
WHITE PAPER

Hopsworks - Data Intensive AI
Design and Operate ML Applications at Scale

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

Hopsworks

logicalclocks.com Hopsworks - Data Intensive AI

Data-Intensive AI
Hopsworks is an open-source Enterprise platform for designing and operating machine learning (ML) pipelines at scale. You
can write end-to-end ML pipelines entirely in Python and all pipeline stages can be easily scaled out to handle more data
and progress faster. Hopsworks supports popular open-source frameworks for data engineering and data science, including
ScikitLearn, Spark, Beam/Flink, TensorFlow, PyTorch. Hopsworks makes it easier for Data Scientists to write production-ready
code, by supporting a Feature Store to ensure data quality and clean training data for ML models, and also by making Jupyter
notebooks first-class citizens in the platform. Notebooks can be used to write production code that is run directly in ML pipelines.
Airflow can be used to orchestrate and operate the different stages in ML pipelines, while Hopsworks also provides support for
HopsFS, the world’s most scalable HDFS-compatible filesystem, with unique support for small files and high throughput.

Figure 1: Hopsworks is an Enterprise Platform for designing and operating ML applications at scale.

Datasources
Applications

API
Dashboards

Hopsworks

Apache Beam
Apache Spark Pip

Conda

Tensorflow
scikit-learn

Keras

Jupyter
Notebooks

Tensorboard
Apache Beam
Apache Spark
Apache Flink

Kubernetes

Batch Distributed
ML & DL

Model
Serving

Hopsworks
Feature Store

Feature
Store

Kafka +
Spark

Streaming

Model
Monitoring

Orchestration in Airflow

Data Preparation
& Ingestion

Experimentation
& Model Training

Deploy
& Productionalize

Streaming

Filesystem and Metadata storage
HopsFS

WHITE PAPER

Dynamic Role-based Access Control
 Manage Projects like Github Repositories and share Datasets like Dropbox

logicalclocks.com Hopsworks - Data Intensive AI

Hopsworks provides a new GDPR-compliant security model for managing sensitive data in a shared data platform.
Hopsworks’ security model is built around Projects, which are analogous to Github repositories. A project contains
datasets, users, and programs (code). Sensitive datasets can be sandboxed inside a project, and users can be
assigned roles that prevent them from exporting data from the project. In Hopsworks, sharing data does not involve
copying data. Datasets can still be securely shared between projects, without the need for duplicating the dataset. In
Hopsworks, thanks to a unified metadata layer, a Dataset is not just a directory in HopsFS, but also a Feature Store,
a Hive databases, or a Kafka topic. That is, databases, feature stores, and Kafka topics are all multi-tenant - they
are private to a project, but can also be securely shared between projects. Hopsworks implements its project-based
multi-tenancy security model by internally using X.509 certificates for user authentication, with a new certificate
created for every user in a project. Hopsworks also provides role-based access control within projects, with pre-
defined “Data Owner” and ”Data Scientist” roles, provided for GDPR compliance (”Data Owners” are responsible
for the data and access to the data, while ”Data Scientists” are processors of the data).

Figure 2: Projects and Datasets are first-class entities. Files, databases, feature-stores can be shared between projects.

Project YProject X
GDPR

Responsible

Analytics
Privileges

External Apps

REST API

Feature
Store (X)

Kafka
Topics

Hive
DB (X)

HopsFS
Dirs

<<https>>

Data Scientist

Data Owner

HopsFS
Dirs

Feature
Store (Y)

Feature
Store (Y)

Hive
DB (Y)

Datasets Datasets

Kafka
Topics

Scalability at Every Stage in a ML Pipeline

Hopsworks enables Data Scientists and Data Engineers to write ML pipeline code that can, without changes, scale from a
single virtual machine on a laptop to a whole cluster. Every stage in a Hopsworks ML pipelines is horizontally scalable. ML
pipelines will not bottleneck on Feature Engineering pipeline stages can be written with data parallel frameworks, including
Spark, PySpark, and Beam/Flink. For backfilling training datasets, the Feature Store can be scaled to store PBs of data and
run parallel jobs to quickly create training datasets in the file format of chioce for Data Scientists (.tfrecords, .numpy, .csv,
.petastorm, .hdf5, etc).

• Larger Datasets. Hopsworks’ distributed filesystem, HopsFS, also enables the efficient storage and processing of large
datasets - from MBs to PBs in size. HopsFS is important in on-premises deployments, where no object store is avail-
able. HopsFS has a HDFS API with native support in Spark, Beam/Flink, TensorFlow, Pandas, and PyTorch (through
Petastorm).

• Parallel Experimentation. GPUs are an expensive resource, but Data Scientists are even more expensive Hopsworks
enables the parallel execution of hyperparameter optimization experiments and ablation studies. The hops Python
library uses PySpark to parallelize the hyperparameter trials in TensorFlow/Keras, and PySpark, and ScikitLearnpik.

• Distributed Training. Hopsworks supports distributed training of models in TensorFlow and PyTorch, using PySpark
to hide the complexity of setting up and managing the distributed ring of workers in CollectiveAllReduce.

• Elastic Model Serving. Hopsworks uses Kubernetes to support the dynamic scaling up or down of the number of
model serving servers used for a given model. This allows the amount of compute used for online models to be dynami-
cally sized to the needs of the online applications that use those models..

logicalclocks.com Hopsworks - Data Intensive AI

Figure 3: Horizontal Scalability of ML Pipelines in Hopsworks can both increase Data Scientist productivity and
reduce the time required to put models in production. as well as enabling the training of models on larger datasets.

WHITE PAPER

Machine Learning Experiments

Horizontal Scalabilty at every stage in the Pipeline

Feature
Store

Data Parallel
TrainingHyperparam

Optimization
Ablation
Studies

Model
Serving

Data
Pipelines

>100X
Productivity

>100X
Productivity

Data ScientistData Team Online Apps

Elastic scale to
App needs

Faster Backfill
Training Data

logicalclocks.com Hopsworks - Data Intensive AI

While much attention has been heaped on TensorFlow/Kerass,PyTorch, H20, and Scikit-Learn as the most popular
open-source frameworks for training machine learning models, there is less clarity in industry about the open-source
frameworks that should be used to build Machine Learning pipelines. ML pipelines are the fundamental building block for
productionizing ML models, as they are responsible for reliably taking new data, cleansing and featurizing it, training the
new model, validating the model, and finally (if all tests pass) deploying the model to production. If a model is running in
production as a real-time model, infrastructure is also needed to monitor the model and notify if it is not performing as
expected.

As supervised ML models benefit from increasing amounts of training data, most ML pipelines are designed from the
beginning to be horizontally scalable, that is, they can be scaled to the correct size of input data (from a single container
for small data to a cluster of hundreds of containers for Big Data). Apache Spark and Apache Beam/Flink are dominant
data-parallel programming frameworks for building the data pipelines needed to feed ML models. The same code written
for Spark or Beam can process from MBs to TBs of data using from one to thousands of CPU cores. Hopsworks’ is an open
platform for ML pipelines and supports the two dominant paradigms for building ML pipelines: Apache Spark and Apache
Beam (in combination with TensorFlow Extended and Apache Flink), along with TensorFlow/Keras, PyTorch, Scikit-Learn,
and H20 for training ML models.

Hopsworks also includes an orchestration framework, Airflow, to coorrdinate the execution of ML pipelines. The
orchestration logic can be written in Python, enabling entire End-to-End ML pipelines to be written in Python. Java/Scala
are also supported and often used for the data preparation stages of ML pipelines.

Figure 4: Productionize ML Applications with a Data-Intensive End-to-End Machine Learning Pipeline.
Hopsworks supports frameworks to ensure scalable end-to-end pipelines: PySpark, TensorFlow, PyTorch,

Scikit-learn, and Apache Beam/Flink.

WHITE PAPER

Raw Data

Event Data

Monitor

Model
ServingData Prep

Data Lake

Feature
Store

Train &
Validate

Data-Intensive GPUs Elastic

End-to-End ML Pipelines

Hopsworks’ Feature Store

Hopsworks’ Feature Store [SysML’19] is a new data layer in horizontally scalable machine learning pipelines that:

• enables features to be discovered, analyzed, and reused across applications,

• ensures consistency of feature engineering between training and model servicing,

• enables time-travel queries to read historical values for feature values (important to generate new training data),

• and helps ensure high quality feature data through integration with data validation tooling.

In the Feature Store, Data Engineers typically have main responsibility for adding new features to the feature store. New features are
added to meet new requirements from Data Scientists. However, if the feature is a simple SQL string for an external datastore, then
Data Scientists can often handle such features themselves. Hopsworks supports the concept of projects. A project is a secure repository
of data and code and members, where ach member has either a data owner role or a more restricted data scientist role. Each project
can have its own FeatureStore. This way organizations can have a global feature store for less sensitive features (in a global project that
all employees are a member of), while sensitive features can reside in a closed project with control over which users have access to the
features. Features can be defined either in applications (Python/Scala/Java) or in the Hopsworks UI (for example, for simple features
that are SQL queries on external databases). Feature data can be ingested using either a Python or Scala/Java API that takes a Pandas
or Spark dataframe, and registers it as a FeatureGroup, along with user-supplied metadata for the features (name, description, etc). The
data for a FeatureGroup needs to be validated using the Data Validation API before it is used by Data Scientists to create training data
for models. Users can specify in the Hopsworks UI or in a data engineering application data validation rules to enforce expected values
and ranges for features. Feature statistics can also be access via the Hopsworks UI or from Hopsworks’ REST API.

logicalclocks.com Hopsworks - Data Intensive AI

Figure 5: Hopsworks’ Feature Store

WHITE PAPER

Feature Mgmt Storage Access

Statistics

Online
Features

Discovery

Offline
Features

Data Scientist

Online Apps

Data Engineer

MySQL Cluster
(Metadata,

Online Features)

Apache Hive
 Columnar DB

(Offline Features)

Feature Data
Ingestion

Hopsworks Feature Store

Training Data
(S3, HDFS)

Batch Apps

Discover features,
create training data,

save models,
read online/offline/on-

demand features,
historical feature values.

Models

HopsFS

JDBC
(SAS, R, etc)

Feature
CRUD

Add/remove features,
access control,

feature data validation.

Access
Control

Time Travel

Data
Validation

Pandas or
PySpark

DataFrame

External DB
Feature Defn

”select ..”

AWS Sagemaker and Databricks Integration

Feature Store

Raw Data

Event Data

Monitor Models

HopsFS

Serving

Feature Store / TFX
Transform

Data PrepIngest DeployExperiment /
Train

logs

logs

Metadata Store

Data Lake

Model Analysis

Airflow

logicalclocks.com Hopsworks - Data Intensive AI

Data pipelines are challenging to develop as they are expected to be completely reliable but they have no control over their
input data – it is hard to test a data pipeline against all known data inputs, when you don’t know all known data inputs.
ML applications differ from traditional data processing pipelines by placing additional requirements on the underlying
infrastructure. Hopsworks provides the following features to support end-to-end ML pipelines using Apache Spark::

• data quality validation using the Deequ library (similar to TFX data validation),

• integration with the Hopsworks’ Feature Store, where Spark (or Pandas) dataframes can be materialized to the (online
and/or offline) Feature Store,

• unique support for paralleized trials and training of ML models.

Hopsworks also includes unique support for parallelizing both hyperparameter optimization trials and ablation study
experiments with PySpark. With the Maggy framework, developed by Logical Clocks, Hopsworks now supports the
industry’s most advanced support for both reducing the time required to execute hyperparameter optimization trials and
optimize GPU utilization. Maggy provides a novel architecture to enable the asynchronous execution of trials in Apache
Spark, early stopping of trials, and custom optimizers to support directed search. Maggy includes Asynchronous Successive
Halving, random search, and grid search out-of-the-box, and customizeed optimizers can easily be included.

`

WHITE PAPER

ML Pipelines with PySpark

Figure 6: End-to-End ML Pipelines in Python with PySpark, TensorFlow/Keras/PyTorch.

logicalclocks.com Hopsworks - Data Intensive AI

Apache Beam/Flink for TFX

Figure 7: TensorFlow Extended supports components that help ensure data quality, model quality, and consistent feature
engineering. (Image from: https://www.tensorflow.org/tfx)

WHITE PAPER

ML Pipelines with TensorFlow Extended (TFX)

Hopsworks supports the use of TensorFlow Extended (TFX) components in ML pipelines. In Hopsworks, ML pipelines are
executed as Airflow DAGs (Python programs that define a workflow as a directed acyclic graph). Hopsworks supports TFX
components as stages in ML pipelines, so you can use TensorFlow Data Validation, TensorFlow Transform, TensorFlow Model
Analysis in your ML pipelines. In Hopsworks, there is no need to write a TFX pipeline to gain the benefits of TFX, as TFX
components can be written and tested in Jupyter notebooks or as Python programs and included directly in a Airflow ML
pipeline.

Beam Model: Fn Runner

Apache
Flink

Beam Model: Pipeline Construction

Other
LangsBeam Java

Beam
Python

Figure 8: Apache Beam on Hopsworks using Flink

Hopsworks supports Apache Beam for the execution of TFX components, such
as Data Validation, TFX Transform, and Model Analysis . TFX components
require Apache Beam to be able to scale to handle large volumes of data, and
Beam requires an execution engine (runner) to parallelize the execution of
Apache Beam jobs. Apache Flink is the most complete open-source runner for
Apache Beam, and Hopsworks supports the execution of both Apache Flink and
Apache Beam jobs (using the Flink runner). Apache Beam jobs in Hopsworks
can be written in either Python or Java, and Apache Beam Python programs can
also be written in Jupyter notebooks. Even the Jupyter notebooks can be included
in Airflow ML pipelines as Hopsworks jobs.

Streaming Analytics in Hopsworks

logicalclocks.com Hopsworks - Data Intensive AI

Figure 9: Hopsworks supports both stream processing and data-parallel processing with Apache Spark, Apache Flink, and Apache
Beam. Kafka is a fully project-based multi-tenant service in Hopsworks - Kafka topics are private to a project, but can be explicity
shared between projects. Kafka access-control support is built using certificates within projects (see Security Architecture).

WHITE PAPER

A Hopsworks installation comes with Apache Kafka customized with unique project-based multi-tenancy support - each project
can have its own project-specific Kafka topics that are private to that project. Just like Datasets in Hopsworks, Kafka topics can
also be securely shared between projects. Hopsworks’ Kafka multi-tenancy is built on a unique TLS-based access control layer for
Kafka that integrates with Hopsworks’ project membership lists.

External

General
Service

Data
Sources

(S3, Cloudera,
Data

Warehouse,
etc)

HopsFS

Kafka

Airflow
(orchestration)

Flink / Spark
Streaming

Spark

Feature
Store

Hive

TensorFlow
PyTorch

BI Tools &
Reporting

Jupyter
RStudio

Model Serving

Kubernetes

HopsFS, YARN, TLS/SSL

Hopsworks – Self Service UI and REST API

On-Premise, AWS, Azure, GCE

Monitoring and Notifications (Prometheus/Grafana)

Elasticsearch

Analytics &
Storage

ML and Deep
Learning
Services

Hopsworks also provides library support
in Java/Scala/Python to make TLS-
enabled Kafka easier to use, see examples
here. A fully-configured Kafka consumer
or producer can be instantiated in a
single line of code:Hopsworks supports
Spark Streaming, Beam, and Flink as
frameworks for building streaming analytics
applications. HopsFS also provides support
for checkpointing streaming applications,
with its HDFS compatability. Figure 10: Hopsworks provides UI and API support for

managing Kafka topics and Avro Schemas.

logicalclocks.com Hopsworks - Data Intensive AI

Airflow in Hopsworks
Hopsworks provides project-based multi-tenancy support for Airflow, where Airflow DAGs are private to projects Hopsworks’
Airflow includes a Hopsworks JobOperator to run Jobs in Hopsworks. ML pipelines are typically chains of Hopsworks’ Jobs, with
additional error-handling logic and support for notifications (Slack, email, etc).

WHITE PAPER

Jobs and Airflow (ML Pipelines)

Figure 11: Jobs in Hopsworks can be Spark, PySpark, Beam, Flink, or Kubernetes tasks. Jobs can be run from the UI, the
REST API, or from Airflow (that can launch orchestrate their execution, run timed jobs, notify on Job errors, etc).

Figure 13: Airflow can run Jobs in Hopsworks using the HopsworksOperator. In this example, Airflow is
running a pipeline of Hopsworks TFX Jobs.

Hopsworks provides a Jobs service (REST API and UI) to execute
programs (Jupyter notebooks, PySpark, Java/Scala Spark, Beam/
Flink, Kubernetes tasks). ML applications (TensorFlow/PyTorch/
Scikit-learn/etc) are productionized by running them as a Job. Jobs
provide UIs for debugging: Spark/Flink UI, logs in Kibana, Grafana
for performance debugging, YARN UI for YARN JOBS. Logs for jobs
are stored on HopsFS in the Logs dataset, private to the project. Jobs
are orchestrated as ML pipelines using Airflow in Hopsworks. Figure 12: Jobs provide UIs for debugging: Spark/Flink/YARN

UI, Kibana for logs, Grafana for resource utilization.

logicalclocks.com Hopsworks - Data Intensive AI

Models are the valuable output of a machine learning training run. Hopsworks manages models and annotates them
extensively with metadata, so that developers can easily perform root cause analysis when a model behaves in an unexpected
manner. In Hopsworks, models can be managed either from the UI, see image above, or from the REST API. Models can
be stored, listed, downloaded, as well as run as online model serving servers. Hopsworks support online model serving for
TensorFlow/Keras (using TensorFlow model serving server) and using the hops python library for Scikit-learn and H2O
applications (the model server is a flask server managed by Hopsworks). Model servers are run on Kubernetes and their logs
can be viewed in the Hopsworks UI in realtime, and prediction requests/results can be automatically logged to a Kafka topic,
from where they can be processed in real-time for monitoring/archiving. When the hops python API is used to save models
after training, see example notebook, the saved model is linked to the input training dataset, the jupyter notebook or python
file used to train it and the conda.yml environment used to execute that Python program. When you debug a model, you can
easily navigate from the model to the program and dataset used to train the model, helping you to reproduce the training run
and finding the root-cause of the model’s problem. Hopsworks also collects statistics on models that are visualized in the UI-
how long it took to train them, who trained them, the application/notebook/python-program used to train them, the training
dataset used (its version and its versioned features from the feature store), the hyperparameters used to train the model, and
the output performance of the model on its evaluation dataset;

WHITE PAPER

Model Management, Serving and Monitoring

Figure 14: Model Management, Serving and Monitoring in Hopsworks

Notebooks as First-Class Citizens

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

Notebooks in ML Pipelines
In Hopsworks, Data Scientists can easily build production ML pipelines from their Jupyter notebooks. There is no need to hand
over their code to a ML engineer to productionize their work. ML pipelines can be created added to a Python program in Airflow by
creating a PySpark Job from a notebook in the UI. When Hopsworks launches the notebook-as-a-job, it converts the .ipynb file to a
.py file and then runs it as a PySpark job. Airflow can then orcestrate ML pipelines consisting of mixed notebooks and jobs.

Select Features,
File Format of
Training Data

Feature
Engineering

Notebook/Job

Validate &
Deploy Model

Experiment,
Train Model

Feature
Store

Notebooks are the future of Data tooling and are at the heart of Neflix’s
data platform - Netflix run >100k Jupyter notebooks/day. Hopsworks has
first-class support for Jupyter notebooks, enabling them to be used for
more than just explorative development and visualization. Notebooks can
be parameterized jobs in production ML pipelines. Hopsworks supports
a development process where ML developers can start by writing a
Python notebook that can then be easily extended to run as a PySpark job
- parallelizing hyperparamter optimization tasks and massively reducing
training time for deep neural networks by training on up to 100s of GPUs.
The hops python library makes writing such distributed programs as easy
as writing single-threaded Python programs.

Figure 15: Other ML Plaforms throw away Notebook code.

Figure 17: Notebooks can be run directly in ML Pipelines that are orchestrated by Airflow

Figure 16: In Hopsworks, the inner training loop for your
ML program is written in Python. Other cells in your
nodebook can be later added to run the same notebook
as a PySpark jobs with parallel hyperparameter trials or
to support distributed training to speed up training if you
have a large dataset.

1.Explore Data,
Train Model

2. HParams

3. Dist Training

All in One Jupyter Notebook

Python

PySpark

1.
Explore Data,
Train model

2.
HParams

3.
Distributed

Training

Python
Notebook

Python Program
with hyperparameters in .YML file

Iterative Development not supported

HopsworksOther ML Platforms

1.
Explore Data,
Train model

2.
Hparams

(hyperparameter
optimization)

3.
Distributed

Training

Python Notebook Extended Notebook run as PySpark Job
(and GPUs for Deep Learning)

Iterative development encouraged

TensorFlow/Keras or PyTorch

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

Hopsworks supports the development and training of deep learning models in the latest versions of TensorFlow/Keras and
PyTorch. Hopsworks also provides the hops python library with documentation as a way to help make hard things easier in
Hopsworks. For example, a single API call is all you need to create a training dataset using the Feature Store, install a python
library in your project, create a consumer/producer for Kafka, or run a set of parallel trials for hyperparameter optimization or
ablation studies.

Nvidia CudaTM or AMD ROCmTM

Hopsworks supports both Nvidia CudaTM and AMD ROCmTM for deep
learning. Applications written in TensorFlow can be run without any changes
required on Nvidia graphics cards (TeslaTM or GeForceTM) or on ROCm-
enabled AMD graphics cards (such as MI25TM, MI50TM, and VegaTM R7).
Hopsworks support is based on customer GPU support in HopsYARN as well
as official DockerTM containers (if applications are trained on KubernetesTM..

1,00X
1,99X

3,98X

7,64X

0,00X
1,00X
2,00X
3,00X
4,00X
5,00X
6,00X
7,00X
8,00X

RESNET50

Multi-GPU Scaling
(PCIe, CPU

parameter-server,
1/2/4/8 GPU)

1GPU 2GPU 4GPU 8GPU

CollectiveAllReduceStrategy made Easy
Distributed deep learning offers the promise of reduced training times and the
ability to train larger models on larger volumes of data, producing more accurate
models (than your competitors). However, vanilla TensorFlow and PyTorch
leave the infrastructural complexity of configuring and operating a distributed
training program to the developer. Hopsworks, however, makes distributed
training as easy as single-threaded training by transparently configuring and
managing the lifecycle of the TensorFlow/PyTorch processes, and providing a
distributed filesystem to store training data and manage checkpoints, logging,
and TensorBoard data. For more details, see this Spark Summit talk.

Figure 18: Reduce training time by adding GPUs

Figure 19: Hopsworks manages GPUs from the driver level
up, supporting both Nvidia Cuda and AMD ROCm.

Python, like on your Laptop

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

Immutable Infrastructure with Conda
Instead of requiring developers to write and
maintain cumbersome Dockerfiles, Hopsworks
uses a conda environment per Hopsworks’
project to manage Python dependencies.
When users install Python libraries in a
project, the base conda environment is forked
and a conda environment will be managed
at all hosts in the cluster for that Hopsworks
project. Instead of requiring developers to
write and maintain cumbersome Dockerfiles,
Hopsworks uses a conda environment per
Hopsworks’ project to manage Python
dependencies.
When users install Python libraries in a project, the base conda environment is forked and a conda environment will be
managed at all hosts in the cluster for that Hopsworks project. The developer experience is close to the laptop experience
- users search for Python libraries and install them and then they can imported in applications. For the ML infrastructure
engineer, a project and its Python environment can be cloned and versioned to give an immutable infrastructure for running
Python in production.

Hopsworks is both a development and
operational platform for ML applications.
ML applications are primarily written in
Python, and Hopsworks provides first-in-
class support for making Python libraries
easy to include when developing (clustered)
Python applications and also when running
applications in production.Developers can
search for Python libraries using either Pip or
Conda (private conda repository servers can
also be installed alongside Hopsworks) and
install them by clicking a button on the UI.
Python libraries can even be installed directly
in Python applications using Hops API calls.

Figure 20: Search for and Install Python libraries using Pip/Conda in the UI.

Figure 21: Manage your Conda environment in the UI.

Hops library: Python and Java/Scala

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

The hops util library (both Python and Java) provide functions that enable Python, Java, Scala applications to easily use services
in the Hopsworks platform: hopsworks, FeatureStore, Kafka, HopsFS, Hive, TLS certificates. Hopsworks also provides standard
Hadoop libraries for using object stores, such as S3, and any Python library that can be installed with Pip or Conda can be used..
Python programs can be run on Jupyter notebooks, Kubernetes or as PySpark applications or Beam applications.

Hops Library Examples - Pandas, Numpy, Kafka
The hops python library includes additional support for reading/writing with Pandas and NumPy to HopsFS, see example
notebooks here, and sample code shown below. Hops also supports accessing services like Kafka with simple API calls (see
below) - the client does not need to configure TLS certificates or the Kafka broker endpoints or the Avro schema for the topic
as these are resolved by the hops library for you.

Figure 23: Sample Code snippets using the hops Python library to read (1) consume from a Kafka topic,
(2) read a Numpy array from HopsFS, and (2) read a Pandas dataframe from HopsFS.

Supervised machine learning frameworks are typically built around
the core abstraction of an inner training loop, inside which the model
parameters are updated during training. The hops library makes it easy
to write a Python function to run the inner training loop (see below) that
is executed in a cluster using PySpark. For hyperparameter optimization,
results are collected by the Driver (main scope), while for distributed
training, the Driver connects the workers and the distributed filesystem.

Parallel ML with Python functions and PySpark

Figure 22: ML tasks can be parallelized writing the inner
training loop in a Python function, and an external
Driver (in PySark) creates and configures workers to

execute the function in parallel.

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

Just as BI tools extended their reach to incorporate easier
accessibility to both data and analytics, ML tools also need to
be usable by a wider group of users in an organization. Some
of the tasks needed as part of ML application development do
not require knowledge of programming or statistics, but require
domain knowledge of the business, knowledge of the data and its
terms of use, and an ability to see relationships in the data that
can have predictive insight.

Hopsworks’ provides a UI with support for:

• managing access to data through assigning roles to users
within the context of a project,

• managing globally accessible datasets and sharing datasets
between projects;

• writing feature data validation rules in the Feature Store us-
ing UI support - to ensure valid, clean feature data;

• studying models for proper governance and (GDPR) compli-
ance - what features were used to train which models by
what users, are the correct tags applied to datasets (anony-
mized, sensitive, etc);

• managing access to feature stores and sharing of feature
stores between different projects;

• feature usage to provide insights into which features are less
widely used and may no longer be needed in the Feature
Store;

• feature data visualization, to see data distributions, relation-
ships between features, aggregate statistics on features.

Citizen Data Scientists

Figure 24: Many Data Scientist tasks (data validation,
feature management, data sharing) can be performed in the

Hopsworks UI as point-and-click operations.

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

Unified Hyperparameter Optimization and Ablation Studies

Figure 25: Maggy is a framework for the
asynchronous execution of ML trials using Apache

Figure 26: Maggy enables distributed debugging in
Jupyter. Log messages from workers are collected and

printed out in real-time.

AutoML with Maggy

AutoML (automated machine learning) is concerned with automating,
as far as possible, the human work in designing and tuning supervised
ML applications for a given dataset. Distribution support is needed to
make AutoML work well, and in Hopsworks, we leverage PySpark to
automate the allocation of tasks to workers in a cluster. PySpark hides
the complexity of distributed programming as you only need to wrap
your training code in a function that will automatically be executed
in parallel on different workers (with GPUs) in the cluster. With our
framework Maggy and the hops python library, we provide API support
for both running either synchronous or asynchronous trials for both
hyperparameter optimization and ablation studies (ablation studies
help you understand the behaviour of your deep neural network if
you remove features/layers/regularization). Uniquely, Maggy supports
asynchronous trials with early stopping on PySpark, which enables
directed hyperparameter search algorithms (such as successive halving),
enabling GPU utilization gains of 300% compared to Gooogle’s Vizier..

Debbugging distributed programs is hard, but Hopsworks, however,
makes it easier by enabling Data Scientists to interactively view logs
from all workers directly in their Jupyter notebook. Distributed
programs, such as parallel hyperparameter optimization or distributed
training involve running many workers that all execute the same (inner
loop) training function in parallel. In your Jupyter notebook, the main
scope of yourPython program calls a function - hops.launch(training_
function) - that starts parallel workers and in the background receives
logs from the workers, printing them out directly in the notebook. This
way, the same code you can run on your laptop (including standard
print statements) will run distributed and print out logs, only each log
entry will be prefixed by the worker ID (enabling easy filtering of logs).

Interactive Distributed Debbuging in Jupyter

Experiment Tracker

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

Hopsworks provides an experiment tracking service. similar in scope to Databrick’s MLflow tracking service. In contrast to MLflow,
there is no need to re-write your ML applications to wrap them inside ML programs. Instead, experiment tracking information is
captured when the experiment API in the hops library is used (for example to launch hyperparameter optimization experimens
or the training of models.

DataPrep Train

HopsFS

Experiment

/Datasets /Experiments /Models

Elasticsearch

ePipe: ChangeDataCapture API

Provenance
Queries

Hopsworks has industry-leading ML provenance capabilities,
collecting lineage information both implicitly - through the use of
HopsFS filesystem and HopsYARN resource manager - and explicitly -
through API calls on the hops python library. Provenance information
is integrated into both experiment tracking and model management
services, and enables users to:
• debug ML models by easily navigating to the python application,
dataset, and Conda env used to train the model;
• manage audit trails for compliance and model interpretability -
understand the origin of data, features, and behaviour of models,
• understanding usage of the Hopsworks platform, including user
activity, model/feature/dataset popularity.

Provenance/Lineage Tracking

Hopsworks stores
experiment results on
HopsFS, and when you
perform experiments,
training models, results are
stored into datasets in your
project (/Experiments, /
Logs, /Models). Metadata
for experiments is stored
in Elasticsearch, and is
managed by Hopsworks’
provenance service.

Figure 28: Hopsworks’ provenance capabilities come both from observing changes to files in HopsFS (experiment results, model
creation/deletion, etc) and from calls to the hops API, such as creating a training dataset or running an experiment.

Figure 27: Hopsworks’ Experiment Tracker UI.

logicalclocks.com Hopsworks - Data Intensive AI

In deep learning parlance, a model is a ready-to-use (trained) deep neural network that can take as input some data it has never
seen before and return a prediction. Although there are gaps in our theoretical understanding of deep learning, we can still
examine these inscrutable artifacts as black boxes with tooll support. In Hopsworks, we support the What-If Tool (WIT) as a
plugin to Jupyter that allows both novice and experienced ML practitioners to analyse trained models to help gain insights
into their performance and decision making. It is crucial to understand model behavior for fairness, compliance, GDPR, and
for end-to-end software processes, like Karpathy’s oftware 2.0 development process. The WIT tool lets users probe inputs and
outputs of trained models, to support intersectional analysis, enabling ML practitioners to to answer questions such as “How
would increasing the value of age affect a model’s prediction scores?” In order to help ML practitioners ask such hypothetical
questions, the WIT tool allows users to change (perturb) data points and then evaluate model performance on the changed
data. For this, WIT provides a datapoint editor tab. WIT can also be used to compare results across two models for the same
dataset.

The WIT tool also supports counterfactual reasoning. For example, for a ML model that predicts whether a user should be
given a loan or not, a ML practitioner may be interested in finding out the most similar person to person X who received a loan.
We call such data points counterfactual examples and WIT calculates these datapoints using the UI. It does so by including
a simple distance metric, you choose either the L1 or L2 norm, which aggregates the differences between data points’ feature
values across all input features Sometimes you want to know the effect of a feature across an entire range of values. For this, you
can use partial dependence plots in WIT to show how model predictions change as the value of a specific feature is adjusted
for a given data point. In WIT, partial dependence plots are line charts for numeric features and column charts for categorical
features.

WHITE PAPER

Model Analysis: What-If Tool

Figure 29: What-If tools from a Jupyter Notebook in Hopsworks

POSIXPast

Present

NFS, HDFS S3 GCS HopsFS

Single DC,
Strongly

Consistent
Metadata

Multi-DC,
Eventually
Consistent
Metadata

Multi-DC,
Strongly

Consistent
Metadata

logicalclocks.com Hopsworks - Data Intensive AI

WHITE PAPER

HopsFS - a Distributed FS for ML

Figure 31: Results from: Size Matters: Improving the Performance of Small Files in Hadoop, ACM Middleware 2018.

Name
Node

Data
Node

Data
Node

Data
Node

DB

Name
Node

Data
Node

Data
Node

Data
Node

DB
Name
Node

Data
Node

Data
Node

Data
Node

DB

DataCenter-1

DataCenter-2 DataCenter-3

 HopsFS is a next-generation implementation of Apache HDFS with horizontally scalable, strongly consistent metadata. HopsFS’
metadata architecture enables it to scale to over 16X the throughput of HDFS on a real-world Spotify workload [HopsFS at
Usenix FAST’17]. HopsFS’ metadata layer can also be used with NVMe disks to store small files. On the same Spotify workload,
we showed over 66X throughput performance increases and up to 100X lower latency (millisecond latency file read/write for
small files) [HopsFS at ACM Middleware’18]. HopsFS’ distributed metadata layer can also be distributed across data centers for
a POSIX-like filesystem with data-center level high availability. On Google Cloud, HopsFS scales to >1.6m ops/s on Spotify’s
workload while running over 3 different availability zones [Berlin Buzzwords’19]. If an availability zone (cluster) goes down,
HopsFS willl continue to work. HopsFS’ metadata is not only scalable but it is also strongly consistent, which means we can
provide a change data capture API to it, as we do with ePipe [CCGrid’19], which enables free-text search of HopsFS’ namespace,
and extended metadata. Change data capture is key to how Hopsworks provides extensive non-intrusive provenance support
for ML workflows. HopsFS provides an HDFS API and has native support in TensorFlow, Pandas, Spark, PyTorch (Petastorm),
Flink/Beam,

Figure 30: HopsFS is a next-generation distributed POSIX-like filesystem (left) that supports HA over Availability Zones in the Cloud (right).

logicalclocks.com Hopsworks - Data Intensive AI

Apache Hive is a data warehouse that runs in Hopsworks providing a SQL-like interface to query data. In Hopsworks,
we run a custom Apache Hive that run on HopsFS, unifying Hive’s metadata with HopsFS’ metadata. The operational
benefits of this approach are that it simplifies backups of metadata - you only backup a single MySQL Cluster databases
and more importantly, HopsHive ensures the consistency of Hive metadata with its datafiles in HopsFS. That is, if you
remove Hive datafiles for a Hive database from HopsFS, Hive’s metadata will automatically be cleaned up (dropping the
databases). Hopswork’s Feature Store extends the same metadata, ensuring strong consistency between its own metadata,
Hive’s metadata, MySQL Cluster’s metadata, and HopsFS.
Every project in Hopsworks can have its own Hive database that is
private to that project. Hive databases can, as a dataset, be shared
between projects, enabling self-service sharing of datasets between
projects.

WHITE PAPER

Hive on Hops

Figure 32: Launch Hive LLAP Clusters in Hopsworks

Figure 34: Query Hive directly in Jupyter Notebooks

LLAP
Hopsworks supports Apache Hive 3.x, which includes a low
latency engine for querying called LLAP. The Hopsworks admin
UI provides an API to start or stop a LLAP cluster that is shared
by all projects in Hopsworks.

Business Intelligence Reporting
HopsHive can be easily integrated with external BI (business
intelligence) tools, such as Tableau, Qlik, Apache Superset,
to provide visualizations and reporting. HopsHive provides
a TLS-enabled JDBC connector and an ODBC connector to
allow external tools query data in Hive.

Figure 33: Apache Superset on Hive

logicalclocks.com Hopsworks - Data Intensive AI

At Logical Clocks we understand security is critical. We also understand that sometimes it can be cumbersome and users just
ignore it. For that reason, in Hopsworks and Hops we have designed our security architecture around TLS/X.509 certificates
and we make usage of certificates as transparent as possible to the end-user through API support in Java/Scala/Python.
Security is a first-class citizen in Hopsworks.

Hopsworks employs HopsFS as its distributed filesystem and HopsYARN to manage resources in the cluster and execute
jobs. Users interact with both the filesystem and the scheduler using Hops clients that require an X.509 certificate to
authenticate themselves. Other services in Hopsworks (Kafka, Spark, etc) also communicate with each other, again using
Remote Procedure Calls (RPC) that are encrypted using TLS. Hopsworks’ unique project-based multi-tenancy, that is based
on dynamic-role based access control, is implemented using TLS/X.509 certificates. For every project that a user is a member
of, the user has a different certificate. That is, user identity when executing jobs is a combination of the project name and the
user - so a user cannot just copy data between her projects, as the system sees her roles in the different projects as different
identities. In Kerberos-based data platforms, such as Apache Hadoop, dynamic roles are not possible, as users have a single
identity and roles in the access control system (Apache Sentry/Ranger) are static - as they must be as they are liberally cached
throughout the platform. For more information on security in Hopsworks, see our website.

WHITE PAPER

Hopsworks TLS-Based Security

Figure 35: Hopsworks Security Architecture

logicalclocks.com Hopsworks - Data Intensive AI

Hopsworks provides comprehensive monitoring, logging,
notification, and administration capabilities for all of its services.
The Hopsworks administration UI provides a platform administrator
with an overview of the status of all services, the ability to customize
notifications, and actions to restart failed services. The Hopsworks
administration UI also provides functionality to manage users,
projects, quotas (projects have both storage and compute quotas),
hosts, certificates, and backups.

WHITE PAPER

Hopsworks Management and Monitoring

Figure 36: Hopsworks’ service/hosts are monitored by Prometheus and visualized with Grafana, while logs are
collected with the ELK stack and are searchable within Hopsworks’ Admininstration UI.

Hopsworks

Visualization Collection, Aggregation Measurements, Logs

Grafana

Kibana

Resource
Monitoring

Prometheus

Search Logs

Elasticsearch
Logstash

Hive

Hops Services

Kafka Brokers

Elasticsearch

MySQL Cluster

Notebook Servers

VMs/Containers

History Servers

Airflow

Hopsworks

Figure 37: Hopsworks’ Admininstration UI.

logicalclocks.com Hopsworks - Data Intensive AI

Supported Operating Systems: Ubuntu 16.04/18.04, Centos 7.2+, Redhat Linux 7,2+

• Single Host: 32GB RAM (minimum), 4 CPUs (x86), 20 GB+ spare disk capacity

• Supported GPUs: Nvidia Cuda (Tesla, GeForce), AMD ROCm, 2.6 (Ubuntu only)

• Networking: 10Gb/s or 25Gb/s (for distributed training of deep neural networks.

• Clustered Hopsworks:
Hopsworks server(s): This server runs Hopsworks, and can also run services such as Elastic, Kafka brokers. They re-
quire minimum 16 GB RAM (32GB recommended), and 4 CPU cores+ is recommended, along with 20+ GB of spare
disk capacity.
Metadata server(s): These are more CPU intensive, and run the in-memory database (NDB), the NameNodes from
HopsFS, and for higher performance should have a local NVMe disk. They should have 8GB+ of RAMa and 4+ CPU
cores.
GPU server(s):These servers typically have 4-10 GPUs connected over either PCI3.0/4.0 or NvLink. They typically only
run a nodemanager. We recommend 2 CPU cores per GPU, and 16-32GB or RAM per GPU.
Worker server(s): These servers run nodemanagers and HopsFS datanodes, and may have high local disk capacity (for
on-premise installations).

• Cloud Platforms:
AMIs for both AWS and GCP are available with community edition of Hopsworks. See website for details.

WHITE PAPER

Hopsworks 1.0 Requirements

Hopsworks Enterprise / Community
Hopsworks community edition is a fully featured version that is available under the AGPL-v3 open-source license.
Hopsworks Enterprise Edition has some extra functionality and security, aimed at Enterprises, including:

• Single-Sign-On with ActiveDirectory (Kerberos), OAuth2, LDAP

• Kubernetes support for model-serving, Jupyter notebooks

• Github integration for Jupyter notebooks

• Online Feature Store.

Hopsworks - Data Intensive AI

the creators of

HOPSWORKS
Reach out to us!

www.logicalclocks.com

info@logicalclocks.com

.. or visit us at one of our offices:

Silicon Valley Office
470 Ramona St
Palo Alto,
94301 California
USA

Stockholm Office
Box 1263,
Isafjordsgatan 22
164 40, Kista
Sweden

UK Office
IDEALondon,
69 Wilson St
EC2A2BB, London
UK

