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Abstract

This paper takes a step towards temporal reasoning in a dynamically changing video,
not in the pixel space that constitutes its frames, but in a latent space that describes
the non-linear dynamics of the objects in its world. We introduce the Kalman
variational auto-encoder, a framework for unsupervised learning of sequential data
that disentangles two latent representations: an object’s representation, coming
from a recognition model, and a latent state describing its dynamics. As a result, the
evolution of the world can be imagined and missing data imputed, both without the
need to generate high dimensional frames at each time step. The model is trained
end-to-end on videos of a variety of simulated physical systems, and outperforms
competing methods in generative and missing data imputation tasks.

1 Introduction

From the earliest stages of childhood, humans learn to represent high-dimensional sensory input
to make temporal predictions. From the visual image of a moving tennis ball, we can imagine
its trajectory, and prepare ourselves in advance to catch it. Although the act of recognising the
tennis ball is seemingly independent of our intuition of Newtonian dynamics [31]], very little of this
assumption has yet been captured in the end-to-end models that presently mark the path towards
artificial general intelligence. Instead of basing inference on any abstract grasp of dynamics that is
learned from experience, current successes are autoregressive: to imagine the tennis ball’s trajectory,
one forward-generates a frame-by-frame rendering of the full sensory input [5 [7, 23} 24} 29} 30].

To disentangle two latent representations, an object’s, and that of its dynamics, this paper introduces
Kalman variational auto-encoders (KVAEs), a model that separates an intuition of dynamics from
an object recognition network (section[3)). At each time step ¢, a variational auto-encoder [18] 25]
compresses high-dimensional visual stimuli x; into latent encodings a;. The temporal dynamics in
the learned a;-manifold are modelled with a linear Gaussian state space model that is adapted to
handle complex dynamics (despite the linear relations among its states z;). The parameters of the
state space model are adapted at each time step, and non-linearly depend on past a;’s via a recurrent
neural network. Exact posterior inference for the linear Gaussian state space model can be preformed
with the Kalman filtering and smoothing algorithms, and is used for imputing missing data, for
instance when we imagine the trajectory of a bouncing ball after observing it in initial and final video
frames (sectiond). The separation between recognition and dynamics model allows for missing data
imputation to be done via a combination of the latent states z; of the model and its encodings a; only,
without having to forward-sample high-dimensional images x; in an autoregressive way. KVAEs are
tested on videos of a variety of simulated physical systems in section[5} from raw visual stimuli, it
“end-to-end” learns the interplay between the recognition and dynamics components. As KVAEs can
do smoothing, they outperform an array of methods in generative and missing data imputation tasks
(section[3)).

*Equal contribution.
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2 Background

Linear Gaussian state space models. Linear Gaussian state space models (LGSSMs) are widely
used to model sequences of vectors a = a;.; = [ay, .., ar|. LGSSMs model temporal correlations
through a first-order Markov process on latent states z = [z1, .., zr|, which are potentially further
controlled with external inputs u = [uy, .., ur], through the Gaussian distributions

Py (Zt|Zt—1,llt) = N(Zt; Az + By, Q) , Py (at|Zt) = N(at; Ctzth) . (D

Matrices v; = [Ay, By, C;] are the state transition, control and emission matrices at time ¢. Q and R
are the covariance matrices of the process and measurement noise respectively. With a starting state
z1 ~ N(z1;0,X), the joint probability distribution of the LGSSM is given by

py(a,zlu) = p,(alz) p, (zlu) = [Ty, (aclze) - p(21) [T1—s oy (Zel2e-1.w) . ()

where v = [y1, .., y7]. LGSSMs have very appealing properties that we wish to exploit: the filtered
and smoothed posteriors p(z:|a;.t, u;.+) and p(z:|a, u) can be computed exactly with the classical
Kalman filter and smoother algorithms, and provide a natural way to handle missing data.

Variational auto-encoders. A variational auto-encoder (VAE) [18| 25] defines a deep generative
model py(x¢,a:) = po(x¢|a;)p(a;) for data x; by introducing a latent encoding a;. Given a
likelihood py(x:|a;) and a typically Gaussian prior p(a;), the posterior pg(a|x;) represents a
stochastic map from x; to a;’s manifold. As this posterior is commonly analytically intractable, VAEs
approximate it with a variational distribution g (a;|x;) that is parameterized by ¢. The approximation
ge 1s commonly called the recognition, encoding, or inference network.

3 Kalman Variational Auto-Encoders

The useful information that describes the movement and interplay of objects in a video typically lies
in a manifold that has a smaller dimension than the number of pixels in each frame. In a video of a
ball bouncing in a box, like Atari’s game Pong, one could define a one-to-one mapping from each
of the high-dimensional frames x = [x1, .., X7] into a two-dimensional latent space that represents
the position of the ball on the screen. If the position was known for consecutive time steps, for a
set of videos, we could learn the temporal dynamics that govern the environment. From a few new
positions one might then infer where the ball will be on the screen in the future, and then imagine the
environment with the ball in that position.

The Kalman variational auto-encoder (KVAE) is based
on the notion described above. To disentangle recognition
and spatial representation, a sensory input X, is mapped to
a; (VAE), a variable on a low-dimensional manifold that
encodes an object’s position and other visual properties. In
turn, a; is used as a pseudo-observation for the dynamics

model (LGSSM). x; represents a frame of a Videdﬂx =
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[X1,..,x7] of length T". Each frame is encoded into a
point a; on a low-dimensional manifold, so that the KVAE
contains 1" separate VAEs that share the same decoder
po(x¢|a;) and encoder g4(a¢|x;), and depend on each
other through a time-dependent prior over a = [ay, .., ar].
This is illustrated in figure[T}

LGSSM

. Figure 1: A KVAE is formed by stack-
3.1 Generative model ing a LGSSM (dashed blue), and a VAE

W that ‘ latent ati £ th (dashed red). Shaded nodes denote ob-
¢ assume that a acts as a latent representation ol te —qo veq varjables. Solid arrows represent

whole video, so that the generative model of a sequence the generative model (with parameters )

factorizes as py(x|a) = [];_; po(x¢|ar). In this paper hile dashed arrows represent the VAE
po(x¢|a;) is a deep neural network parameterized by 6, inference network (with parameters ¢).

>While our main focus in this paper are videos, the same ideas could be applied more in general to any
sequence of high dimensional data.



that emits either a factorized Gaussian or Bernoulli probability vector depending on the data type of
x¢. We model a with a LGSSM, and following (IZ]), its prior distribution is

po(alw) = [ b, (ala)p, (alw) dz. 3)

so that the joint density for the KVAE factorizes as p(x, a, z|u) = ps(x|a) py(alz) p,(z|u). A
LGSSM forms a convenient back-bone to a model, as the filtered and smoothed distributions
D(Z¢|ai¢, ui¢) and p,(z¢]a, u) can be obtained exactly. Temporal reasoning can be done in the
latent space of z;’s and via the latent encodings a, and we can do long-term predictions without
having to auto-regressively generate high-dimensional images x;. Given a few frames, and hence
their encodings, one could “remain in latent space” and use the smoothed distributions to impute
missing frames. Another advantage of using a to separate the dynamics model from x can be seen by
considering the emission matrix C;. Inference in the LGSSM requires matrix inverses, and using
it as a model for the prior dynamics of a; allows the size of C; to remain small, and not scale with
the number of pixels in x;. While the LGSSM’s process and measurement noise in (I)) are typically
formulated with full covariance matrices [26], we will consider them as isotropic in a KVAE, as a;
act as a prior in a generative model that includes these extra degrees of freedom.

What happens when a ball bounces against a wall, and the dynamics on a; are not linear any more?
Can we still retain a LGSSM backbone? We will incorporate nonlinearities into the LGSSM by
regulating 4 from outside the exact forward-backward inference chain. We revisit this central idea at
length in section[3.3]

3.2 Learning and inference for the KVAE

We learn 0 and ~ from a set of example sequences {x(")} by maximizing the sum of their respective
log likelihoods £ = 3", log pg,(x(™ [u(™) as a function of # and ~. For simplicity in the exposition
we restrict our discussion below to one sequence, and omit the sequence index 7. The log likelihood or
evidence is an intractable average over all plausible settings of a and z, and exists as the denominator
in Bayes’ theorem when inferring the posterior p(a, z|x,u). A more tractable approach to both
learning and inference is to introduce a variational distribution ¢(a, z|x, u) that approximates the
posterior. The evidence lower bound (ELBO) F is
pG(X|a)p’y(a|Z)p'y(z|u) — ‘/—_'(077’¢) , (4)
q(a, z|x, u)
and a sum of F’s is maximized instead of a sum of log likelihoods. The variational distribution
q depends on ¢, but for the bound to be tight we should specify ¢ to be equal to the posterior
distribution that only depends on # and . Towards this aim we structure ¢ so that it incorporates the
exact conditional posterior p,(z|a, u), that we obtain with Kalman smoothing, as a factor of :

10gp(X|u) = log/p(x,a,z|u) > ]Eq(a,z\x,u) 10g

q(a, zlx,u) = g4(alx) p; (zla, u) = [T,_ s (adlx:) p, (zla,v) . (5)
The benefit of the LGSSM backbone is now apparent. We use a “recognition model” to encode each
x; using a non-linear function, after which exact smoothing is possible. In this paper g, (a.|x;) is a
deep neural network that maps x; to the mean and the diagonal covariance of a Gaussian distribution.
As explained in section[d] this factorization allows us to deal with missing data in a principled way.

Using (3)), the ELBO in (4)) becomes
po(x(a) Pv(a|Z)P~y(Z|U)”
F(0,7,6) =K, (ai |log 2OZR) PraZpy 2| .
(0:7:6) = Eno 8 1015 b, (ela )

The lower bound in (6) can be estimated using Monte Carlo integration with samples {a®),z("}!_,
drawn from ¢,

+ Ep, (zja,u) |log (6)

1 ~(i ~(i) (i ~(i (i) |x(i
F(0.7,0) = 7 > _logps(x[a”) +log p, (@', 2 ) ~log g4 (2™ jx) ~log p, (V@ ) . (7)

Note that the ratio p.,(a(?, 2" |u) /p, (2?2, u) in (@) gives p, (2 |u), but the formulation with
{z(™} allows stochastic gradients on +y to also be computed. A sample from g can be obtained by
first sampling a ~ g4 (a|x), and using a as an observation for the LGSSM. The posterior p,(z|a, u)
can be tractably obtained with a Kalman smoother, and a sample z ~ p,(z|a, u) obtained from it.
Parameter learning is done by jointly updating 6, ¢, and v by maximising the ELBO on £, which
decomposes as a sum of ELBOs in (6)), using stochastic gradient ascent and a single sample to
approximate the intractable expectations.



3.3 Dynamics parameter network

The LGSSM provides a tractable way to structure p.,(z|a, u) into the variational approximation in
(). However, even in the simple case of a ball bouncing against a wall, the dynamics on a; are not
linear anymore. We can deal with these situations while preserving the linear dependency between
consecutive states in the LGSSM, by non-linearly changing the parameters 7, of the model over time
as a function of the latent encodings up to time ¢ — 1 (so that we can still define a generative model).
Smoothing is still possible as the state transition matrix A, and others in 7, do not have to be constant
in order to obtain the exact posterior p, (z¢|a, u).

Recall that v, describes how the latent state z;_; changes from time ¢ — 1 to time ¢. In the more
general setting, the changes in dynamics at time ¢ may depend on the history of the system, encoded
in aj.;—1 and possibly a starting code a that can be learned from data. If, for instance, we see the ball
colliding with a wall at time ¢ — 1, then we know that it will bounce at time ¢ and change direction.
We then let +; be a learnable function of ag.;—_1, so that the prior in () becomes

T
p“/(aﬂz‘u) = Ht:lp’)'t(ao:t_ﬂ(at'Zt) (Zl)Ht 2 Pyi(ao.t—1) (Zt|zt 17ut 8)

During inference, after all the frames are encoded in a, the

dynamics parameter network returns v = ~y(a), the param- @ é ‘
eters of the LGSSM at all time steps. We can now use the

Kalman smoothing algorithm to find the exact conditional

posterior over z, that will be used when computing the 4»

gradients of the ELBO.

In our experiments the dependence of 4 on agp.;—1 is
modulated by a dynamics parameter network o; =
ai(ag.t—1), that is implemented with a recurrent neu-
ral network with LSTM cells that takes at each time
step the encoded state as input and recurses d; =
LSTM(a;_1,d¢—1) and o = softmax(dy), as illustrated
in figure[2] The output of the dynamics parameter network
is weights that sum to one, Zszl agk) (ag.t—1) = 1. These weights choose and interpolate between
K different operating modes:

Figure 2: Dynamics parameter network
for the KVAE.
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A, Z Qy ao t— 1 (k), B; = Z aﬁk)(ao;t_l)B(’“), C = Zaik) (aO:t—l)C(k) )]
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We globally learn K basic state transition, control and emission matrices A*), B(*) and C*), and
interpolate them based on information from the VAE encodings. The weighted sum can be interpreted
as a soft mixture of K different LGSSMs whose time-invariant matrices are combined using the time-
varying weights a;. In practice, each of the K sets {A(*) B(*) C(k)} models different dynamics,
that will dominate when the corresponding agk) is high. The dynamics parameter network resembles
the locally-linear transitions of [16}33]]; see section E] for an in depth discussion on the differences.

4 Missing data imputation

Let x,ps be an observed subset of frames in a video sequence, for instance depicting the initial
movement and final positions of a ball in a scene. From its start and end, can we imagine how
the ball reaches its final position? Autoregressive models like recurrent neural networks can only
forward-generate x; frame by frame, and cannot make use of the information coming from the final
frames in the sequence. To impute the unobserved frames x,,, in the middle of the sequence, we need
to do inference, not prediction.

The KVAE exploits the smoothing abilities of its LGSSM to use both the information from the past
and the future when imputing missing data. In general, if x = {Xops, Xun }, the unobserved frames in
Xun could also appear at non-contiguous time steps, e.g. missing at random. Data can be imputed
by sampling from the joint density p(aun, @obs, Z|Xobs, 1), and then generating x,,, from a,,. We
factorize this distribution as

p(aum Aobs; Z|Xobsa u) = Dy (aun |Z) D~ (Z|aob57 u) p(aobs‘xobs) , (10)



and we sample from it with ancestral sampling starting from X,ps. Reading (I0) from right to left, a
sample from p(aops|Xobs) can be approximated with the variational distribution gy (@obs|Xobs)- Then,
if 7y is fully known, p- (z|aobs, u) is computed with an extension to the Kalman smoothing algorithm
to sequences with missing data, after which samples from p.,(a,n|z) could be readily drawn.

However, when doing missing data imputation the parameters v of the LGSSM are not known at
all time steps. In the KVAE, each ~; depends on all the previous encoded states, including a,,, and
these need to be estimated before v can be computed. In this paper we recursively estimate -y in the
following way. Assume that x1.,1 is known, but not x;. We sample a;.;—; from gg(as.;—1|X1.4-1)
using the VAE, and use it to compute 7;.;. The computation of ;; depends on a;, which is missing,
and an estimate a; will be used. Such an estimate can be arrived at in two steps. The filtered posterior
distribution p., (z;—1|a1.¢—1, U1:¢—1) can be computed as it depends only on 7y1.¢—1, and from it, we
sample

Z ~ py(Z¢|ar—1,u1y) = /P% (z¢|Ze—1,0¢) Py (Ze—1|atp—1, U1p—1) dZp g (11)
and sample a; from the predictive distribution of a;,
a; ~ py(aglar—1,ury) = /p% (ar|ze) py(Ze|ari—1, i) dze = py, (a|ze) (12)

The parameters of the LGSSM at time ¢ + 1 are then estimated as ;41 ([ag.t—1, a¢]). The same
procedure is repeated at the next time step if x;1 is missing, otherwise a;; is drawn from the VAE.
After the forward pass through the sequence, where we estimate v and compute the filtered posterior
for z, the Kalman smoother’s backwards pass computes the smoothed posterior. While the smoothed
posterior distribution is not exact, as it relies on the estimate of y obtained during the forward pass, it
improves data imputation by using information coming from the whole sequence; see section [5|for an
experimental illustration.

5 Experiments

We motivated the KVAE with an example of a bouncing ball, and use it here to demonstrate the
model’s ability to separately learn a recognition and dynamics model from video, and use it to impute
missing data. To draw a comparison with deep variational Bayes filters (DVBFs) [[16], we apply
the KVAE to [16]]’s pendulum example. We further apply the model to a number of environments
with different properties to demonstrate its generalizability. All models are trained end-to-end with
stochastic gradient descent. Using the control input u, in (I)) we can inform the model of known
quantities such as external forces, as will be done in the pendulum experiment. In all the other
experiments, we omit such information and train the models fully unsupervised from the videos only.
Further implementation details can be found in the supplementary material (appendix [A) and in the
Tensorflow [1]] code released at github.com/simonkamronn/kvael

5.1 Bouncing ball

We simulate 5000 sequences of 20 time steps each of a ball moving in a two-dimensional box, where
each video frame is a 32x32 binary image. A video sequence is visualised as a single image in figure
Md] with the ball’s darkening color reflecting the incremental frame index. In this set-up the initial
position and velocity are randomly sampled. No forces are applied to the ball, except for the fully
elastic collisions with the walls. The minimum number of latent dimensions that the KVAE requires
to model the ball’s dynamics are a; € R? and z; € R*, as at the very least the ball’s position in the
box’s 2d plane has to be encoded in a;, and z; has to encode the ball’s position and velocity. The
model’s flexibility increases with more latent dimensions, but we choose these settings for the sake of
interpretable visualisations. The dynamics parameter network uses K = 3 to interpolate three modes,
a constant velocity, and two non-linear interactions with the horizontal and vertical walls.

We compare the generation and imputation performance of the KVAE with two recurrent neural
network (RNN) models that are based on the same auto-encoding (AE) architecture as the KVAE and
are modifications of methods from the literature to be better suited to the bouncing ball experimentsE]

3We also experimented with the SRNN model from [8] as it can do smoothing. However, the model is
probably too complex for the task in hand, and we could not make it learn good dynamics.
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Figure 3: Missing data imputation results.

In the AE-RNN, inspired by the architecture from [29], a pretrained convolutional auto-encoder,
identical to the one used for the KVAE, feeds the encodings to an LSTM network [13]]. During
training the LSTM predicts the next encoding in the sequence and during generation we use the
previous output as input to the current step. For data imputation the LSTM either receives the previous
output or, if available, the encoding of the observed frame (similarly to filtering in the KVAE). The
VAE-RNN is identical to the AE-RNN except that uses a VAE instead of an AE, similarly to the model
from [6]].

Figure [3a| shows how well missing frames are imputed in terms of the average fraction of incorrectly
guessed pixels. In it, the first 4 frames are observed (to initialize the models) after which the next
16 frames are dropped at random with varying probabilities. We then impute the missing frames
by doing filtering and smoothing with the KVAE. We see in figure [3a that it is beneficial to utilize
information from the whole sequence (even the future observed frames), and a KVAE with smoothing
outperforms all competing methods. Notice that dropout probability 1 corresponds to pure generation
from the models. Figure 3b|repeats this experiment, but makes it more challenging by removing an
increasing number of consecutive frames from the middle of the sequence (7" = 20). In this case
the ability to encode information coming from the future into the posterior distribution is highly
beneficial, and smoothing imputes frames much better than the other methods. Figure[3c|graphically
illustrates figure [3b] We plot three trajectories over a;-encodings. The generated trajectories were
obtained after initializing the KVAE model with 4 initial frames, while the smoothed trajectories
also incorporated encodings from the last 4 frames of the sequence. The encoded trajectories were
obtained with no missing data, and are therefore considered as ground truth. In the first three plots
in figure we see that the backwards recursion of the Kalman smoother corrects the trajectory
obtained with generation in the forward pass. However, in the fourth plot, the poor trajectory that is
obtained during the forward generation step, makes smoothing unable to follow the ground truth.

The smoothing capabilities of KVAEs make it also possible to train it with up to 40% of missing data
with minor losses in performance (appendix [C|in the supplementary material). Links to videos of
the imputation results and long-term generation from the models can be found in appendix |B|and at
sites.google.com/view/kvae,

Understanding the dynamics parameter network. In our experiments the dynamics parameter
network a; = o (ag.¢—1) is an LSTM network, but we could also parameterize it with any differen-
tiable function of ag.;—1 (see appendix |D|in the supplementary material for a comparison of various
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Figure 4: A visualisation of the dynamics parameter network agk) (a¢—1) for K = 3, as a function of

a;—1. The three agk) ’s sum to one at every point in the encoded space. The greyscale backgrounds in

a) to ¢) correspond to the intensity of the weights agk), with white indicating a weight of one in the
dynamics parameter network’s output. Overlaid on them is the full latent encoding a. d) shows the

reconstructed frames of the video as one image.

architectures). When using a multi-layer perceptron (MLP) that depends on the previous encoding as
mixture network, i.e. oy = oy (a;_1), figure 4] illustrates how the network chooses the mixture of
learned dynamics. We see that the model has correctly learned to choose a transition that maintains a
constant velocity in the center (k = 1), reverses the horizontal velocity when in proximity of the left
and right wall (k = 2), the reverses the vertical velocity when close to the top and bottom (k = 3).

5.2 Pendulum experiment

We test the KVAE on the experiment of a dynamic torque- Model | Test ELBO
controlled pendulum used in [16]. Training, validation and
test set are formed by 500 sequences of 15 frames of 16x16 KVAE (CNN) 810.08

pixels. We use a KVAE with a, € R?, z, € R? and K = 2, KVAE (MLP) 807.02

and try two different encoder-decoder architectures for the DVBF 798.56

VAE, one using a MLP and one using a convolutional neural DMM 784.70
network (CNN). We compare the performaces of the KVAE ) .

to DVBFs [I6] and deep Markov modelg] (DMM) [19], non-  1able 1: Pendulum experiment.
linear SSMs parameterized by deep neural networks whose

intractable posterior distribution is approximated with an inference network. In table[I] we see that
the KVAE outperforms both models in terms of ELBO on a test set, showing that for the task in hand
it is preferable to use a model with simpler dynamics but exact posterior inference.

5.3 Other environments

To test how well the KVAE adapts to different environments, we trained it end-to-end on videos of (i)
a ball bouncing between walls that form an irregular polygon, (ii) a ball bouncing in a box and subject
to gravity, (iii) a Pong-like environment where the paddles follow the vertical position of the ball to
make it stay in the frame at all times. Figure[5|shows that the KVAE learns the dynamics of all three
environments, and generates realistic-looking trajectories. We repeat the imputation experiments of
figures [3a) and [3b] for these environments in the supplementary material (appendix [E), where we see
that KVAEs outperform alternative models.

6 Related work

Recent progress in unsupervised learning of high dimensional sequences is found in a plethora of
both deterministic and probabilistic generative models. The VAE framework is a common work-
horse in the stable of probabilistic inference methods, and it is extended to the temporal setting by
[2, 16} 8, [16L [19]]. In particular, deep neural networks can parameterize the transition and emission
distributions of different variants of deep state-space models [8,[16,[19]. In these extensions, inference

“Deep Markov models were previously referred to as deep Kalman filters.
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(a) Irregular polygon. (b) Box with gravity. (c) Pong-like environment.

Figure 5: Generations from the KVAE trained on different environments. The videos are shown as
single images, with color intensity representing the incremental sequence index ¢. In the simulation
that resembles Atari’s Pong game, the movement of the two paddles (left and right) is also visible.

networks define a variational approximation to the intractable posterior distribution of the latent states
at each time step. For the tasks in section[3] it is preferable to use the KVAE’s simpler temporal model
with an exact (conditional) posterior distribution than a highly non-linear model where the posterior
needs to be approximated. A different combination of VAEs and probabilistic graphical models has
been explored in [[15]], which defines a general class of models where inference is performed with
message passing algorithms that use deep neural networks to map the observations to conjugate
graphical model potentials.

In classical non-linear extensions of the LGSSM like the extended Kalman filter and in the locally-
linear dynamics of [[16}133]], the transition matrices at time ¢ have a non-linear dependence on z;_ .
The KVAE’s approach is different: by introducing the latent encodings a; and making ~y; depend
on aj.;_1, the linear dependency between consecutive states of z is preserved, so that the exact
smoothed posterior can be computed given a, and used to perform missing data imputation. LGSSM
with dynamic parameterization have been used for large-scale demand forecasting in [27]. [20]
introduces recurrent switching linear dynamical systems, that combine deep learning techniques and
switching Kalman filters [22]] to model low-dimensional time series. [11]] introduces a discriminative
approach to estimate the low-dimensional state of a LGSSM from input images. The resulting model
is reminiscent of a KVAE with no decoding step, and is therefore not suited for unsupervised learning
and video generation. Recent work in the non-sequential setting has focused on disentangling basic
visual concepts in an image [[12]. [L0] models neural activity by finding a non-linear embedding of a
neural time series into a LGSSM.

Great strides have been made in the reinforcement learning community to model how environments
evolve in response to action [5}[23) 24} 30, |32]. In similar spirit to this paper, [32] extracts a latent
representation from a PCA representation of the frames where controls can be applied. [S]] introduces
action-conditional dynamics parameterized with LSTMs and, as for the KVAE, a computationally
efficient procedure to make long term predictions without generating high dimensional images at
each time step. As autoregressive models, [29] develops a sequence to sequence model of video
representations that uses LSTMs to define both the encoder and the decoder. [[7] develops an action-
conditioned video prediction model of the motion of a robot arm using convolutional LSTMs that
models the change in pixel values between two consecutive frames.

While the focus in this work is to define a generative model for high dimensional videos of simple
physical systems, several recent works have combined physical models of the world with deep learning
to learn the dynamics of objects in more complex but low-dimensional environments [3| 14, |9, [34].

7 Conclusion

The KVAE, a model for unsupervised learning of high-dimensional videos, was introduced in this
paper. It disentangles an object’s latent representation a; from a latent state z; that describes its
dynamics, and can be learned end-to-end from raw video. Because the exact (conditional) smoothed
posterior distribution over the states of the LGSSM can be computed, one generally sees a marked



improvement in inference and missing data imputation over methods that don’t have this property.
A desirable property of disentangling the two latent representations is that temporal reasoning, and
possibly planning, could be done in the latent space. As a proof of concept, we have been deliberate
in focussing our exposition to videos of static worlds that contain a few moving objects, and leave
extensions of the model to real world videos or sequences coming from an agent exploring its
environment to future work.
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