
opscruise.com

Problem Scenario:
Operations’ Pain and the
Futility of Setting Thresholds

Abstract
DevOps and SRE teams face a big burden on
selecting what metrics to monitor and how to set
thresholds on them in order to detect performance
problems with today’s monitoring solutions. Current
approaches generate a lot of noise, as well missing
outages when those thresholds are relaxed.
Furthermore, false alerts significantly increase the
time to find root cause and isolate faults for
resolutions. OpsCruise eliminates this wasted effort
by detecting emerging problems using its ML-
based modeling of the application without user-
level involvement. This approach is both preemptive
and adaptive since the model is automatically
updated keeping up with the ever-expected
application changes. The net result of using
OpsCruise is significantly improved productivity of
the Ops team, with increased organizational agility
that also improves top line business performance.

The Traditional Approach
Today’s approach to detect application performance
problems requires DevOps teams to both select
metrics of all services and set the thresholds above
which an anomaly is detected.

Consider when the Ops lead responsible for an
e-commerce application has to decide thresholds on
metrics for all containers in the application. While a
generic container has over 30 metrics, some
application components, such as a database can

have as many as 100 metrics to choose from. This
means selecting the right set of metrics to monitor
and set thresholds on over 300 possible metrics. And,
if a typical application has around 200 containers,
this would mean deciding 3000 thresholds.

Choosing only a single metric threshold per
container, such as using Prometheus alerts, would
reduce the effort. However, such single metric
thresholds are often insufficient since there are
many complex interrelationships within a service. For
example, request counts into a container can affect
consumption of CPU, memory, disk, as well as
requests it makes on other containers, so a threshold
on a single metric, say in the case of the MongoDB
service, does not capture the problem dimensions.
As a result, a simple threshold Prometheus alert
results in a high level of alert storms. Some
commercial monitoring tools, including APMs have
adopted multivariate statistical baselines for use in
outlier detection. These are based on historical
statistics, and consider a variety of unrelated metrics
including location and time of day of user requests.
Unfortunately, this leads to false alerts since those
are independent of the application context, i.e., if it is
operating correctly across different demand levels.
As a result, these multivariate baselines create false
alerts, and more significantly, lead to a longer
incorrect conclusion in root cause analysis.

Another challenge with setting thresholds is how to
tune them whenever even a single component
image is updated. Ops faced with frequent changes
in the application as desired by more agile frequent
releases means previously set thresholds are
rendered obsolete requiring setting, or often
guessing, new values with every change.

OpsCruise Use Case

Avoiding the Pain
of Setting Thresholds

opscruise.com

Most importantly, the biggest drawback we keep
hearing from Ops is their use of thresholds-based
anomaly detection lead to a large number of false
alerts, Because they are not related to how the service
performs under different loads, relying on historical
baselines results in frequent false positives, especially
when new demands occur which the service is quite
able to handle. A more unfortunate consequence is
that of false negative alerts. When thresholds are not
relevant they often miss the real problem.

The net result of the above is increased mean time to
detect (MTTD), isolate the source of the problem, and
then resolve, i.e., increased mean time to repair (MTTR).

Finally, using threshold-based anomaly detection,
especially limits on performance, is always reactive
resulting in avoidable downtimes. The above
example is for one application service or container.

The OpsCruise Solution
and an Example
OpsCruise takes an unique application aware
approach to proactively detecting problems: an
automated ML-based approach that uses learned
application behavior to catch application problems
as they occur. Using real-time metrics, including
flows, events and configuration from open source

monitoring frameworks as well as cloud services, the
structure, the Application Graph, and behavior of the
application is learned. The behavior model is then
deployed in runtime to detect deviations from the
expected based on the current state, signaling an
emerging problem.

In the case of the e-commerce application with 100s
of components, the Ops team does not need to
decide metrics to monitor nor set thresholds.
OpsCruise’s ML does the job, and based on learned
behavior detects when MongoDB has a problem,
and also surfaces the leading metrics that are likely
explanations for the anomaly. Ops would have never
guessed that this combination of metrics for
MongoDB is an indication of an emerging problem.

The Business Impact
OpsCruise’s application-aware ML-based
anomaly detection:

•	 Reduces the Ops hours wasted in setting
thresholds that are ineffective and
inconsistent. This wasted effort becomes
significant when the number of containers and
services grow from 100s to 1000s. For the
e-commerce customer, it was several FTEs of
work annually.

opscruise.com

•	 Reduces significant Ops time that is spent
on chasing false positives. For the same
customer example, they had several dozen
infrastructure and application development
employees who were spending 25%+ of their
time chasing false positives.

•	 Reduces the risk of downtime by decreasing
the incidence of false negatives. While hard to
prove, anecdotally, this e-commerce firm
acknowledged they uncovered many critical
issues that their traditional monitoring tools
would have ignored.

The net result of using OpsCruise is significantly
improved productivity of the Ops team, with
increased organizational agility that also improves
top line business performance.

About OpsCruise
OpsCruise provides an observability platform for automated
performance assurance of cloud applications.

Telemetry
(Metrics...)

Anomaly Detection – Causal Analysis

Application
Graph

Behavior
Model

Local
Problem

Detection

Global
Dependency

Analysis

