

Contrast-agent free evaluation of cardiomyopathies with T1 mapping and the new fast strainencoded (f-SENC) magnetic resonance imaging

K. Hirschberg^{1,2}, O. Paul¹, J. Salatzki¹, F. Andre¹, J. Riffel¹, M. Ochs¹, H. Vago², B. Merkely², HA. Katus¹, M. Friedrich³

HEIDELBERG UNIVERSITY HOSPITAL ¹University Hospital of Heidelberg, Dept. of Cardiology, Angiology and Pneumonology, Heidelberg, Germany; ²Semmelweis University Heart and Vascular Center, Budapest, Hungary; ³McGill University Health Centre, Montreal, Canada

Purpose

Cardiac Magnetic Resonance Imaging (CMR) (CMP) with Late Gadolinium Enhancement (LGE) is widely used for the diagnostic workup and risk stratification of cardiomyopathies. Myocardial T1 mapping (T1) and fast strain encoded (f-SENC) are novel, fast techniques for assessing ventricular function and tissue without using contrast agents. We hypothesized that these techniques may allow for replacing standard protocols with LGE.

Methods

Patient and control group: Patients with CMP and healthy volunteers scanned by 1.5 or 3 Tesla CMR in Heidelberg University Hospital from January 2018 to July 2020 Exclusion criteria: Ischemic heart disease, acute and chronic myocardial infarction, Images superimposed by artefacts Type of study: retrospective monocentric study MyoHealth Score: Percentage of segments with reduced strain (~17%) compared to all segments from all long and short axis slices Statistical Methods: Mean comparison: unpaired Student's Ltest, Significance for p-value < 0.05; 95% CI	Cine images Function and morphology T1 mapping (2 - ,3 - , 4-CH, SAX)) Tissue characterisation: Detection of cardiac fibrosis F-SNC (2 - ,3 - , 4-CH, SAX) Strain: Detection of subclinical functional impairment LGE (2 - ,3 - , 4-CH, SAX) Detection of myocardial injury	Advantages of F-SENC Cardiac strain measurement Intramyocardial mobility Fast image acquisition Single heartbeat ¹ Stable and reproducible tagging method ¹		Advantages of 11 Detection of fibrosis: - Histologically proven ³ Fast image acquisition: - One breath-hold (r20sec/image) ⁴ Reproducible results ⁴ Management, creit Casage from the creation of the company Amount of the company of the company of the company Amount of the company of the company of the company Amount of the company of the company of the company Amount of the company of the company of the company of the company Amount of the company of the company of the company of the company of the company Amount of the company
esults				
Table 1: Baseline characteristics and cardiac function and morphology		Table 2: Mapping parameters		
	past Unspecif	Study groups Control ±SD/ Normal ±SD/ p DCM ±SD/ p HCM ±SD/	p HHD tSD/ p AmyloidtSD/ p NCCM tSD/	myocar tsD/ p ied tsD/ p
Study groups Control ±SD/(%) Normal ±SD/(%) p HCM ±SD/(%) p HHD ±SD/(%) p kmyloidosis	P NCCM ±SD/(%) p past Unspecif myocard ±SD/(%) p ied ±SD/(%) p His NICM	(%) finding (%) (%) (%)	ing osis ing ing	ditis (76) NICM (76)
Baseline characteristics		n T1=66 80 44 47	26 8 6	11 37
n 68 80 44 47 26 8	6 11 37	Fied strength dependent mapping parameter (ms)		
Age (y) 50 ±17 39 ±14,7 *<0,001 53 0,35 *0,002 48 ±17 0,61 59 ±13,4 *0,009 70 ±9,1 Male 38 (55) 40 (50) 0,48 24 (55) 0,89 18 (49) 0,48 31 (66) 0,28 6 (75)	*<0,001 39 ±11,4 0,13 41 ±12,5 *0,042 51 ±14,9 0,75 0,30 18 (69) 0,24 3 (50) 0,78 7 (64) 0,63	n 1,5T T1=44 60 32 31	19 7 5	8 30
NAME 38 (53) 40 (50) 0.04 24 (53) 0.05 18 (47) 0.04 31 (66) 0.28 6 (72) BMI 24 ±2,9 24 ±3,8 0,98 26 *0,002 *0,001 27 ±4,2 *0,001 26 ±4,1 *0,008 23 ±2,4	0,50 18 (09) 0,24 5 (50) 0,78 7 (04) 0,55 0,57 26 ±5,4 0,33 24 ±3,3 0,69 25 ±3,8 *0,048	Global T1 994,3 ±18,4 1004,7 ±22,8 *0,014 1044,1 ±31,1 *<0,001 1032,9 ±29,0	*<0,001 1017,6 ±30,2 *0,005 1153,6 ±48,4 *<0,001 1031 ±40	0,11 1017,5 ±27,4 *0,004 1026 ±26,7 *
Cardiac function and morphology (bSSFP)		n 3T T1-22 20 12 16	7 1 1	3 7
HR 65 ±8 68 ±11 0,08 69 0,07 0,08 68 ±10 0,08 69 ±11 0,09 73 ±12 UVEF185 64 ±5 61 ±4 *<0.001	*0,023 69 ±11 0,67 69 ±10 0,2 68 ±13 0,3 *0,022 61 ±8 0,11 49 ±9 *<0,001 57 ±5 *<0,001	Global T1 1222,7 ±22,5 1229,9 ±21,8 0,31 1289,2 ±46,1 *<0,001 1305,4 ±50	*<0,001 1241,1 ±32,4 0,1 1407,1 1283,2	1238,9 ±33,6 0,28 1242,7 ±19,8 *
EDV(m) 146 ±31 162 ±41 *0,012 236 ±63,2 *<0,001 165 ±44,1 *0,015 160 ±34,1 *0,027 169 ±40,6	0,06 156 ±38,9 0,20 202 ±17,1 *<0,001 151 ±22,6 0,61		1203,2	100,0 100,0 0,00 1076,7 I10,0
ESV (m) 53 ±14 65 ±20,5 *<0,001 149 ±61,9 *<0,001 76 ±26 *<0,001 56 ±18,8 0,34 92 ±50	0,06 60 ±20,2 0,06 102 ±15,8 *<0,001 65 ±12,2 *0,010	Table 3: Strain - f-SENC		
UV Mass (g) 91 ±22 98 ±25,3 0,06 132 ±37,8 *<0,001 105 ±30,9 *0,01 165 ±57,5 *<0,001 181 ±97,8	*<0,001 126 ±38,9 *<0,001 105 ±15,4 0,06 100 ±19,7 0,18		card	past unspecif
	*<0,001 8 ±1,6 *<0,001 6 ±1,6 0,60 6 ±0,8 0,29	Study groups Control ±SD/ Normal ±SD/ p DCM ±SD/ p HCM ±SD/ (%) finding (%) p DCM (%) p HCM (%)	p HHD (5) p Amyloi (5) p NCCM (5) p	myocar (s) p ied (s) p
	*0,001 14 ±1,64 *<0,001 9 ±2,73 0,60 10 ±1,29 0,07		POSIS	
MAPSE (mm) 13 ±3 14 ±2,4 0,56 10 ±3 *0,001 11 ±2,1 *0,001 11 ±2,7 *0,001 7 ±2,1	*<0,001 11 ±2,3 *<0,001 12 ±2,3 0,20 11 ±2,5 *0,023	n 63 80 43 47	26 8 6	11 37
LV EDD (mm) 50 ±4 50 ±5,1 0,51 59 ±8 *0,001 51 ±5,3 0,27 47 ±6,1 *0,015 48 ±5,7	0,18 48 ±5,8 0,09 58 ±4,2 *<0,001 47 ±4,4 *0,041	GCS (%) -21,1 ±1,2 -20,5 ±1,4 *0,008 -13,2 ±4,1 1 -14,8 ±2,	8 *<0,001 -16,5 ±3,1 *<0,001 -12,2 ±4,7 *0,001 -17,7 ±3,8 0,0	18 -19 ±2,2 *0,012 -16,7 ±3,3 *<0
LY ESD (mm) 31 ±4 32 ±4,7 *0,039 45 ±10 *0,001 35 ±6,9 *0,001 27 ±5,8 *0,001 36 ±9,9	0,22 30 ±6,4 0,47 38 ±4,6 *<0,001 31 ±4,1 0,66	GLS (%) -20,3 ±1,6 -20,2 ±1,5 0,72 -13,1 ±3,6 *<0,00 1 -12,9 ±4,	*<0,001 -16,8 ±3,1 *<0,001 -8,6 ±5,1 *<0,001 -17 ±2,2 *0,0	13 -18 ±2,6 *0,019 -16,5 ±3,4 *<0
17 ESU (IIIII) 31 24 32 24,7 0,032 43 210 40,001 35 ±6,9 10,001 27 ±5,8 40,001 36 ±9,9	0,22 30 20,40 0,40 30 24,6 40,001 31 24,1 0,66	No. of reduced Strain- Segm. >-17% 5 ±3 7 ±3 *<0,001 24 ±7 *<0.00 22 ±6	*<0,001 17 ±6 *<0,001 28 ±7 *<0,001 15 ±7 *0,0	16 13 ±8 *0,008 16 ±7 *<0
DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; HHD, hypertensive heart disease; NCCM, non-compaction cardiomyopathy; NICM, non-ischemic cardiomyopathy; BMI, Bod systolic volume; U Mass, left ventricular mass; UWT, biteral wall thickness; SWT, sectal wall thickness; MAPSL, mitral annular plane systolic extursion; U EDD, left ventricular end-distolic diame		No. of reduced Strain-0, 40, 0, 41, 10,022, 12, 48, *<0,00, 10, 46	*<0,001 6 ±5 *<0,001 17 ±10 *0,002 4 ±4 *<0)	001 1 ±2 *0,038 6 ±6 *<0
	and an analy and an an additional and additional and additional	Segm.>-10% 0 10 0 11 0,013 11 10 1 10 10		
50, standard diviation *significant (p<0.05) differences between control and study group; (a) or between normal finding and cardiomyopathy groups		MyoHealth-Score 0,85 0,07 0,8 0,09 *0,003 0,35 0,19 1 0,41 0,1	\$ *<0,001 0,54 0,17 *<0,001 0,23 0,18 *<0,001 0,59 0,19 *0,0	21 0,65 0,21 *0,011 0,55 0,19 *0
a se a la setta se a				
onclusions				

Healthy controls can be accurately identified by a fast, simplified CMR protocol without the use of contrast agents, based on cine images in combination with myocardial T1 mapping. The protocol was also useful tool for identifying hypertrophic and dilated cardiomyopathy.

Declaration of interest:

I have nothing to declare