
WHITEPAPER

API security
best practices
Protect your APIs with Anypoint Platform

WHITEPAPER

API security
best practices
Protect your APIs with
Anypoint Platform

2

Table of contents

Executive summary  ..  3

Overview  ..  4

Introduction  ..  5

Section 1: Identity  ..  6

Section 2: Federated identity  ..  12

Section 3: Confidentiality, integrity, and availability   16

Section 4: Message confidentiality  ..  18

Section 5: Mule runtime security capabilities  ..  21

Section 6: Anypoint Platform security capabilities  ..  26

Section 7: Anypoint MQ  ..  33

Section 8: Anypoint Platform compliance  ..  36

Section 9: Summary scenario  .  37

Conclusion  ..  42

About MuleSoft  .  43

3

Executive summary

APIs have become a strategic necessity for businesses. They
facilitate agility and innovation. However, the financial incentive
associated with this agility is often tempered with the fear of
undue exposure of the valuable information that these APIs
expose. According to Gartner, by 2022, API abuses will be the
most-frequent attack vector for enterprise web applications
data breaches. It is no wonder that many IT decision makers
today are concerned about API security.

MuleSoft’s Anypoint Platform can automate
the security and governance of your API,

ensure your API is highly available to respond
to clients, and can guarantee the integrity and
confidentiality of the information it processes.

In this paper, we will show how MuleSoft’s Anypoint Platform
can automate the security and governance of your API, ensure
that your API is highly available to respond to clients, and
guarantee the integrity and confidentiality of the information it
processes. We explore in-depth the main security concerns
and look at how the IT industry has responded to those
concerns. We present Anypoint Platform as fully capable of
managing and hosting APIs that meet strict security standards.

https://www.gartner.com/doc/3834704/build-effective-api-security-strategy

4

Overview

In this paper, we will discuss APIs and security within Anypoint
Platform in two parts. In part one, we will cover the general
concerns that senior IT decision makers have with respect to
their digital assets.

We will also cover the topics of authentication and
authorization, and discuss why it is important to maintain
confidentiality, integrity, and availability of your data.

In part two, we will show how Anypoint Platform addresses the
above requirements. We will cover the core security capabilities
of Anypoint Platform. We will also look at how Anypoint
Platform can help you manage your APIs and address your
security concerns through policies.

In this part, we will also cover how APIs deployed to MuleSoft’s
Anypoint Platform can securely integrate with servers in your
data center. We will conclude with a fictitious scenario that
shows how Anypoint Platform can form part of the fabric of a
secure API-led architecture.

5

Introduction

A secure API is one that can guarantee the confidentiality of the
information it processes by making it visible only to the Users,
Apps, and Servers that are authorized to consume it. Likewise, it
must be able to guarantee the integrity of the information it
receives from the Clients and Servers that it collaborates with,
so that it will only process information, if it knows that it has not
been modified by a third-party.

In this case, the ability to identify the calling systems and their
end-users is a prerequisite for guaranteeing these two security
qualities. What we have stated also applies to those calls that
the API makes to third-party Servers. An API must never lose
information so it must be available to handle requests and
process them in a reliable fashion.

In this paper, we use the term API in a broad sense to include
both the interface definition and the service or microservice
which implements it. We recognize that many of the standards
and examples we present are oriented towards HTTP.
However, with our broad definition of the term API, we also
envision the use of event-driven approaches with
message brokers.

We also utilize the terms: Users, Apps, Clients, and Servers. Users
interact with Apps (application software) which are Clients to
your API. In contrast, your API acts as a Server to the app. APIs
can also act as Clients to other APIs, web services, databases,
etc.—all of which we refer to as Servers. It is a common practice
to use the term messaging to describe API calls.

We utilize both expressions interchangeably for the
purposes of this paper.

6

Section 1: Identity

Another API

User App API

Salesforce

Database

Figure 1: Users, Apps, Clients, and Servers

Identity is core to the world of security. You must be able to
recognize the Apps that consume your API, the Users of the
same API, and the Servers that your API calls out to. Likewise,
your API should be able to identify itself to both
Apps and Servers.

You need an Identity Store that you can refer to verify your
recognition of Apps and Users. The Identity Store could be a
database, but an LDAP server is the most popular solution.
Active Directory is a popular LDAP implementation. In an LDAP
server you typically store usernames, passwords, digital
certificates, personal details, and the organization to which
Users belong. App IDs can also be stored here.

An Identity Provider is software that is dedicated to managing
the interaction with the Identity Store(s) for authentication and
authorization purposes. Your API can function in this role,
though it is preferable to delegate this responsibility to the
Identity Provider.

7

User App Identity Provider Identity Store

Figure 2: Identity Provider and Identity Store

1.1	 User and app authentication
When you are presented with an App ID or a User’s username
(claim) in a call to your API, you must be able to verify the
authenticity of the claim. This is done with some form of a
shared secret. When your API acts as an Identity Provider, it
typically authenticates the claim by passing the same
credentials to the LDAP server.

1.1.1	 Username and password credentials
This is the simplest form of authentication. When it is exposed
to Users, it places the burden of memorizing the password on
them. When it is realized with system-to-system authentication,
then a password to a Server may end up being shared by
multiple other APIs.

›› The use of username/password pairs as credentials is a
very common practice, but it is not recommended from
two perspectives:

yy Passwords have a level of predictability, whereas the
ideal scenario is to maximize randomness or entropy.
Username/password pairs are a low entropy form
of authentication.

yy Maintaining passwords is difficult. If you need to change
a password, then you immediately affect all Apps that
make use of that password. Until each of these has been
reconfigured, you have broken communication with
them. As a consequence, there is no way you can block

8

access to one App in particular without blocking all the
Apps that use the same username and password.

1.1.2	 Multi-factor authentication (MFA)
Recognizing the weakness of username and password
credentials, an App using multi-factor authentication (MFA)
demands from the User a one-time usage token they receive
after authenticating with the user’s credentials. This token may
be delivered through SMS when the App requests an MFA
Provider to do so. The User may also have a digital key which is
a token that the App can validate. An RSA SecurID is an
example of this.

When the App receives the token which it validates with the
MFA provider, it proceeds to consume your API.

1.1.3	 Token-based credentials
A better alternative to Username Password Credentials are
token-based credentials, which provide higher entropy and a
more secure form of authentication and authorization. The
idea is for the Identity Provider to issue tokens based on an
initial authentication request with username/password
credentials. From then on, the App only has to send the token,
which greatly reduces the number of username/password
credentials going to and from over the network.

Also, tokens are usually issued with an expiration period and
can be revoked. Furthermore, because they are issued
uniquely to each App, when you choose to revoke a particular
token or if it expires, all the other Apps can continue to use
their tokens independently.

In Figure 3, Janet signs into her App. The App authenticates her
and requests a token from the Identity Provider. This
authenticates her with the Identity Store and then responds to
the App with a token. The App proceeds to call the
API with the token.

9

User (Janet) App Orders API

Orders
Identity

Store

Orders Identity
Provider

Authenticate Janet and
request token

Authenticate
Janet

Janet

Token

Token

Issue token

3

Validate token

1 2

Call API

4

5

Figure 3: Token-based credentials

1.2	 API and server authentication
Your API must be able to authenticate itself to the Apps which
consume it. Likewise, when your API interacts with Servers, they
must authenticate themselves to the API. In both cases you
must try to avoiding man-in-the-middle attacks, which
sometimes take the form of malicious software pretending to
be a Server or indeed your API.

We will take a look at the typical form of authentication for
these scenarios when we address Public key cryptography.

1.3	 User and app authorization

1.3.1	 Role-based access control (RBAC)
Typically, every business, enterprise, or organization is divided
into groups of employees around related business functions.
For example, think of the nursing team and the medical doctor
team and the catering team in a hospital. The employees
working within an organization have a static function defined
by these group boundaries.

This group information can be used when software Users
interact with an App and you need to restrict their access

10

according to the authorization or access control rule in place
for that software. You can use the group they belong to identify
their role when using the App. Groups are role and App
agnostic. They are purely business-level divisions. LDAP servers
use the concept of groups for this purpose. Identity Providers
are responsible for retrieving this group information from the
Identity Store. A role is an App specific definition of access
control. A User will typically adopt multiple roles defined by
each App she uses.

Role-based access control (RBAC) represents a very simple
access control mechanism. An App need not keep a record of
each User’s level of access to its functions and data. Rather it
uses roles to abstract away from those details and assign
degrees of access to groups of Users which the role represents.

1.3.2	 Attribute-based access control (ABAC)
Going beyond the static assignment of roles to Users based on
the organizational groups to which they belong, attribute-
based access control (ABAC) aims to facilitate the dynamic
determination of access control based on some sort of
circumstantial information available at the time of the API call.

Things like the time of day, the role, the location of the API, the
location of the App, and combinations of conditions, contribute
to the determination of the degree of access. XACML is a
standard which defines the rules that must be executed to
evaluate the level of access at the time of the API call. The
understanding is that this may change from call to call. ABAC
often dictates the requirement that your API will respond with
subsets of data according to the access control decisions
related to the User.

1.3.3	 Delegated access control with OAuth 2.0
The HTTP-based OAuth 2.0 framework allows an App to obtain
access to a resource exposed by your API either on its own

11

behalf or on behalf of the User who owns the resource. Thus it
allows Users to delegate access control to third-party Apps.

To facilitate this, your API must collaborate with an OAuth 2.0
authorization Server, checking each incoming call for an access
token which it must validate with the authorization Server. The
response from the authorization Server will indicate whether
the access token is valid (it was issued by the OAuth Provider
and it hasn’t expired) as well as the scope of access for which
the token was issued.

12

Section 2: Federated identity

The token-based approach to authentication allows for the
separation of the issuing of tokens from their validation—thus
facilitating the centralization of identity management. The
developer of each API needs to only incorporate validation logic
within the API so that upon invocation, it looks for the token in
the request and then validates it with the centralized Identity
Provider. If the token is deemed to be valid (i.e. the User or App
to whom the token was issued has sufficient authorization for
this call), then the API should process the call. The parties
involved in this call form part of a single security context. In
other words, the Identity Provider is able to recognize and
authenticate the App, the User and the API because their
identity and shared secret password are in its Identity Store.

However, your API will not always be exposed to an App and User
that the Identity Provider can recognize. What if you wish to
expose your API to an App in the hands of a User from another
company, or even from another business unit within your own
company? Large companies can have many security contexts
with separate identity stores and providers. Federated Identity
solves this problem and federated Identity Providers collaborate
to facilitate the authentication and authorization of Users who
belong to different security contexts.

In Figure 4, Janet signs into her App. The App authenticates her
and requests a token from the Orders Identity Provider. This
authenticates her with the Orders Identity Store and then
responds to the App with a token. The App proceeds to call
either the Orders API or the Shipping API. In both cases, the
Orders Identity Provider validates the token. The Orders
Identity Provider and the Shipping Identity Provider are
federated. The Shipping Identity Provider knows that the token
has been signed by the Orders Identity Provider to which it
delegates the token validation.

13

User (Janet) App Orders API

Shipping API

Orders
Identity

Store

Shipping Identity
Store

Shipping identity
Provider

Orders Identity ProviderAuthenticate Janet and
request token

Authenticate
Janet

Janet

Token

Token

Token

Issue token

3

Validate token

Validate token

1 2

Call API

4a 1

Validate token

4b 2

4a 2

4b 3

Call API 4b 1

Figure 4: Federated identity

2.3.1	 Single Sign-on multi-experience
The Security Assertion Markup Language (SAML) is an industry-
standard that has become a defacto standard for Enterprise-
level Identity Federation. It allows Identity Providers to
communicate authentication and authorization information
about Users to Service Providers in a standard way.

A SAML Assertion can be issued by an Identity Provider in one
security context and be inherently understandable by an
Identity Provider in another context. SAML assertions typically
convey information about the User including the organizational
groups to which the User belongs, together with the expiry
period of the assertion. No password information is provided.
The Identity Provider which issues the assertion signs it. The
Identity Provider, which has to validate the assertion, must
have a trust relationship with the issuing Identity Provider (see
Digital signatures).

14

The primary driver for the use of SAML is within the Enterprise
is Single Sign-on (SSO). Users don’t have to keep separate
identities for every application software that they use. Rather,
they sign on once with an Identity Provider and from then on
any links to applications allow them to bypass the login page
of each of these.

Such a setup ultimately delivers the desired User experience of
not having to maintain multiple sets of username and
password credentials and of signing in once, and subsequently
bypassing login pages to all of the applications within the
enterprise. This SSO experience is usually delivered with a UI
Portal which has links to all relevant applications that eliminate
the need for any further authentication by the User.

SAML can also be used within the context of APIs. We
explore this next.

2.3.2	 Single Sign-on single experience
The expectation that an Identity Provider in one security
context will understand a token issued by an Identity Provider
in another security context may very well be reasonable within
the boundaries of a particular enterprise. However, this may
not be true for external company acquisition scenarios, or for
dealing with partners and SaaS facilitating the centralization of
identity management.

2.3.2.1	 WS-Security with SAML Assertions

WS-Security (in particular WS-Trust) allows Identity Providers to
expose SOAP Web Services that will issue identity tokens to
requesting Apps. A SAML Assertion is one such possible token.
The same App can then invoke a SOAP Web Service with the
SAML Assertion in the header.

WS-Security also caters for the general needs of Integrity and
Confidentiality through XML Signature and XML Encryption

(see Message Integrity and Message safety below).

15

2.3.2.2	 OpenID Connect with JWT ID Tokens

OpenID Connect is built on top of OAuth 2.0 to provide a
Federated Identity mechanism that allows you to secure your
API, in a similar way to what you would get if you exploit
WS-Security with SAML. It was designed to support native and
mobile apps, while also catering for the enterprise federation
cases. It is an attractive and lightweight approach to achieving
SSO within the enterprise than the corresponding WS-Security
with SAML. Its simple JSON/REST-based protocol has resulted
in its accelerated adoption.

Apart from OAuth 2.0 access tokens, OpenID Connect uses JWT
(jot) ID tokens, which contain information about the
authenticated User in a standardized format. Your API can
make an access control decision by calling out to a UserInfo
endpoint on the Identity Provider to verify if the User pertains
to a certain role. Just like SAML Assertions, JWT ID tokens are
digitally signed (see Digital signatures) so a federated Identity
Provider can decide to accept them based on its trust
relationship with the Identity Provider that issued them.

16

Section 3: Confidentiality,
integrity, and availability

3.1	 Message Integrity
Message Integrity goes beyond the authentication of the App
and the User, and includes the verification that the message
was not compromised mid-flight by a malicious third-party. In
other words, the message received by your API is verified as
being exactly the one sent by the App. The same goes for when
your API acts as Client to a Server.

User App Signed message API

Figure 5: Message Integrity

3.1.1	 Digital signatures
We humans sign all kinds of documents when it matters in the
civil, legal and even personal transactions in which we partake.
It is a mechanism we use to record the authenticity of the
transaction. The digital world mimics this with its use of digital
signatures. The idea is for the App to produce a signature by
using some algorithm and a secret code. Your API should apply
the same algorithm with a secret code to produce its own
signature and compare the incoming signature against this. If
the two match, the API has effectively completed authentication
by guaranteeing not only that this message was sent by a
known App (only a known App could have produced a
recognizable signature), but that it has maintained its integrity
because it was not modified by a third-party while in transit. As

17

an added benefit for when it matters with third-party Apps, the
mechanism also brings non-repudiation into the equation
because neither the App, nor the User, can claim not to have
sent the signed message.

User App Message API

Figure 6: Digital Signatures

3.1.2	 Message safety
Even when you know that your API has been invoked by an
authenticated App and User, and the message has arrived with
its integrity guaranteed, you still need to protect against any
potentially harmful data in the request. These attacks often
come in the form of huge XML documents with multiple levels
of nested elements. JSON documents may also contain huge
nested objects and arrays.

18

Section 4: Message confidentiality

The integrity of a message sent by a known App is assuring, but
the journey from App to API may have been witnessed by some
unwelcome spies who saw all of those potentially very private
details inside the message! Thus, it is necessary to hide those
details from the point of delivery by the App to the reception by
the Server. An agreement is needed between the App and API
to be able to hide the details of the message in a way that
allows only the API to uncover them and vice versa.

User App Encrypted message API

Figure 7: Message Confidentiality

4.1.1	 Public key cryptography
The age-old practice of cryptography has made a science of the
art of hiding things! IT has adopted this science and can
produce an encryption of the message, which is practically
impossible to decrypt without a corresponding key to do so. It
is as if the Client had the ability to lock a message inside some
imaginary box with a special key, hiding it from prying eyes until
the Server unlocks the box with its own special key. Digital
signing produces signatures in this very way. Cryptography
comes in two forms: symmetric, when both Client and Server
share the same key to encrypt and decrypt the message; and
asymmetric, when the Server issues a public key to the Client
allowing the Client to encrypt the message, but keeps a private
key which is the only one that can decrypt the message: one
key to lock the message and another key to unlock it.

19

4.1.2	 Digital Certificates
Digital Certificates are a means to facilitate the secure
transport-level communication (TLS) between a Client and a
Server over a network in such a way that the Server can
authenticate itself to the Client. This is made possible because
the certificate binds information about the Server with
information about the business, which owns the Server. The
certificate is digitally signed by a Certificate Authority which
the Client trusts.

4.1.3	 Mutual authentication with Digital Certificates
In most cases, it is the Server which authenticates itself with the
Client. However, there are also scenarios in which the Server
demands the authentication of the Client. The Server requests
the Client certificate during the TLS handshake over the
network. One thing to keep in mind is that the Server controls
whether Client authentication occurs; a Client cannot ask to
be authenticated.

Mutual authentication with TLS certificates is ideally suited to
the type of system-to-system communication that you see
when your API acts as a Client to a Server, whether the Server
be another API or a database or any other system entity.

Missing from this communication is the human User. Hence,
the security credentials exchanged between the two parties
are far easier to manage.

User App 2-Way TLS API

Figure 8: Mutual authentication

20

4.1.4	 HTTPS
By utilizing TLS, your API can expose itself over HTTPS and
guarantee both message integrity and confidentiality at the
same time. Public keys are emitted on certificates which have
been digitally signed by independent and trusted certificate
authorities, thus guaranteeing that the public key was issued by
your API. Once the initial handshake has been completed with
the App by the exchange of messages using public and private
keys, the communication switches to the more efficient
symmetric form using a shared key generated. This is just for
the duration of the communication, all of which
occurs transparently.

4.1	 API availability
Your API must guarantee that it is always available to respond
to calls and that once it begins execution on the call, that it can
finish handling the received message immediately without
losing data. This can be achieved by horizontally scaling the API
across multiple servers and by handing off the processing of
the message to a message broker, which will hold the message
till the API has completed its processing. The understanding in
this latter scenario is that another process is subscribed to this
message publication and thus continues the
processing asynchronously.

It is clear that reliability is a step beyond mere availability. While
an API (through horizontal scale-out) may be available to
respond to all calls (because a load-balancer in front of the API
can propagate calls to the correct hosting server when any of
the other servers are down), this still may not be enough
because the API may fail mid-way through processing. In a
reliable architecture, the API would receive the call and then
leave a message on a message-broker queue (JMS or AMQP for
example). Even when the service subscribed to the queue is
down, the broker can hold onto the message for later
consumption when the service comes back online again.

21

Section 5: Mule runtime security capabilities

Mule runtime addresses a broad set of security concerns with
best practice solutions for transport and message-level
security. Your API can be hosted by Mule, exposed over HTTPS
and can facilitate TLS client authentication. Likewise, your API
can make calls out to servers over HTTPS and issue client
certificates as needed. Keystores and truststores are used to
store TLS certificates for these scenarios. Messages that are
sent to exchanges and queues on Anypoint MQ, MuleSoft’s
cloud messaging solution, can be encrypted. Mule runtime can
also encrypt and decrypt messages, digitally sign them, and
verify the validity of incoming digital signatures. IP white- and
black-listing is also available.

With these capabilities, Mule runtime addresses the concerns
of exposing highly available APIs that authenticate and
authorize incoming calls, while guaranteeing message integrity
and confidentiality.

5.1	 Message confidentiality on Mule runtime
5.1.1	 MuleSoft’s HTTPS Connector
An HTTPS listener can be configured with reference to a
keystore so that your API can authenticate itself to the App.
When the App demands client authentication, the listener can
reference a truststore. Similarly, when your API needs to
interact with a Server over HTTPS, you can use an HTTPS
requester, which references a keystore to authenticate itself
and a truststore for when digital certificates are not
recognizable by the standard Java JDK truststore (cacerts).

5.1.2	 Mule Encryption Processor
The Mule Message Encryption Processor can change the
content of a message so that it becomes unreadable by

22

unauthorized entities. Mule can encrypt the entire payload of a
message or specific parts of the payload, according to security
requirements, using different encryption strategies.

5.1.3	 Dynamic data filtering with DataWeave
For ABAC scenarios (see Attribute-based access control (ABAC)
you will need to filter the payloads that your API sends back to
Apps based on the degree of access determined either for the
App or for the User. DataWeave is Mule’s data transformation
engine, which transforms between different mime-types using
a simple expression language which is common across
all data formats.

The language can be used to remove and/or mask data fields
in the payload, whatever the structure of the payload and the
location of the field. The same expression can be stored in a
datastore and ‘blindly’ executed by the engine at runtime. In
this way, you can cater for dynamic transformation logic that
you may not necessarily be able to configure at design time.
Rather, based on criteria decided at runtime, you can choose a
transformation and apply it to the payload.

5.2	 Message integrity on the Mule runtime
Exposing your API over HTTPS guarantees that it has not been
modified in transit. However, authentication and authorization
of the request still need to take place.

5.2.1	 Mule Security Manager
Central to authentication in Mule is Mule Security Manager.
This is the bridge between a standard Mule configuration and
Spring Security beans.

Figure 9 illustrates how credentials are passed and validated in
the solution. The security-manager, as you can see below,
delegates to the authentication-manager. The authentication-
manager uses the authentication-provider to authenticate the

23

set of credentials. The authentication-provider abstracts away
from the details of the system used to do the authentication,
whether it be in-memory, LDAP, or DB-based. The Spring
LDAPAuthenticationProvider uses the BindAuthenticator to
build a DN-based on the credential username to bind directly
to the LDAP server.

<<oath2-provider>>

config

<<spring bean>>

LdapAuthenticationProvider

<<spring bean>>

BlindAuthenticator

<<spring bean>>

FilterBasedLdapUserSearch

InetOrgPersonContextMapper

org.springframework.security.ldap.userdetails

InetOrgPersonContextMapper

http-security-filter

authentication-manager

securityProviders

<<spring bean>>

Custom Class

custom package

delegate

userSearch

resourceOwnerSecurityProvider

security-manager

userDetailsContextMapper
<<spring bean>>

DefaultSpringSecurityContextSource

authenticationProvider

org.springframework.security.ldap.authentication

Figure 9: Passing and validating credentials

5.2.2	 Mule Secure Token Service OAuth 2.0 Provider
Mule can act as an OAuth2 Provider, issuing tokens to
registered Apps, applying expiration periods to these tokens
and associating them to User roles and fine-grained access
control known in the OAuth world as scopes. Refresh tokens
can also be issued and tokens can be invalidated. Mule can
subsequently validate incoming tokens against expiration
periods, roles, and scopes and thus grant or deny access to the

24

flows in the Application. Scopes represent broad levels of
access to the Mule flows. The provided access token must be
sent in with each request and can be validated by Mule to
ensure it has not expired or been revoked and that it has the
scopes that correspond to a particular flow.

More fine-grained control can also be applied by comparing
the role of the User for whom the token was issued with the
allowed roles for the flow. The validate filter has a
resourceOwnerRoles attribute to specify these. The granularity
of access control can be in either the grant or the role.

As we extend APIs outside of our organization, we may have to
cater for applications belonging to partners. Imagine we were
to dynamically expose access to your API to a mobile
application. We need only register this new client in your OAuth
2.0 Provider configuration.

5.2.3	 Mule Digital Signature Processor
Mule Digital Signature Processor adds a digital signature to a
message payload, or part of the payload, to prove the identity
of the Message’s sender. Mule can also verify a signature on a
message it receives to confirm the authenticity of the
Message’s sender.

5.2.4	 Mule Credentials Vault
Mule Credentials Vault is for the encryption of properties,
which are referred to and decrypted by the Mule application at
deployment time. These properties are encrypted with a variety
of algorithms and are completely hidden from anyone who
does not have the key to the credentials vault. At deployment
time, the key is passed to Mule as a system property. This key
should only be in the hands of authorized personnel.

25

5.3	 API availability with Mule HA clusters
A single Mule server hosting your API is not enough to facilitate
high availability. To achieve this, you need to host the same API
on more than one Mule runtime. With a load balancer in front
of the API, you can guarantee that the API will always handle
incoming requests as the load balancer chooses between
instances that are healthy.

Reliability on Mule can be achieved by clustering two or more
instances of Mule together, which is easy using Anypoint
Runtime Manager. In this scenario, we configure the Mule VM
endpoint as a reliable handoff mechanism immediately after
receiving the message. Another flow processes the message
from that same VM endpoint. If the Mule node which receives
the Message from the VM goes down, then another Mule node
on the same cluster will pick up the same Message.

For reliable processing of Messages between multiple APIs you
can use Anypoint MQ (see Anypoint MQ).

26

Section 6: Anypoint Platform
security capabilities

6.1	 Anypoint API Manager and Anypoint Security
Anypoint Platform is a fully multi-tenant solution running on
top of Amazon Web Services (AWS) and inside a VPC (cloud
VPN). Data, metrics, and metadata cannot be accessed
across organizations.

Although Anypoint Platform can manage and enforce the
runtime security of your API, the API itself remains wherever
you have deployed it. Only the configuration of the policies,
metadata about your API, and analytics about the usage of
your API is stored in Anypoint Platform.

6.1.1	 API adaptability through policies on API Manager
API management is a discipline which addresses the need to
publish your API for consumption by known Apps, registering
those Apps and provisioning them with their own ID, and secret
identifiers, authorizing the Apps to consume your API, and
adapting the APIs to the potentially different security
requirements across the Apps.

The adaptability is addressed with what we call policies. These
are encapsulations of the types of logic that usually recur
across your APIs. Similar to how aspect-oriented programming
worked, these logical bundles can be applied to or removed
from running APIs without affecting their lifecycle. Security is a
prime example of such logic. We explore security policies next.

27

6.1.2	 Secure communication between the Mule
runtime and API Manager

Using the Mule runtime as an API gateway, you can host your
API. Mule runtime communicates constantly with Anypoint API
Manager and Anypoint Security to retrieve policies and report
back analytical information about the usage of your API. This
communication is initiated by Mule runtime, which
authenticates itself with OAuth 2.0 Client Credentials. You
configure Mule runtime with a client ID and secret which is
configured for your particular organization (or business group)
in Anypoint Platform. The ID and secret are used by Mule
runtime to get an OAuth 2.0 token to be used in subsequent
calls. All calls are to a RESTful service which is accessible over
HTTPS. Mule runtime is insulated from external network
outages since it stores a local cache and can continue to
operate even if Anypoint Platform were to become unavailable.
Regardless, MuleSoft maintains an SLA of 99.99% for Anypoint
Platform. Anypoint Platform is certified via WhiteHat Sentinel.

28

6.1.3	 API security policies
We must return to our discussion about identity in the light of
what Anypoint Platform has to offer in its suite of policies.
Some of the following policies are inherently dependent on a
mechanism to verify incoming Identity tokens. All of them
address security concerns:

›› Client ID enforcement: Locks down your API for
consumption by only a set of known clients.

›› SLA-based Rate Limiting: Provides different quality of
service contracts to your known clients, 10 calls a minute for
some, 100 calls a second for others, etc.

›› SLA-based Throttling: Same concept as Rate Limiting, only
exceeded calls are queued for next time window.

›› Mule OAuth 2.0 access token enforcement: Validates
incoming tokens previously issued by Anypoint OAuth
Provider upon receipt of client ID and secret.

›› External access token enforcement: Validates incoming
tokens previously issued by PingFederate or Open AM
OAuth Provider upon receipt of client ID and secret.

›› LDAP Authentication policy: Authenticates using the
configuration details for an Open LDAP or Active Directory
LDAP which are already configured in your enterprise.

29

›› Cross-origin resource sharing (CORS): Permits your API to
be invoked by a JavaScript client (an Angular App, for example)
which is hosted on a domain different from your API.

›› HTTP Basic authentication: Authenticates using
credentials which are configured in a security manager
underlying this policy.

›› IP blacklist and whitelist: Denies or permits calls only from
IP addresses present in this list.

›› JSON and XML threat Protection: Guarantees the safety of
the messages passed to your API.

›› Spike Control: Ensures that within any given period of time, no
more than the maximum configured requests are processed.

›› Header Injection and Header removal: Adds or removes
specified headers to the request/response of the message.

›› Tokenization and De-Tokenization: Protects sensitive data
with vaultless, format-preserving encryption or masking.

›› JSON Web Token (JWT) validation policy: Validates
incoming requests using a JWT with JWS format, verifies the
signature of the token and asserts the values of the claims.

Mule runtime stores the client IDs and secrets of consuming
Apps in an Identity Store. When you register a new consuming
App in the API Portal, Anypoint Platform generates a new App ID
and secret and persists it. Later, when any identity-related policy,
like SLA-based throttling, is applied to your API, Mule runtime
downloads the policy and also downloads the ID and secret for
every consuming App registered to consume your API.

Thus, when Mule runtime injects the Policy configuration into
your API, it also provides access to a local embedded database
of IDs and secrets which the Policy consults to verify the
identity of the calling App. When you choose to integrate your
Anypoint organization with an external identity management

30

technology like PingFederate, this assumes the role of
administering and persisting App ID and secrets.

6.1.4	 Custom security policies
Policies on Anypoint Platform are snippets of Mule
Configuration. As such, custom policies are easily configurable
and can be surfaced on the API Manager portal as siblings to
our out-of-the-box policies.

We have a number of custom policies published to Anypoint
Exchange. These cover SAML-based security use cases such as
the ability to validate incoming assertions, or username tokens.

You can write your own policy to cover any area of logic that is
pertinent to your API. For the ABAC scenarios that we
described above, you might consider configuring a custom
policy which accepts either a full DataWeave expression in the
API Manager portal UI at policy application time. This can be
executed at runtime on the response payload. (See Dynamic
data filtering with DataWeave).

If you wish to protect your API with OpenID Connect, you
should consider writing a custom policy to validate incoming
tokens against the Authorization Server.

6.1.5	 API products
Certain API security policies, such as SLA-based rate limiting
and access control enforcement, can be applied to individual
APIs, across a collection of APIs or both. This provides you with
flexibility in how you promote, provision, and manage access
for APIs that may be commonly consumed together.

6.1.6	 Automated policies
Any API security policy can also be configured to be
automatically enforced across every API deployed within a
given environment. Common scenarios for automated policies

31

include authorization and rate limiting. Automated policies can
also be audited for compliance via a simple reporting API call.

6.1.7	 Edge security policies
Anypoint Platform provides an additional layer of protection for
APIs through Anypoint Security. The Edge gateway can be
configured to enforce security controls on all APIs deployed within
a given perimeter. The policies described below can then act as a
default router capability through which all traffic traverses.

›› Denial of service (DoS): Protects APIs against malicious
clients trying to flood your network to prevent legitimate
traffic to your APIs.

›› IP whitelist: Create an IP address whitelist policy to
configure an explicit list of IP addresses that can access your
deployed endpoints.

›› HTTP limits: Prevent attacks from clients that send large
messages that can consume all of your processing bandwidth.

›› Web Application Firewall: WAF policies provide the Open
Web Application Security Project (OWASP) Core Rule Set
(CRS) for checking requests and responses to detect
common web application attacks.

You can use Anypoint Security policies to manage all traffic to
your APIs, and leverage API Manager policies to apply specific
behaviors to specific APIs.

6.1.8	 Feedback loop between edge
gateway and API gateway

After you implement security in this way with Anypoint
Platform, a feedback loop between the Edge and API gateways
will automatically detect API attacks, escalates them to the
perimeter, and updates protections to eliminate vulnerabilities.
This allows you to automatically enhance security with a
learning system that adapts as new threats emerge.

32

Section 7: Anypoint MQ

This is a multi-tenant cloud messaging service offering
persistent data storage across multiple data centers, ensuring
that it can handle data center outages and have full disaster
recovery. For compliance with your data at rest policies,
Anypoint MQ allows you to encrypt all messages that arrive in
either an exchange or a queue.

7.1	 Anypoint Platform Virtual Private Cloud
Mule applications can be deployed either to your on-premises
Mule runtime or to our fully-hosted and fully-managed iPaaS. In
most scenarios, Mule applications deployed to the iPaaS will
need to integrate with systems in your datacenter. In some
cases a hybrid architecture is adopted where Mule applications
deployed to the iPaaS must integrate with Mule applications
deployed to Mule runtime on-premises. Either way, there is a
need to establish a secure network between the cloud and
your datacenter.

Virtual Private Cloud (VPC) enables you to connect your
organization in Anypoint Platform to your corporate data
centers – whether on-premises or in other clouds – as if they
were all part of a single, private secured network. You can
configure these networks at hardware or software levels.

VPC can be configured to use IPSec, TLS (over OpenVPN), or
Amazon VPC peering to connect to your on-premises data
centers. IPsec connections can be configured at the hardware-
level in addition to a software client. If you already use Amazon,
you should use VPC peering. Otherwise, IPsec is in general the
recommended solution for VPC to on-premises connectivity. It
provides a standardized, secure way to make connections and
integrates well with existing IT infrastructure such as
routers and appliances.

33

7.2	 Anypoint Platform user roles and permissions
In Anypoint Platform, Users belong to an organization and have
a set of roles and permissions. API versions and deployment
environments are grouped under organizations (and optionally
under Business Groups too), to access them you need to have
an account that owns the necessary permissions and that
belongs to its corresponding organization – and to the
Business Group if the resource exists in one.

Roles and permissions can be granted for accessing resources
that exist in the master organization, or for resources that exist
within a Business Group. A User that owns any role of a
business group is implicitly granted membership in
the Business Group.

Each role contains a list of permissions that define what a User
that holds that role can do with the specific resources it
scopes. Permissions can also be added at an individual user-
level, without the need for roles. There are two different types
of permissions: those that are for API versions and those that
are for iPaaS environments. Keep in mind that API permissions
are API version specific and iPaaS permissions are environment
specific – they grant you the ability to do something within a
particular API version/environment, not the entire organization.
The only exceptions to that rule are the roles API Versions
Owner – which grants ownership of all APIs and all of their
versions within the corresponding Business Group – and
Portals Viewer – which grants viewing access to all portals in
the corresponding Business Group.

7.2.1	 Federated user access to Anypoint Platform
Anypoint Platform can be integrated with your organization’s
external federated identity provider. Opting to use federated
identity management for Anypoint Platform gives your users
single sign-on access and facilitates OAuth security for APIs
using the same identity management system.

34

Anypoint Platform supports SAML 2.0 identity providers for
User management, the following ones were successfully tested
working with the platform:

›› PingFederate

›› OpenAM

›› Shibboleth

›› Okta

›› ADFS

You can set up your Anypoint Platform organization so that
when a SAML User belongs to certain groups, it will
automatically grant certain equivalent roles in the your
Anypoint Platform organization.

35

Section 8: Anypoint Platform compliance

When Anypoint API Manager manages APIs from the cloud, it
stores only metadata about the APIs and the Apps which
consume them. The APIs can be deployed on the Mule runtime
either on-premises or in our fully hosted, fully managed iPaaS
solution. This fully managed solution meets rigorous industry
standards that have been validated through the work of
MuleSoft’s compliance team and external auditors.

MuleSoft uses the ISO 27001 framework for our security
program. We also have been assessed for the following
industry standards: ISO 27001, SOC 1 Type 1, SOC 2 Type 2,
PCI-DSS, and FedRamp. All compliance reports are shared with
our customers under a non-disclosure agreement (NDA).

8.1	 Data privacy
MuleSoft understands that data is the most important asset of
every company. We are focused on ensuring the privacy and
security of customer data at all levels. Our privacy policy
describes how we collect, process, and disclose personal data,
and our customer data protection policy lays out the robust
security and data protection mechanisms we have put in place
to ensure the security of data across our products and
services. We abide by laws and regulations wherever we
operate, including the European Union’s General Data
Protection Regulation (GDPR). As a company, we have certified
compliance with the EU-U.S. and Swiss-U.S. Privacy Shield
Framework. To further aid customers in compliance with data
residency requirements, MuleSoft provides a fully hosted
version of Anypoint Platform within the EU through data
centers in Germany and Ireland. Furthermore, MuleSoft
customers can select the country in which their
runtimes will reside.

https://www.mulesoft.com/privacy-policy
https://www.mulesoft.com/legal/data_protection

36

Section 9: Summary scenario

Let us consider a hypothetical scenario: Mythical Retail have a
chain of stores and deliver an eCommerce solution to their
customers. One of their business objectives is to increase their
revenue by 20% over the next 18 months. To achieve this goal,
they aim to improve customer loyalty by providing a compelling
omnichannel digital experience. This experience will allow
customers to shop with ease wherever and whenever they
want, receive appropriate recommendations and offers, and
see their current loyalty balance in real-time. Mythical Retail
want a 360-degree view of their customers’ visits across all
touchpoints. They aim to reward every customer interaction
made online and in-store and have a clear view of their
customers’ spending habits.

Mythical Retail has adopted MuleSoft’s API-led connectivity
approach to integration and see APIs as strategic assets upon
which they can execute digital initiatives. They have invested in
clienteling software which can help their sales associates meet
and register anonymous customers in-store and identify
customers already registered. This software will also provide a
mobile point-of-sale (POS) experience. With APIs backboning
the clienteling solution as well as the customer’s web and
mobile interactions, Mythical Retail can guarantee the
uniformity of the customer experience across every touchpoint.

9.1	 Securing customer transactions
Katie is a customer of Mythical Retail and likes to shop online.
She uses the iPhone App to make orders. Katie registered with
Mythical Retail through a sales associate in-store. Her details
are stored in Active Directory.

Figure 10 is an overview of the APIs and Servers needed to
deliver her the capability to place an order on the phone.

37

Experience
APIs

System
APIs

Process
APIs

Clienteling App

Anypoint MQ

Katie

8 88

Order Tracking APIShop Assistant API

Shipping API

Tokenization APIPayment API

1

6

5

3

3

4

6

7

8

Order Fulfilment API

Recommendations APIOrders APICustomer API

My Shopping API
2

Figure 10: An overview of the APIs and servers needed to place an order on a phone

1.	 Katie must sign in to the App.

2.	 The App must authenticate itself on Katie’s behalf and
consume the My Shopping API with the relevant degree of
access control. Only Katie’s data must be accessible for
this interaction.

3.	 All calls between experience, process, and system APIs
must be protected.

4.	 The Order Fulfillment API orchestrates the Orders API and
the Tokenization API. The latter is exposed by a third-party
credit card processing company and delivers obfuscation
functionality to Mythical Retail so that Katie’s credit card
details are never stored in their original form in the
systems of record. The call to the Tokenization API needs
to be authenticated, signed, and encrypted.

38

5.	 The Order Fulfillment API creates a business event which it
publishes to an encrypted exchange on Anypoint MQ. The
published data must be encrypted and the publication call
must be signed, encrypted, and authorized.

6.	 The Customer API subscribes to the event on Anypoint MQ
and is responsible for increasing Katie’s loyalty points. The
Recommendations API is also registered to consume this
event and gathers the details of the order to feed into
future recommendations accordingly. Likewise, the
Payment API subscribes to the event and finalizes the
financial transaction. The shipping of orders is the
responsibility of Mythical Retail’s partner. Their Shipping
API also subscribes to the same event. All of these
subscriptions to Anypoint MQ must be signed,
encrypted, and authorized.

7.	 The iPhone App utilizes the Order Tracking API, which is
exposed by Mythical Retail’s partner. The partner forms a
separate security context and Katie is not in their Identity
Store. Her claim must be recognizable in the
shipping context.

8.	 Interaction with the systems of record must be secured
according to the requirements of each Server.

9.2	 Anypoint Platform as part of the security
fabric for Mythical Retail

Figure 11 is an overview of the APIs used to deliver the loyalty
experience to Mythical Retail’s customers. All the APIs are
deployed to MuleSoft’s iPaaS and managed by Anypoint API
Manager. Anypoint MQ is used for messaging between the APIs
and PingFederate is used as Identity Provider, MFA Provider,
and OpenID Connect/OAuth Provider. All HTTP APIs in this
context are protected with HTTPS and API security policies are
applied to each of the APIs using Anypoint API Manager.

39

System
APIs

Process
APIs

Anypoint MQ

9999

9

8

99

Order tracking APISelf-registration API

Shipping API

Tokenization APICustomer API Orders API Recommendations API

Katie

1

Point of Sale
Customer Portal

5

3

4

6

9

Payment API Catalog API

User API

Consumer

Mobile App

Clienteling App

8

Registration API

3

My Shopping API
2

Sales API

7

7
POS API

Experience
APIs

Notifications API

Order fulfilment API

Shop Assistant API

6

Figure 11: An overview of the APIs used to deliver a loyalty experience

1.	 Katie signs in to her iPhone App.

2.	 Part of the digital solution catering to Katie’s experience is
the My Shopping API which delivers all the relevant
capabilities to her iPhone App. This API is protected with
the PingFederate access token enforcement policy. To
consume the My Shopping API, the iPhone App must
interact with the PingFederate Authorization Server to
request an OpenID Connect token on her behalf.
PingFederate authenticates her credentials against Active
Directory. Upon successful authentication, it generates a
token and signs it (see Digital signatures) before
responding to the iPhone App with the token. The App
presents this token in a custom HTTP header on every
subsequent call to My Shopping API.

3.	 All calls between experience, process, and system APIs are
protected with the client ID enforcement policy. Each API
has an ID and secret stored in Mule Credentials Vault.

40

4.	 The calls to the Tokenization API are protected with client cert
authentication and the payload passed to the API is
encrypted and signed with Mule Encryption Processor and
Mule Digital Signature Processor respectively before sending.

5.	 Publications to Anypoint MQ are protected with
OAuth 2.0 and HTTPS.

6.	 Subscriptions to Anypoint MQ are protected with
OAuth 2.0 and HTTPS.

7.	 There is a federated trust between the Identity Providers
in both security contexts for Mythical Retail and its
shipping partner. Both the sales associate’s App and Katie’s
App can call the Order Tracking API with the access token
that they received from PingFederate. The Order Tracking
API validates the token with OpenAM, the Identity Provider
of the shipping company. This can verify that the token
was signed by the Identity Provider of Mythical Retail,
which it trusts. The Order Tracking API accepts the
invocation by the iPhone App and responds accordingly.

8.	 Sales associates use multi-factor authentication to sign in
to their App. The App calls PingFederate OAuth 2.0
authorization server to get a token which it passes to the
Shop Assistant API.

9.	 Interaction with the systems of record is secured in various
forms according to the requirements of each Server.
Tokens and username and password credentials are
stored in Mule Credentials Vault.

41

Conclusion

APIs are a strategic necessity to give your business the agility
and speed needed to succeed in today’s business environment.
But with the increasing cost of security breaches, senior IT
decision makers quite rightly want assurances that exposing
their data via APIs will not create undue risk. Anypoint Platform
can automate the security and governance of your API, ensure
that your API is highly available to respond to clients, and can
guarantee the integrity and confidentiality of the
information it processes.

42

42

About MuleSoft

MuleSoft, a Salesforce company
MuleSoft’s mission is to help organizations change and
innovate faster by making it easy to connect the world’s
applications, data, and devices. With its API-led approach to
connectivity, MuleSoft’s market-leading Anypoint Platform™
empowers over 1,600 organizations in approximately 60
countries to build application networks. By unlocking data
across the enterprise with application networks, organizations
can easily deliver new revenue channels, increase operational
efficiency, and create differentiated customer experiences.

For more information, visit mulesoft.com

MuleSoft is a registered trademark of MuleSoft, LLC, a Salesforce company.
All other marks are those of respective owners.

https://www.mulesoft.com/integration-solutions/dataweave-integration
https://www.mulesoft.com/integration-solutions/api/iot
http://mulesoft.com

	Executive summary
	Overview
	Introduction
	Section 1: Identity
	Section 2: Federated identity
	Section 3: Confidentiality, integrity, and availability
	Section 4: Message confidentiality
	Section 5: Mule runtime security capabilities
	Section 6: Anypoint Platform security capabilities
	Section 7: Anypoint MQ
	Section 8: Anypoint Platform compliance
	Section 9: Summary scenario
	About MuleSoft

