are required for loading, washing and elution.                                |  |  |  |  |  |  |
| SONICATOR         | If the sample contains DNA, shear it by sonication (e.g. Diagenode Bioruptor®).                        |  |  |  |  |  |  |
| VACUUM EVAPORATOR | Vacuum manifolds evaporate volatile buffers from the eluate before LC-MS.                              |  |  |  |  |  |  |
| ULTRASONIC BATH   | Optional: can be used to resuspend peptides.                                                           |  |  |  |  |  |  |
| LABELING REAGENT  | Labeling reagent (e.g. 400 μg labeling reagent in 41 μL dry acetonitrile for 100 μg peptides).         |  |  |  |  |  |  |
| LABELING BUFFER   | Anhydrous acetonitrile & quenching buffer (5% hydroxylamine), as recommended by the manufacturer.      |  |  |  |  |  |  |
|                   |                                                                                                        |  |  |  |  |  |  |

www.preomics.com 1 of 2

#### Method

### 1 LYSE

- 1.1. Add 50 μL LYSE-NHS to 1-100 μg of protein sample, place it in a HEATING BLOCK (95°C; 1,000 rpm; 10 min).\*NOTE1\*
- 1.2. Optional: Spin down droplets (RT; max. 300 rcf; 10 sec).
- 1.3. If the sample contains DNA, shear it in a SONICATOR (10 cycles; 30 sec ON/OFF). Let sample cool down to RT.

#### 2. DIGEST

- 2.1. Add 210 μL **RESUSPEND** to **DIGEST** (1 tube for 4 reactions), shake (RT; 500 rpm; 10 min), pipette up/down.
- 2.2. Add 50 μL **DIGEST** to sample and place it in a pre-heated HEATING BLOCK (37°C; 500 rpm; 1-3 hours). \*NOTE2\*

#### 3. LABEL

- 3.1. Resuspend LABELING REAGENT in anhydrous acetonitrile (e.g. 4:1 ratio of label:peptides).
- 3.2. Add resuspended LABELING REAGENT to sample, pipette up/down, incubate shaking (RT; 500 rpm; 1 hour).
- 3.3. Add 10 µL QUENCHING BUFFER (5% hydroxylamine) to sample, pipette up/down.
- 3.4. Add 100 µL STOP to sample (precipitation may occur), shake (RT; 500 rpm; 1 min), pipette up/down. \*SP\*

### 4. PURIFY

- 4.1. Use ADAPTER PLATE to place CARTRIDGE on top of WASTE PLATE. Label plate and wells.
- 4.2. Transfer sample to CARTRIDGE. Be careful not to damage the bottom layer of the CARTRIDGE.
- 4.3. Spin CARTRIDGE in a CENTRIFUGE (3,800 rcf; 1-3 min). If needed, adjust time to ensure complete flow-through.
- 4.4. Add 200 μL WASH 1 to CARTRIDGE, repeat step 4.3.
- 4.5. Add 200 μL WASH 2 to CARTRIDGE, repeat step 4.3. \*SP\*
- 4.6. Use ADAPTER PLATE to place CARTRIDGE on top of the MTP PLATE. Label plate and wells.
- 4.7. Add 100 μL **ELUTE** to **CARTRIDGE**, repeat step 4.3., keep flow-through in **MTP PLATE**.
- 4.8. Repeat step 4.7., keep flow-through in the same MTP PLATE.
- 4.9. Discard CARTRIDGE and place MTP PLATE in a vacuum evaporator (45°C; until completely dry).
- 4.10. Add LC-LOAD to MTP PLATE. Aim for 1 g/L concentration (e.g. 100 μL to 100 μg protein starting material).
- 4.11. Sonicate MTP PLATE tube in an ULTRASONIC BATH (5 min) or shake (RT; 500 rpm; 5 min). \*SP\*

#### \*NOTE1\* Volumes of buffers can be adjusted according to protein starting amounts.

Lysis temperature should be between 60-95°C.

Visit our FAQ website for more information and optimized procedures for chemical labeling: www.preomics.com/faq.

#### \*NOTE2\* During the digestion, place the silicon mat lightly on top of the **CARTRIDGE**.

Do not close the silicon mat tightly to prevent pressure buildup.

#### \*SP\* -

#### Storage Point: At this point, close the peptide containing tube or CARTRIDGE using the silicon mat.

Peptides can be frozen at -20°C. Storage of peptides should not exceed two weeks at -20°C.

For extended storage, finish the protocol and store at -80°C.

Please refer to www.preomics.com for our General Terms and Conditions.

Version 4.0 - For research use only