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Data-Intensive AI 
Hopsworks is an open-source Enterprise platform for designing and operating machine learning (ML) pipelines at scale. You 
can write end-to-end ML pipelines entirely in Python and all pipeline stages can be easily scaled out to handle more data 
and progress faster. Hopsworks supports popular open-source frameworks for data engineering and data science, including 
ScikitLearn, Spark, Beam/Flink, TensorFlow, PyTorch. Hopsworks makes it easier for Data Scientists to write production-ready 
code, by supporting a Feature Store to ensure data quality and clean training data for ML models, and also by making Jupyter 
notebooks first-class citizens in the platform. Notebooks can be used to write production code that is run directly in ML pipelines. 
Airflow can be used to orchestrate and operate the different stages in ML pipelines, while Hopsworks also provides support for 
HopsFS, the world’s most scalable HDFS-compatible filesystem, with unique support for small files and high throughput. 

Figure 1: Hopsworks is an Enterprise Platform for designing and operating ML applications at scale.
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Dynamic Role-based Access Control
 Manage Projects like Github Repositories and share Datasets like Dropbox
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Hopsworks provides a new GDPR-compliant security model for managing sensitive data in a shared data platform. 
Hopsworks’ security model is built around Projects, which are analogous to Github repositories. A project contains 
datasets, users, and programs (code). Sensitive datasets can be sandboxed inside a project, and users can be 
assigned roles that prevent them from exporting data from the project. In Hopsworks, sharing data does not involve 
copying data. Datasets can still be securely shared between projects, without the need for duplicating the dataset. In 
Hopsworks, thanks to a unified metadata layer, a Dataset is not just a directory in HopsFS, but also a Feature Store, 
a Hive databases, or a Kafka topic. That is, databases, feature stores, and Kafka topics are all multi-tenant - they 
are private to a project, but can also be securely shared between projects. Hopsworks implements its project-based 
multi-tenancy security model by internally using X.509 certificates for user authentication, with a new certificate 
created for every user in a project. Hopsworks also provides role-based access control within projects, with pre-
defined “Data Owner” and ”Data Scientist” roles, provided for GDPR compliance (”Data Owners” are responsible 
for the data and access to the data, while ”Data Scientists” are processors of the data).

Figure 2: Projects and Datasets are first-class entities. Files, databases, feature-stores can be shared between projects.
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Scalability at Every Stage in a ML Pipeline

Hopsworks enables Data Scientists and Data Engineers to write ML pipeline code that can, without changes, scale from a 
single virtual machine on a laptop to a whole cluster. Every stage in a Hopsworks ML pipelines is horizontally scalable. ML 
pipelines will not bottleneck on Feature Engineering pipeline stages can be written with data parallel frameworks, including 
Spark, PySpark, and Beam/Flink. For backfilling training datasets, the Feature Store can be scaled to store PBs of data and 
run parallel jobs to quickly create training datasets in the file format of chioce for Data Scientists (.tfrecords, .numpy, .csv, 
.petastorm, .hdf5, etc). 

• Larger Datasets. Hopsworks’ distributed filesystem, HopsFS, also enables the efficient storage and processing of large 
datasets - from MBs to PBs in size. HopsFS is important in on-premises deployments, where no object store is avail-
able.  HopsFS has a HDFS API with native support in Spark, Beam/Flink, TensorFlow, Pandas, and PyTorch (through 
Petastorm).

• Parallel Experimentation. GPUs are an expensive resource, but Data Scientists are even more expensive Hopsworks 
enables the parallel execution of hyperparameter optimization experiments and ablation studies. The hops Python 
library uses PySpark to parallelize the hyperparameter trials in TensorFlow/Keras, and PySpark, and ScikitLearnpik. 

• Distributed Training. Hopsworks supports distributed training of models in TensorFlow and PyTorch, using PySpark 
to hide the complexity of setting up and managing the distributed ring of workers in CollectiveAllReduce. 

• Elastic Model Serving. Hopsworks uses Kubernetes to support the dynamic scaling up or down of the number of 
model serving servers used for a given model. This allows the amount of compute used for online models to be dynami-
cally sized to the needs of the online applications that use those models..
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Figure 3: Horizontal Scalability of ML Pipelines in Hopsworks can both increase Data Scientist productivity and 
reduce the time required to put models in production. as well as enabling the training of models on larger datasets.
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While much attention has been heaped on TensorFlow/Kerass,PyTorch, H20,  and Scikit-Learn as the most popular 
open-source frameworks for training machine learning models, there is less clarity in industry about the open-source 
frameworks that should be used to build Machine Learning pipelines. ML pipelines are the fundamental building block for 
productionizing ML models, as they are responsible for reliably taking new data, cleansing and featurizing it, training the 
new model, validating the model, and finally (if all tests pass) deploying the model to production. If a model is running in 
production as a real-time model, infrastructure is also needed to monitor the model and notify if it is not performing as 
expected. 

As supervised ML models benefit from increasing amounts of training data, most ML pipelines are designed from the 
beginning to be horizontally scalable, that is, they can be scaled to the correct size of input data (from a single container 
for small data to a cluster of hundreds of containers for Big Data). Apache Spark and Apache Beam/Flink are dominant 
data-parallel programming frameworks for building the data pipelines needed to feed ML models. The same code written 
for Spark or Beam can process from MBs to TBs of data using from one to thousands of CPU cores. Hopsworks’ is an open 
platform for ML pipelines and supports the two dominant paradigms for building ML pipelines: Apache Spark and Apache 
Beam (in combination with TensorFlow Extended and Apache Flink), along with TensorFlow/Keras, PyTorch, Scikit-Learn, 
and H20 for training ML models.

Hopsworks also includes an orchestration framework, Airflow, to coorrdinate the execution of ML pipelines. The 
orchestration logic can be written in Python, enabling entire End-to-End ML pipelines to be written in Python. Java/Scala 
are also supported and often used for the data preparation stages of ML pipelines.

Figure 4: Productionize ML Applications with a Data-Intensive End-to-End Machine Learning Pipeline. 
Hopsworks supports frameworks to ensure scalable end-to-end pipelines: PySpark, TensorFlow, PyTorch, 

Scikit-learn, and Apache Beam/Flink.
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Hopsworks’ Feature Store

Hopsworks’ Feature Store [SysML’19] is a new data layer in horizontally scalable machine learning pipelines that:

•  enables features to be discovered, analyzed, and reused across applications,

•  ensures consistency of feature engineering between training and model servicing, 

•  enables time-travel queries to read historical values for feature values (important to generate new training data), 

•  and helps ensure high quality feature data through integration with data validation tooling. 

In the Feature Store, Data Engineers typically have main responsibility for adding new features to the feature store. New features are 
added to meet new requirements from Data Scientists. However, if the feature is a simple SQL string for an external datastore, then 
Data Scientists can often handle such features themselves. Hopsworks supports the concept of projects. A project is a secure repository 
of data and code and members, where ach member has either a data owner role or a more restricted data scientist role. Each project 
can have its own FeatureStore. This way organizations can have a global feature store for less sensitive features (in a global project that 
all employees are a member of), while sensitive features can reside in a closed project with control over which users have access to the 
features. Features can be defined either in applications (Python/Scala/Java) or in the Hopsworks UI (for example, for simple features 
that are SQL queries on external databases). Feature data can be ingested using either a Python or Scala/Java API that takes a Pandas 
or Spark dataframe, and registers it as a FeatureGroup, along with user-supplied metadata for the features (name, description, etc). The 
data for a FeatureGroup needs to be validated using the Data Validation API before it is used by Data Scientists to create training data 
for models. Users can specify in the Hopsworks UI or in a data engineering application data validation rules to enforce expected values 
and ranges for features. Feature statistics can also be access via the Hopsworks UI or from Hopsworks’ REST API.
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Figure 5: Hopsworks’ Feature Store
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Data pipelines are challenging to develop as they are expected to be completely reliable but they have no control over their 
input data – it is hard to test a data pipeline against all known data inputs, when you don’t know all known data inputs. 
ML applications differ from traditional data processing pipelines by placing additional requirements on the underlying 
infrastructure. Hopsworks provides the following features to support end-to-end ML pipelines using Apache Spark::

• data quality validation using the Deequ library (similar to TFX data validation), 

• integration with the Hopsworks’ Feature Store, where Spark (or Pandas) dataframes can be materialized to the (online 
and/or offline) Feature Store,

• unique support for paralleized trials and training of ML models.

Hopsworks also includes unique support for parallelizing both hyperparameter optimization trials  and ablation study 
experiments with PySpark.  With the Maggy framework, developed by Logical Clocks, Hopsworks now supports  the 
industry’s most advanced support for both reducing the time required to execute hyperparameter optimization trials and 
optimize GPU utilization. Maggy provides a novel architecture to enable the asynchronous execution of trials in Apache 
Spark, early stopping of trials, and custom optimizers to support directed search. Maggy includes Asynchronous Successive 
Halving, random search, and grid search out-of-the-box, and customizeed optimizers can easily be included. 

`
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ML Pipelines with PySpark

Figure 6: End-to-End ML Pipelines in Python with PySpark, TensorFlow/Keras/PyTorch.
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Apache Beam/Flink for TFX

Figure 7: TensorFlow Extended supports components that help ensure data quality, model quality, and consistent feature 
engineering. (Image from: https://www.tensorflow.org/tfx)
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ML Pipelines with TensorFlow Extended (TFX)

Hopsworks supports the use of TensorFlow Extended (TFX) components in ML pipelines.  In Hopsworks, ML pipelines are 
executed as Airflow DAGs (Python programs that define a workflow as a directed acyclic graph). Hopsworks supports TFX 
components as stages in ML pipelines, so you can use TensorFlow Data Validation, TensorFlow Transform, TensorFlow Model 
Analysis in your ML pipelines. In Hopsworks, there is no need to write a TFX pipeline to gain the benefits of TFX, as TFX 
components can be written and tested in Jupyter notebooks or as Python programs and included directly in a Airflow ML 
pipeline.
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Figure 8: Apache Beam on Hopsworks using Flink

Hopsworks supports Apache Beam for the execution of TFX components, such 
as Data Validation, TFX Transform, and Model Analysis . TFX components 
require Apache Beam to be able to scale to handle large volumes of data, and 
Beam requires an execution engine (runner) to parallelize the execution of 
Apache Beam jobs. Apache Flink is the most complete open-source runner for 
Apache Beam, and Hopsworks supports the execution of both Apache Flink and 
Apache Beam jobs (using the Flink runner). Apache Beam jobs in Hopsworks 
can be written in either Python or Java, and Apache Beam Python programs can  
also be written in Jupyter notebooks. Even the Jupyter notebooks can be included 
in Airflow ML pipelines as Hopsworks jobs.



Streaming Analytics in Hopsworks
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Figure 9: Hopsworks supports both stream processing and data-parallel processing with Apache Spark, Apache Flink, and Apache 
Beam.  Kafka is a fully project-based multi-tenant service in Hopsworks - Kafka topics are private to a project, but can be explicity 
shared between projects. Kafka access-control support is built using certificates within projects (see Security Architecture).
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A Hopsworks installation comes with Apache Kafka customized with unique project-based multi-tenancy support - each project 
can have its own project-specific Kafka topics that are private to that project. Just like Datasets in Hopsworks, Kafka topics can 
also be securely shared between projects. Hopsworks’ Kafka multi-tenancy is built on a unique TLS-based access control layer for 
Kafka that integrates with Hopsworks’ project membership lists.
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Hopsworks also provides library support 
in Java/Scala/Python to make TLS-
enabled Kafka easier to use, see examples 
here. A fully-configured Kafka consumer 
or producer can be instantiated in a 
single line of code:Hopsworks supports 
Spark Streaming, Beam, and Flink as 
frameworks for building streaming analytics 
applications. HopsFS also provides support 
for checkpointing streaming applications, 
with its HDFS compatability. Figure 10: Hopsworks provides UI and API support for  

managing Kafka topics and Avro Schemas.
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Airflow in Hopsworks
Hopsworks provides project-based multi-tenancy support for Airflow, where Airflow DAGs are private to projects Hopsworks’ 
Airflow includes a Hopsworks JobOperator to run Jobs in Hopsworks. ML pipelines are typically chains of Hopsworks’ Jobs, with 
additional error-handling logic  and support for notifications (Slack, email, etc).

WHITE PAPER

Jobs and Airflow (ML Pipelines)

Figure 11: Jobs in Hopsworks can be Spark, PySpark, Beam, Flink, or Kubernetes tasks. Jobs can be run from the UI, the 
REST API, or from Airflow (that can launch orchestrate their execution, run timed jobs, notify on Job errors, etc).

Figure 13: Airflow can run Jobs in Hopsworks using the HopsworksOperator. In this example, Airflow is 
running a pipeline of Hopsworks TFX Jobs.

Hopsworks provides a Jobs service (REST API and UI) to execute 
programs (Jupyter notebooks, PySpark, Java/Scala Spark, Beam/
Flink, Kubernetes tasks). ML applications (TensorFlow/PyTorch/
Scikit-learn/etc) are  productionized by running them as a Job. Jobs 
provide UIs for debugging: Spark/Flink UI, logs in Kibana, Grafana 
for performance debugging, YARN UI for YARN JOBS. Logs for jobs 
are stored on HopsFS in the Logs dataset, private to the project. Jobs  
are orchestrated as ML pipelines using Airflow in Hopsworks. Figure 12: Jobs provide UIs for debugging: Spark/Flink/YARN 

UI, Kibana for logs, Grafana for resource utilization.
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Models are the valuable output of a machine learning training run. Hopsworks manages models and annotates them 
extensively with metadata, so that developers can easily perform root cause analysis when a model behaves in an unexpected 
manner. In Hopsworks, models can be managed either from the UI, see image above, or from the REST API. Models can 
be stored, listed, downloaded, as well as run as online model serving servers. Hopsworks support online model serving for 
TensorFlow/Keras (using TensorFlow model serving server) and using the hops python library for Scikit-learn and H2O 
applications (the model server is a flask server managed by Hopsworks). Model servers are run on Kubernetes and their logs 
can be viewed in the Hopsworks UI in realtime, and prediction requests/results can be automatically logged to a Kafka topic, 
from where they can be processed in real-time for monitoring/archiving. When the hops python API is used to save models 
after training, see example notebook, the saved model is linked to the input training dataset, the jupyter notebook or python 
file used to train it and the conda.yml environment used to execute that Python program. When you debug a model, you can 
easily navigate from the model to the program and dataset used to train the model, helping you to reproduce the training run 
and finding the root-cause of the model’s problem. Hopsworks also collects  statistics on models that are visualized in the UI- 
how long it took to train them, who trained them, the application/notebook/python-program used to train them, the training 
dataset used (its version and its versioned features from the feature store), the hyperparameters used to train the model, and 
the output performance of the model on its evaluation dataset;
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Model Management, Serving and Monitoring

Figure 14: Model Management, Serving and Monitoring in Hopsworks



Notebooks as First-Class Citizens
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Notebooks in ML Pipelines
In Hopsworks, Data Scientists can easily build production ML pipelines from their Jupyter notebooks. There is no need to hand 
over their code to a ML engineer to productionize their work. ML pipelines can be created added to a Python program in Airflow by 
creating a PySpark Job from a notebook in the UI. When Hopsworks launches the notebook-as-a-job, it converts the .ipynb file to a 
.py file and then runs it as a PySpark job. Airflow can then orcestrate ML pipelines consisting of mixed notebooks and jobs. 
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Feature 
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Validate & 
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Experiment,
Train Model

Feature
Store

Notebooks are the future of Data tooling and are at the heart of Neflix’s 
data platform - Netflix run >100k Jupyter notebooks/day. Hopsworks  has 
first-class support for Jupyter notebooks, enabling them to be used for 
more than just explorative development and visualization. Notebooks can 
be parameterized jobs in production ML pipelines.  Hopsworks supports 
a development process where ML developers can start by writing a 
Python notebook that can then be easily extended to run as a PySpark job 
- parallelizing hyperparamter optimization tasks and massively reducing 
training time for deep  neural networks by training on up to 100s of GPUs. 
The hops python library makes writing such distributed programs as easy 
as writing single-threaded Python programs.

Figure 15: Other ML Plaforms throw away Notebook code.

Figure 17: Notebooks can be run directly in ML Pipelines that are orchestrated by Airflow

Figure 16: In Hopsworks, the inner training loop for your 
ML program is written in Python. Other cells in your 
nodebook can be later added to run the same notebook 
as a PySpark jobs with parallel hyperparameter trials or 
to support distributed training to speed up training if you 
have a large dataset.
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TensorFlow/Keras or PyTorch
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Hopsworks supports the development and training of deep learning models in the latest versions of TensorFlow/Keras  and 
PyTorch.  Hopsworks also provides the hops python library with documentation as a way to help make hard things easier in 
Hopsworks. For example, a single API call is all you need to create a training dataset using the Feature Store, install a python 
library in your project, create a consumer/producer for Kafka, or run a set of parallel trials for hyperparameter optimization or 
ablation studies. 

Nvidia CudaTM or AMD ROCmTM

Hopsworks supports both Nvidia CudaTM and AMD ROCmTM for deep 
learning. Applications written in TensorFlow can be run without any changes 
required on Nvidia graphics cards (TeslaTM or GeForceTM)  or on ROCm-
enabled AMD  graphics cards (such as MI25TM, MI50TM, and VegaTM R7). 
Hopsworks support is based on customer GPU support in HopsYARN as well 
as official DockerTM containers (if applications are trained on KubernetesTM.. 
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Distributed deep learning offers the promise of reduced training times and the 
ability to train larger models on larger volumes of data, producing more accurate 
models (than your competitors). However, vanilla TensorFlow and PyTorch 
leave the infrastructural complexity of configuring and operating a distributed 
training program to the developer. Hopsworks, however, makes distributed 
training as easy as single-threaded training by transparently configuring and 
managing the lifecycle of the TensorFlow/PyTorch processes, and providing a 
distributed filesystem to store training data and manage checkpoints, logging, 
and TensorBoard data. For more details, see this Spark Summit talk.

Figure 18: Reduce training time by adding GPUs

Figure 19: Hopsworks manages GPUs from the driver level 
up, supporting both Nvidia Cuda and AMD ROCm.



Python, like on your Laptop
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Immutable Infrastructure with Conda
Instead of requiring developers to write and 
maintain cumbersome Dockerfiles, Hopsworks 
uses a conda environment per Hopsworks’ 
project to manage Python dependencies. 
When users install Python libraries in a 
project, the base conda environment is forked 
and a conda environment will be managed 
at all hosts in the cluster for that Hopsworks 
project.  Instead of requiring developers to 
write and maintain cumbersome Dockerfiles, 
Hopsworks uses a conda environment per 
Hopsworks’ project to manage Python 
dependencies.
When users install Python libraries in a project, the base conda environment is forked and a conda environment will be 
managed at all hosts in the cluster for that Hopsworks project. The developer experience is close to the laptop experience 
- users search for Python libraries and install them and then they can  imported in applications. For the ML infrastructure 
engineer, a project and its Python environment can be cloned and versioned to give an immutable infrastructure for running 
Python in production.

Hopsworks is both a development and 
operational platform for ML applications. 
ML applications are primarily written in 
Python, and Hopsworks provides first-in-
class support for making Python libraries 
easy to include when developing (clustered) 
Python applications and also when running 
applications in production.Developers can 
search for Python libraries using either Pip or 
Conda (private conda repository servers can 
also be installed alongside Hopsworks) and 
install them by clicking a button on the UI. 
Python libraries can even be installed directly 
in Python applications using Hops API calls.

Figure 20: Search for and Install Python libraries using Pip/Conda in the UI.

Figure 21: Manage your Conda environment in the UI.



Hops library: Python and Java/Scala
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The hops util library (both Python and Java) provide functions that enable Python, Java, Scala applications to easily use services 
in the Hopsworks platform: hopsworks, FeatureStore, Kafka, HopsFS, Hive, TLS certificates. Hopsworks also provides standard 
Hadoop libraries for using object stores, such as S3, and any Python library that can be installed with Pip or Conda can be used.. 
Python programs can be run on Jupyter notebooks, Kubernetes or as PySpark applications or Beam applications.  

Hops Library Examples - Pandas, Numpy, Kafka
The hops python library includes additional support for reading/writing with Pandas and NumPy to HopsFS, see example 
notebooks here, and sample code shown below. Hops also supports accessing services like Kafka with simple API calls (see 
below) - the client does not need to configure TLS certificates or the Kafka broker endpoints or the Avro schema for the topic 
as these are resolved by the hops library for you.

Figure 23: Sample Code snippets using the hops Python library to read (1) consume from a Kafka topic, 
(2) read a Numpy array from HopsFS, and (2) read a Pandas dataframe from HopsFS.

Supervised machine learning frameworks are typically built around 
the core abstraction of an inner training loop, inside which the model 
parameters are updated during training. The hops library  makes it easy 
to write a Python function to run the inner training loop (see below) that 
is executed in a cluster using PySpark. For hyperparameter optimization, 
results are collected by the Driver (main scope), while for distributed 
training, the Driver connects the workers and the distributed filesystem. 

Parallel ML with Python functions and PySpark

Figure 22: ML tasks can be parallelized writing the inner 
training loop in a Python function, and an external 
Driver (in PySark) creates and configures workers to 

execute the function in parallel.
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Just as BI tools extended their reach to incorporate easier 
accessibility to both data and analytics, ML tools also need to 
be usable by a wider group of users in an organization. Some 
of the tasks needed as part of ML application development do 
not require knowledge of programming or statistics, but require 
domain knowledge of the business, knowledge of the data and its 
terms of use, and an ability to see relationships in the data that 
can have predictive insight. 

Hopsworks’ provides a UI with support for: 

• managing access to data through assigning roles to users 
within the context of a project,

• managing globally accessible datasets and sharing datasets 
between projects;

• writing feature data validation rules in the Feature Store us-
ing UI support - to ensure valid, clean feature data;

• studying models for proper governance and (GDPR) compli-
ance - what features were used to train which models by 
what users, are the correct tags applied to datasets (anony-
mized, sensitive, etc);

• managing access to feature stores and sharing of feature 
stores between different projects;

• feature usage to provide insights into which features are less 
widely used and may no longer be needed in the Feature 
Store;

• feature data visualization, to see data distributions, relation-
ships between features, aggregate statistics on features. 

Citizen Data Scientists

Figure 24: Many Data Scientist tasks (data validation, 
feature management, data sharing) can be performed in the 

Hopsworks UI as point-and-click operations.
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Unified Hyperparameter Optimization and  Ablation Studies

Figure 25: Maggy is a framework for the 
asynchronous execution of ML trials using  Apache 

Figure 26: Maggy enables distributed debugging in 
Jupyter.  Log messages from workers are collected and 

printed out in real-time.

AutoML with Maggy

AutoML (automated machine learning) is concerned with automating, 
as far as possible, the human work in designing and tuning supervised 
ML applications for a given dataset. Distribution support is needed to 
make AutoML work well, and in Hopsworks, we leverage PySpark to 
automate the allocation of tasks to workers in a cluster. PySpark hides 
the complexity of distributed programming as you only need to wrap 
your training code in a function that will automatically be executed 
in parallel on different workers (with GPUs) in the cluster. With our 
framework Maggy and the hops python library, we provide API support 
for both running either synchronous or asynchronous trials for both 
hyperparameter optimization and ablation studies (ablation studies 
help you understand the behaviour of your deep neural network if 
you remove features/layers/regularization). Uniquely, Maggy supports 
asynchronous trials with early stopping on PySpark, which enables 
directed hyperparameter search algorithms (such as successive halving), 
enabling GPU utilization gains of 300% compared to Gooogle’s Vizier..

Debbugging distributed programs is hard, but Hopsworks, however, 
makes it easier by enabling Data Scientists to interactively view logs 
from all workers directly in their Jupyter notebook. Distributed 
programs, such as parallel hyperparameter optimization or distributed 
training involve running many workers that all execute the same (inner 
loop) training function  in parallel. In your Jupyter notebook, the main 
scope of yourPython program calls a function - hops.launch(training_
function) - that starts parallel workers and in the background receives 
logs from the workers, printing them out directly in the notebook.  This 
way, the same code you can run on your laptop (including standard 
print statements) will run distributed and print out logs, only each log 
entry will be prefixed by the worker ID (enabling easy filtering of logs).

Interactive Distributed Debbuging in Jupyter



Experiment Tracker
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Hopsworks provides an experiment tracking service. similar in scope to Databrick’s MLflow tracking service. In contrast to MLflow, 
there is no need to re-write your ML applications to wrap them inside ML programs. Instead, experiment tracking information is 
captured when the experiment API in the hops library is used (for example to launch hyperparameter optimization experimens 
or the training of models.

DataPrep Train

HopsFS

Experiment

/Datasets /Experiments /Models

Elasticsearch

ePipe: ChangeDataCapture API

Provenance 
Queries

Hopsworks has industry-leading  ML provenance capabilities, 
collecting lineage information both implicitly - through the use of 
HopsFS filesystem and HopsYARN resource manager - and explicitly - 
through API calls on the hops python library. Provenance information 
is integrated into both experiment tracking and model management 
services, and enables users to:  
• debug ML models by easily navigating to the python application, 
dataset, and Conda env used to train the model; 
• manage audit trails for compliance and model interpretability - 
understand the origin of data, features, and behaviour of models, 
• understanding usage of the Hopsworks platform, including user 
activity, model/feature/dataset popularity.

Provenance/Lineage Tracking

Hopsworks stores 
experiment results on 
HopsFS, and when you 
perform experiments, 
training models, results are 
stored into datasets in your 
project (/Experiments, /
Logs, /Models). Metadata 
for experiments is stored 
in Elasticsearch, and is 
managed by Hopsworks’ 
provenance service.

Figure 28: Hopsworks’ provenance capabilities come both from observing changes to files in HopsFS (experiment results, model 
creation/deletion, etc) and from calls to the hops API, such as creating a training dataset or running an experiment.

Figure 27: Hopsworks’ Experiment Tracker UI.
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In deep learning parlance, a model is a ready-to-use (trained) deep neural network that can take as input some data it has never 
seen before and return a prediction. Although there are gaps in our theoretical understanding of deep learning, we can still 
examine these inscrutable artifacts as black boxes with tooll support. In Hopsworks, we support the What-If Tool (WIT) as a 
plugin to Jupyter that allows both novice and experienced ML practitioners to  analyse trained models to help gain insights 
into their performance and decision making. It is crucial to understand model behavior for fairness, compliance, GDPR, and 
for end-to-end software processes, like Karpathy’s oftware 2.0 development process. The WIT tool lets users probe inputs and 
outputs of trained models, to support intersectional analysis, enabling ML practitioners to to answer questions such as “How 
would increasing the value of age affect a model’s prediction scores?” In order to help ML practitioners ask such hypothetical 
questions, the WIT tool allows users to change (perturb) data points and then evaluate model performance on the changed 
data. For this, WIT provides a datapoint editor tab. WIT can also be used to compare results across two models for the same 
dataset.

The WIT tool also supports counterfactual reasoning. For example, for a ML model that predicts whether a user should be 
given a loan or not, a ML practitioner may be interested in finding out the most similar person to person X who received a loan. 
We call such data points counterfactual examples and WIT calculates these datapoints using the UI. It does so by including 
a simple distance metric, you choose either the L1 or L2 norm, which aggregates the differences between data points’ feature 
values across all input features Sometimes you want to know the effect of a feature across an entire range of values. For this, you 
can use partial dependence plots in WIT to show how model predictions change as the value of a specific feature is adjusted 
for a given data point. In WIT, partial dependence plots are line charts for numeric features and column charts for categorical 
features.
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Model Analysis: What-If Tool

Figure 29: What-If tools from a Jupyter Notebook in Hopsworks
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HopsFS - a Distributed FS for ML

Figure 31: Results from: Size Matters: Improving the Performance of Small Files in Hadoop, ACM Middleware 2018.
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 HopsFS is a next-generation implementation of Apache HDFS with horizontally scalable, strongly consistent metadata. HopsFS’ 
metadata architecture enables it to scale to over 16X the throughput of HDFS on a real-world Spotify workload [HopsFS at 
Usenix FAST’17]. HopsFS’ metadata layer can also be used with NVMe disks to store small files. On the same Spotify workload, 
we showed over 66X throughput performance increases and up to 100X lower latency (millisecond latency file read/write for 
small files) [HopsFS at ACM Middleware’18]. HopsFS’ distributed metadata layer can also be distributed across data centers for 
a POSIX-like filesystem with data-center level high availability. On Google Cloud, HopsFS scales to >1.6m ops/s on Spotify’s 
workload while running over 3 different availability zones [Berlin Buzzwords’19]. If an availability zone (cluster) goes down, 
HopsFS willl continue to work. HopsFS’ metadata is not only scalable but it is also strongly consistent, which means we can 
provide a change data capture API to it, as we do with ePipe [CCGrid’19], which enables free-text search of HopsFS’ namespace, 
and extended metadata. Change data capture is key to how Hopsworks provides extensive non-intrusive provenance support 
for ML workflows. HopsFS provides an HDFS API and has native support in TensorFlow, Pandas, Spark, PyTorch (Petastorm), 
Flink/Beam, 

Figure 30: HopsFS is a next-generation distributed POSIX-like filesystem (left) that supports HA over Availability Zones in the Cloud (right).
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Apache Hive is a data warehouse that runs in Hopsworks providing a SQL-like interface to query data. In Hopsworks, 
we run a custom Apache Hive that run on HopsFS, unifying Hive’s metadata with HopsFS’ metadata. The operational 
benefits of this approach are that it simplifies backups of metadata - you only backup a single MySQL Cluster databases 
and more importantly, HopsHive ensures the consistency of Hive metadata with its datafiles in HopsFS. That is, if you 
remove Hive datafiles for a Hive database from HopsFS, Hive’s metadata will automatically be cleaned up (dropping the 
databases). Hopswork’s Feature Store extends the same metadata, ensuring strong consistency between its own metadata, 
Hive’s metadata, MySQL Cluster’s metadata, and HopsFS.  
Every project in Hopsworks can have its own Hive database that is  
private to that project. Hive databases can, as a dataset, be shared 
between projects, enabling self-service sharing of datasets between 
projects.
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Hive on Hops

Figure 32: Launch Hive LLAP Clusters in Hopsworks

Figure 34: Query Hive directly in Jupyter Notebooks

LLAP
Hopsworks supports Apache Hive 3.x, which includes a low 
latency engine for querying called LLAP. The Hopsworks admin 
UI provides an API to start or stop a LLAP cluster that is shared 
by all projects in Hopsworks.

Business Intelligence Reporting
HopsHive can be easily integrated with external BI (business 
intelligence) tools, such as Tableau, Qlik, Apache Superset, 
to provide visualizations and reporting. HopsHive provides 
a TLS-enabled JDBC connector and an ODBC connector to 
allow external tools query data in Hive.

Figure 33: Apache Superset on Hive
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At Logical Clocks we understand security is critical. We also understand that sometimes it can be cumbersome and users just 
ignore it. For that reason, in Hopsworks and Hops we have designed our security architecture around TLS/X.509 certificates 
and we make usage of certificates as transparent as possible to the end-user through API support in Java/Scala/Python. 
Security is a first-class citizen in Hopsworks.

Hopsworks employs HopsFS as its distributed filesystem and HopsYARN to manage resources in the cluster and execute 
jobs. Users interact with both the filesystem and the scheduler using Hops clients that require an X.509 certificate to 
authenticate themselves. Other services in Hopsworks (Kafka, Spark, etc) also communicate with each other, again using 
Remote Procedure Calls (RPC) that are encrypted using TLS. Hopsworks’ unique project-based multi-tenancy, that is based 
on dynamic-role based  access control, is implemented using TLS/X.509 certificates. For every project that a user is a member 
of, the user has a different certificate. That is, user identity when executing jobs is a combination of the project name and the 
user - so a user cannot just copy data between her projects, as the system sees her roles in the different projects as different 
identities. In Kerberos-based data platforms, such as Apache Hadoop, dynamic roles are not possible, as users have a single 
identity and roles in the access control system (Apache Sentry/Ranger) are static - as they must be as they are liberally cached 
throughout the platform. For more information on security in Hopsworks, see our website.
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Hopsworks TLS-Based Security

Figure 35: Hopsworks Security Architecture
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Hopsworks provides comprehensive monitoring, logging, 
notification, and administration capabilities for all of its services. 
The Hopsworks administration UI provides a platform administrator 
with an overview of the status of all services, the ability to customize 
notifications, and actions to restart failed services. The Hopsworks 
administration UI also provides functionality to manage users, 
projects, quotas (projects have both storage and compute quotas), 
hosts, certificates, and backups.
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Hopsworks Management and Monitoring

Figure 36: Hopsworks’ service/hosts are monitored by Prometheus and visualized with Grafana, while logs are 
collected with the ELK stack and are searchable within Hopsworks’ Admininstration UI.
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Figure 37: Hopsworks’ Admininstration UI.
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Supported Operating Systems: Ubuntu 16.04/18.04, Centos 7.2+, Redhat Linux 7,2+

• Single Host: 32GB RAM (minimum), 4 CPUs (x86), 20 GB+ spare disk capacity

• Supported GPUs: Nvidia Cuda (Tesla, GeForce), AMD ROCm, 2.6 (Ubuntu only)

• Networking: 10Gb/s or 25Gb/s (for distributed training of deep neural networks.

• Clustered Hopsworks:  
Hopsworks server(s): This server runs Hopsworks, and can also run services such as Elastic, Kafka brokers. They re-
quire minimum 16 GB RAM (32GB recommended), and 4 CPU cores+ is recommended, along with 20+ GB of spare 
disk capacity. 
Metadata server(s): These are more CPU intensive, and run the in-memory database (NDB), the NameNodes from 
HopsFS, and for higher performance should have a local NVMe disk. They should have 8GB+ of RAMa and 4+ CPU 
cores.  
GPU server(s):These servers typically have 4-10 GPUs connected over either PCI3.0/4.0 or NvLink. They typically only 
run a nodemanager. We recommend 2 CPU cores per GPU, and 16-32GB or RAM per GPU. 
Worker server(s): These servers run nodemanagers and HopsFS datanodes, and may have high local disk capacity (for 
on-premise installations). 

• Cloud Platforms: 
AMIs for both AWS and GCP are available with community edition of Hopsworks.  See website for details.
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Hopsworks 1.0 Requirements

Hopsworks Enterprise / Community
Hopsworks community edition is a fully featured version that is available under the AGPL-v3 open-source license. 
Hopsworks Enterprise Edition has some extra functionality and security, aimed at Enterprises, including:

• Single-Sign-On with ActiveDirectory (Kerberos), OAuth2, LDAP

• Kubernetes support for model-serving, Jupyter notebooks

• Github integration for Jupyter notebooks

• Online Feature Store.
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