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Part I

Theory
1 Fixed Income Securities
1.1 Definitions
Vn,m and V gn,m denote a fixed income security that pays a cash flow, C, which grows at a rate g that
lasts from time, t = n to t = m inclusively. We note the following classical definitions:

a) Perpetuity: a fixed income asset in the form of Vn,∞.

b) Annuity: a fixed income asset in the form of Vn,m where m <∞.

c) Growing Perpetuity: a fixed income asset in the form of V gn,∞.

d) Growing Annuity: a fixed income asset in the form of V gn,m where m <∞.

e) Bond: A type of Annuity together with a face value, sold through an auction mechanism. We
use By,d to denote a bond that pays cash C

d d-times a year, for y years, with a face value of F .

1.2 Pricing
Before we begin, let us recall the following formula:

1 + z + z2 + z3 + · · · = 1
1− z if |z| < 1

And also recall the following trick:

zj + zj+1 + · · · = zj(1 + z + z2 + · · · ) = zj

1− z if |z| < 1

1.2.1 Perpetuities and Annuities

We begin by looking a how to price an Annuity: a fixed income asset which pays cash C
(1+r)i at each

time period i for an infinite time horizon (r > 0). We thus have:

V0,∞ = C

(
1 + 1

1 + r
+
(

1
1 + r

)2
+ · · ·

)
=
∞∑
i=0

C

(1 + r)i = C

(
1

1− 1
1+r

)
= C

(
1 + r

r

)
Comparing this with the classical example of V1 = C( 1

1+r + ( 1
1+r )2 + · · · ) =

∑∞
i=1

C
(1+r)i =⇒

V1,∞ = V0,∞ − C = C

(
1 + r

r

)
− C

(
1 + r

1 + r

)
= C

r

For finite time, i.e., we are looking at an Annuity, which has a value of:

Vn,m = C

((
1

1 + r

)n
+
(

1
1 + r

)n+1
+ · · ·+

(
1

1 + r

)m)
where n < m
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If we note that:
Vn,m = Vn,∞ − Vm+1,∞

by our trick in 1.2, we can calculate:

Vn,m =
(

1
(1 + r)n

)
V0,∞ −

(
1

(1 + r)m+1

)
V0,∞ = C

r

(
(1 + r)m−n+1 − 1

(1 + r)m

)
Which when n = 1, collapses down to the classical equation of:

V1,m = C

r

(
1− 1

(1 + r)m

)
1.2.2 Growing Perpetuities and Annuities

Both the Growing Perpetuity and Growing Annuity are completely analogous to their non-growth
versions, but the cash payments are now equal to C( (1+g)i−1

(1+r)i ) in time period i (i ≥ 1 and g < r).
Therefore, for a Growing Perpetuity:

V g0,∞ = C

(
1 + 1

1 + r
+ 1 + g

(1 + r)2 + · · ·
)

And hence,

V g0,∞ = C

1 + g

( ∞∑
i=0

(
1 + g

1 + r

)i
− g
)

= C

1 + g

(
1

1− 1+g
1+r
− g
)

= C

(
1 + r − g
r − g

)
And for the classical example:

V g1,∞ = C

(
1

1 + r
+ 1 + g

(1 + r)2 + (1 + g)2

(1 + r)3 + · · ·
)

= V g0,∞ − C = C

(
1

r − g

)
For finite time, i.e., we have a Growing Annuity:

V gn,m =
[(

1 + g

1 + r

)n−1
−
(

1 + g

1 + r

)m]
V g1,∞ = C

r − g

[(
1 + g

1 + r

)n−1
−
(

1 + g

1 + r

)m]
And hence if n = 1, we have the classical equation:

V g1,m = C

r − g

[
1−

(
1 + g

1 + r

)m]
1.2.3 Continuous Extensions

We adapt our finite time horizon formulae for fixed income securities to work with continuous
compounding by defining: r̂ = r

d , ĝ = g
d , Ĉ = C

d , m̂ = dm, n̂− 1 = d(n− 1) and taking the limit as
d→∞. We let V̂ gn,m denote a continuously compounded fixed income security as. We now find the
general case for a growing continuous compounded annuity, and note all other cases are corollaries
of this (take g = 0, or n = 1).

V̂ gn,m = lim
d→∞

V gn,m = lim
d→∞

C/d

(r − g)/d

[(
1 + g/d

1 + r/d

)d(n−1)
−
(

1 + g/d

1 + r/d

)md]
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And since ea = limj→∞(1 + a
j )j , it =⇒

V̂ gn,m = C

r − g

(
e(g−r)(n−1)

[
1− e(g−r)(m−n+1)

])
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1.2.4 Summary

Discrete Infinite Time Horizon Pricing at time n = 0:

V0,∞ = C

(
1 + r

r

)
(1)

V g0,∞ = C

(
1 + r − g
r − g

)
(2)

Discrete Infinite Time Horizon Pricing at time n = 1:

V1,∞ = C

r
(3)

V g1,∞ = C

r − g
(4)

Discrete and Continuous Finite Time Horizon Pricing at time n = 1:

V1,m = C

r

(
1− 1

(1 + r)m

)
(5)

V g1,m = C

r − g

[
1−

(
1 + g

1 + r

)m]
(6)

V̂1,m = C

r

(
1− e−rm

)
(7)

V̂ g1,m = C

r − g

(
1− e(g−r)(m)

)
(8)

Discrete and Continuous Finite Time Horizon Pricing at arbitrary starting time:

Vn,m = C

r

(
(1 + r)m−n+1 − 1

(1 + r)m

)
(9)

V gn,m = C

r − g

[(
1 + g

1 + r

)n−1
−
(

1 + g

1 + r

)m]
(10)

V̂n,m = C

r

(
e−r(n−1)

[
1− e−r(m−n+1)

])
(11)

V̂ gn,m = C

r − g

(
e(g−r)(n−1)

[
1− e(g−r)(m−n+1)

])
(12)
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1.3 Bonds
Please reference our definition of a Bond.

1.3.1 Discrete Pricing

We set up the price of a bond, By,d, as follow:

By,d = F

(1 + λ
d )dy

+
dy∑
i=1

C/d

(1 + λ
d )i

Where F := the Face Value, C := Annual Coupon Payment, d := the number of times compounding
happens per year, λ := the Yield To Maturity.

Since the right hand side of our equation is analogous to an example of a fixed income annuity, we
make use of section 1.2’s findings to yield:

By,d = F

(1 + λ
d )dy

+ C
λ
dd

(
1− 1

(1 + λ
d )dy

)
=
(
F + C

λ

[(
1 + λ

d

)dy
− 1
])(

1 + λ

d

)−dy
1.3.2 Continuous Pricing

We simply take the limit as d→∞, and by the same derivation of V̂1,m, where y = m and λ̂ = r:

B̂y := lim
d→∞

By,d = lim
d→∞

(
F

(1 + λ̂
d )dy

+ C
λ̂
dd

[
1− 1

(1 + λ̂
d )dy

])
= Fe−λ̂y + C

λ̂

(
1− e−λ̂y

)

1.3.3 T-Bills

In the context of government issued bonds (T-Bills), the industry defines the spot rate as what we
already saw to be λ given the T-Bill is a zero-coupon bond (C = 0). If this is the case, then:

By,d = F

(1 + λ
d )dy

⇐⇒ λ = d

[(
F

By,d

) 1
dy

− 1
]

And if our T-Bill is compounded continuously:

B̂y = Fe−λ̂y ⇐⇒ λ̂ =
log
(
F
B̂y

)
y

We have now just about developed the necessary tools to be able to devise an algorithm for calcu-
lating the yield curve (a plot of spot rates). This algorithm is called “bootstrapping”. But before
we introduce it, we need to define “Forward Rates”.
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1.3.4 Forward Rates

In the context of zero coupon bonds, given Vy,d and Vx,d (x < y) one can easily derive an implied
spot rate for any zero coupon bond from the future time x to y. This is called the forward rate from
x to y, which we will denote λ(y−x). Due a no-arbitrage market, we get the equation:

By,d = F

(
1 + λy

d

)−dy
= F

(
1 + λx

d

)−dx(
1 +

λ(y−x)

d

)−d(y−x)

And solving for λ(y−x):

λ(y−x) = d

([(
1 + λy

d

)−dy(
1 + λx

d

)dx] 1
d(x−y)

− 1
)

If we plug in our implied λx and λy from 1.3.3, then:

λ(y−x) = d

([((
F

By,d

) 1
dy
)−dy(

F

Bx,d

) 1
dx
)dx] 1

d(x−y)

− 1
)

= d

[(
By,d
Bx,d

) 1
d(x−y)

− 1
]

And by similar derivation, if our bonds were being continuously compounded:

λ̂(y−x) = yλ̂y − xλ̂x
y − x

And if x = αy, α ∈ (0, 1), then:

λ̂(1−α)y = λ̂y − αλ̂αy
1− α

If we plug in our implied λ̂αy and λ̂y from section 1.3.3, then:

λ̂(1−α)y =
log
( B̂αy
B̂y

)
y(1− α)

1.3.5 Bootstrapping

“Bootstrapping” is an algorithm for determining the spot rates for a given set of coupon bearing
bonds. This algorithm is defined as follows:

Given a bond which pays coupons every d times a year, we would like to solve for r1, r2, . . . , rd, . . . , rdy
(the first d · y spot rates). We do this by first obtaining rk, k < i, then inputting this to solve with
these values for ri, i.e in our continuous time model:

ri =
− log

(
P (0,i)−

∑
0<k<i

Cie
−k·rk

Ci+Vi

)
i
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2 Options
2.1 Definitions
An option is a contract which gives the holder the ability to exercise a payoff function f(a) (a is a
vector of assets) within some time period T ⊂ R+. We denote a generic option as O(f, T ). We now
state the following classical definitions:

a) Callable Option: an option O(f, T ) where f(a) = max(at −K, 0) and where at is a’s price
at time t ∈ T , and K is a “strike price”. For simplicity of notation, we refer to this a callable
option as C.

b) Puttable Option: an option O(f, T ) where f(a) = max(K − at, 0) and where at and K is
as above. For simplicity of notation, we refer to this a puttable option as P .

c) American Option: an option O(f, T ) where T = {t | 0 ≤ t ≤ T , T 6= 0}

d) European Option: an option O(f, T ) where T = t ∈ R+

2.2 Arbitrage Pricing

Theorem. 2.1: The Put Call Parity

Let C denote the price of a callable European option at t = 0, and P denote the price of a
puttable European option at t = 0, both with the same strike price K and TC = TP = T ,
then:

C − P = a0 −
K

(1 + r)T

Proof. We know the payoff for C and P will be max(aT −K, 0) and max(K−aT , 0). If we construct
an option O(f, T ) = C − P , the payoff will be:

f(a) = max(aT −K, 0)−max(K − aT , 0)
= max(aT −K, 0) + min(aT −K, 0)
= aT −K

Therefore, if we discount our payoff of O(f, T ) back to t = 0, we see that C − P = a0 − K
(1+r)T .

Corollary. 2.1: Bounds for Option Pricing*** (Working)

1. C ≥ a0 − K
(1+r)T and C ≤ a0

9



2.3 A Review of Probability Spaces

Definition. 2.1: Probability Space

A Probability Space is a measure space such that the measure over the entire space is equal
to 1. More explicitly, a Probability Space is a triple,

(
Ω, X,P

)
, consisting of:

1. A non-empty sample space, denoted Ω, (the set of all possible outcomes).

2. The power set of Ω, denoted X = P(Ω), called events, such that:

(a) Ω ∈ X
(b) If x ∈ X, then (Ω\x) = xc ∈ X
(c) If x1,x2, · · · ∈ X, then ∪∞i=1xi ∈ X

3. A probability measure, P : X → [0, 1] such that:

(a) P(X ∈ Ω) = 1
(b) If {xi}∞i=1 ⊆ X and xi ∩ xj = ∅ ∀i, j ∈ N, i 6= j, then P(X ∈ {xi}∞i=1) =∑∞

i=1 P(X ∈ xi)

Some examples are:

1. The Binomial Distribution B(n, p):

(
N = {0, 1, . . . , n} , X = {[k, l] : 0 ≤ k ≤ l ≤ n, } , P

(
X ∈ [k, l]

)
=

blc∑
i=dke

(
n

i

)
pi(1− p)n−i

)

2. The Uniform Distribution U(α, β):(
[α, β] , X = {(x, y) : α < x ≤ y < β} , P

(
X ∈ (x, y)

)
= y − x
β − α

)

3. The Normal Distribution N(µ, σ):(
R , X = {(x, y) : −∞ < x ≤ y <∞} , P

(
X ∈ (x, y)

)
=
∫ y

x

1
σ
√

2π
e−

1
2

(
(z−µ)
σ

)2

dz

)

2.4 Binomial Pricing
2.4.1 2 States, 1 Period, No Interest

We first consider the simplest of options: An option O(f, T ), where T = 1;

f(a) =
{
u where P(u) = p

d where P(d) = 1− p

10



And V = E(O) = p · u+ (1− p) · d.

As an example, consider V = 1, u = 2, d = .5, (V denotes the value of the option at t = 0. we can
find P(u) = p from the formula:

p = E(O)− d
u− d

= 1− .5
2− .5 = 1

3

2.4.2 2 States, 1 Period, With Interest

We now extend our above description to include interest. We consider the same set up for O(f, T )
as above, except now: (1 + r)V = E(O) = p · u + (1 − p) · d, or in the continuous time setting,
er · V = E(O) = p · u+ (1− p) · d.

As an example, consider V = 1, u = 2, d = .5, r = .1, we can find P(u) = p from the formula:

p = V (1 + r)− d
u− d

= 1(1 + .1)− .5
2− .5 = 2

5

2.4.3 4 States, 2 Periods, No Interest (Working Example)

We now consider an option O(f, T ), where T = 2;

f(a) =


uu where P(uu) = P(u) · P(u) = p2

ud where P(ud) = P(u) · P(d) = p(1− p)
du where P(du) = P(d) · P(u) = (1− p)p
dd where P(dd) = P(d) · P(d) = (1− p)2

And E(O) = p · u+ (1− p) · d.

As an example, consider V = 1, uu = 4, ud = du = 1, d = .25. We can find P(u) = p from the
formula:

p =
2(dd− ud) + 2

√
(ud− dd)2 − (uu− 2ud+ dd)(dd− V )

uu− 2ud+ dd
= −2

3 + 4
3 = 2

3 or 1
3?

2.5 General Calls and Puts Without Interest
Assume our option O(f, T ) may either go up or down by 100 · α% (α ∈ (0, 1)), and is originally
priced at S0 = 1. Then a Put without interest will be valued by:

VPut = max
0≤t≤T

( bt/2c∑
j=0

(
t

j

)(
1− (1− α)t−j(α)j

2t

))
And similarly for a Call:

VCall = max
0≤t≤T

(
t∑

j=dt/2e

(
t

j

)(
(1− α)t−j(α)j − 1

2t

))

11



2.6 General Calls and Puts With Interest
If we add (continuous) interest to our above equations, we get:

VPut = max
0≤t≤T

( be−rtt/2c∑
j=0

(
t

j

)(
1− e−rt(1− α)t−j(α)j

2t

))
And similarly for a Call:

VCall = max
0≤t≤T

(
t∑

j=de−rtt/2e

(
t

j

)(
e−rt(1− α)t−j(α)j − 1

2t

))

2.7 Brownian Motion
Definition. 2.2: Brownian Motion

Brownian Motion is a process {Bt}t≥0 s.t such that Bt : R+ → R, Bt ∈ C(R+), and:

1. Bt ∼ N(0, t)

2. If 0 ≤ t1 ≤ s1 ≤ t2 ≤ · · · ≤ tk ≤ sk, then Bsi −Bti ∼ N(0, si − ti) and {Bsi −Bti}ki=1
are all independent.

3. Cov(Bs, Bt) = min(s, t)

Example. 2.1: Variance of The Product of a Brownian Motion

Let {Bt}t≥0 and {Bs}s≥0 be Brownian motion. Find an explicit formula for Var(BsBt)

Answer: Assume that 0 ≤ t ≤ s, then:

Var(BsBt) = E
[
(BsBt)2]− [E(BsBt)

]2
= E

(
(Bt(Bs −Bt +Bt))2)− (E(Bt(Bs −Bt +Bt))

)2

= E
(
(Bt)2(Bs −Bt)2 + 2Bt(Bs −Bt) + (Bt)4)− (E(Bt(Bs −Bt)) + E((Bt)2)

)2

= E
(
(Bt)2)E((Bs −Bt)2)+ 2E

(
Bt
)
E
(
(Bs −Bt)

)
+ E

(
(Bt)4)

−
(
E(Bt)E(Bs −Bt) + E((Bt)2)

)2

= t(s− t) + 2(0)(0) + t2 −
(
(0)(0) + (t)

)2

= t · (t+ s)

And this implies (if we only assume s, t ≥ 0):

Var(BsBt) = min(s, t) · (s+ t)

12



Corollary. 2.2: Diffusion Equations

Suppose Xt = x0 +µt+σBt where {Bt}t≥0 is Brownian Motion. Then Xt ∼ N(x0 +µt, σ2t),
and Cov(Xt, Xs) = σ2 min(s, t). We write this as dXt = µdt + σdBt, where µ := “drift”,
σ := “volatility”, and σ ≥ 0.

Proof.
E(Xt) = E(x0 + µt+ σBt) = E(x0) + µE(t) + σE(Bt) = x0 + µt

Var(Xt) = Var(x0 + µt+ σBt) = σ2Var(Bt) = σ2t

Cov(Xs, Xt) = E((Xt − µt− x0)(Xs − µt− x0)) = E(σ2BtBs) = σ2E(BtBs) = σ2 min(s, t)

Example. 2.2:

Let {Bt}t≥0 be Brownian motion. Compute Var(B5B8). [Necessary Lemma: If Z ∼
Normal(0, 1), then E(Z) = E(Z3) = 0, E(Z2) = 1, and E(Z4) = 3.]

Answer: We first solve the general case below for Bs and Bt (and assume 0 ≤ t ≤ s):

Var(BsBt) = E
[
(BsBt)2]− [E(BsBt)

]2
= E

(
(Bt(Bs −Bt +Bt))2)− (E(Bt(Bs −Bt +Bt))

)2

= E
(
(Bt)2(Bs −Bt)2 + 2(Bt)3(Bs −Bt) + (Bt)4)− (E(Bt(Bs −Bt)) + E((Bt)2)

)2

= E
(
(Bt)2)E((Bs −Bt)2)+ 2E

(
(Bt)3)E((Bs −Bt))+ E

(
(Bt)4)

−
(
E(Bt)E(Bs −Bt) + E((Bt)2)

)2

= t(s− t) + 2(0)(0) + 3t2 −
(
(0)(0) + (t)

)2

= t · (t+ s)

And this implies (if we only assume s, t ≥ 0):

Var(BsBt) = min(s, t) · (s+ t)

Therefore, we have here that:

Var(B5B8) = min(5, 8) · (8 + 5) = 65

2.8 Martingales

Definition. 2.3: Martingale

A sequence {Xn}∞n=0 of random variables is a martingale if E|Xn| < ∞ ∀n ∈ N ∪ {0}, and
also E(Xn+1|X0, . . . , Xn) = Xn. I.e., Xn’s average is constant ∀n. Furthermore, if a Markov
Chain has the property that:

∑
j∈S jpij = i ∀i ∈ S =⇒ it is a martingale.

13



Example. 2.3: (Unmotivated*)

Prove that the Markov chain defined by the graph, (V,w(V )), is martingale, where:

V = Z, and w(i, j) =
{

1 if 0 < |i− j| ≤ n
0 otherwise

*skip to next example if unfamiliar with Markov Chains or Basic Graph Theory

Proof. We check that
∑
j∈S j · pij = i ∀i ∈ S (also note that d(i) =

∑
i∈Z w(i, j) = 2n) :

∑
j∈S

j · pij =
∑
j∈Z

j ·
(
1(0<|i−j|≤n)

1
2n

)

=
∑

j∈{i±k,0<k≤n}

j ·
(

1
2n

)

=
n∑
k=1

2(i± k)
(

1
2n

)

= 1
n

n∑
k=1

i+
n∑
k=1

k

n
−

n∑
k=1

k

n

= i

Example. 2.4:

Let {Bt}t≥0 be Brownian motion. Let θ ∈ R, and let Zt = exp(θBt − 1
2θ

2t). Prove that
{Zt}t≥0 is a martingale. [Necessary Lemma: If W ∼ Normal(µ, σ2) and a ∈ R, then E[eaW ] =
eµa+σ2a2/2 <∞.]

Proof. Firstly, since we may use the fact that if W ∼ Normal(µ, σ2), then E[eaW ] = eµa+σ2a2/2 =⇒
if W ∼ N(µt, σ2t) then:

E[eaW ] = eµat+
1
2σ

2a2t (13)

Next, we note that {Zt}t≥0 is non-anticipating since {Bt}t≥0 is non-anticipating.
Furthermore, we can see that E|Zn| = 1 <∞ since:

E
[
Zt
]

= E
[
eθBt−

1
2 θ

2t
]

= E
[
eθBte−

1
2 θ

2t
]

= e−
1
2 θ

2tE
[
eθBt

]
= e−

1
2 θ

2t
[
e0+ 1

2 (1)2(θ)2t
]

since Bt ∼ Normal(0, t) and by Eq.(1) above
= 1

14



Let us define ∆Bt+h := Bt+h −Bt, then:

E[Zt+h|Zt] = E
[
Zt+h

(Zt
Zt

)∣∣∣Zt]
= E

[
Zt

(Zt+h
Zt

)∣∣∣Zt]
= E

[
e

(
θBt− 1

2 θ
2t
)(
e

[(
θBt+h− 1

2 θ
2(t+h)

)
−
(
θBt− 1

2 θ
2t
)])∣∣∣Zt]

= E
[
e

(
θBt− 1

2 θ
2t
)(
e

(
θ(Bt+h−Bt)− 1

2 θ
2h
))∣∣∣Zt]

= E
[
e

(
θBt− 1

2 θ
2t
)∣∣∣Zt] · E[e(θ(Bt+h−Bt)− 1

2 θ
2h
)]

since Bt indep. of Bt+h −Bt

= e

(
θBt− 1

2 θ
2t
)
· E
[
e

(
θ(Bt+h−Bt)− 1

2 θ
2h
)]

since Bt is non-anticipating

= Zt · e−
1
2 θ

2hE
[
eθ(Bt+h−Bt)

]
since e− 1

2 θ
2h is constant

= Zt · e−
1
2 θ

2he0+ 1
2 (1)2θ2h since Bt+h −Bt ∼ N(0, h)

= Zt and Eq. (13)

And hence we have now shown all three necessary properties for a random variable to be martingale.

2.9 Deriving the Black-Scholes Formula

Theorem. 2.2: Black-Scholes Formula

Let {Bt}t≥0 be Brownian motion. Additionally, let Xt := x0 exp(µt+σBt) be our stock price
model (where σ > 0), and let Dt = e−rtXt be the discounted stock price. Then we have the
following two results:

(a) If µ = r − σ2

2 , then {Dt} is a martingale. [Necessary Lemma: Example 2.4]

(b) If µ = r − σ2

2 , then:

E
[
e−rS max(0, XS −K)

]
= X0Φ

(
(r + σ2

2 )S − log(K/X0)
σ
√
S

)

− e−rSKΦ
(

(r − σ2

2 )S − log(K/X0)
σ
√
S

)

where Φ(u) =
∫ u
−∞

1√
2π e
−v2/2dv is the cdf of a standard normal distribution.

This is the famous “Black-Scholes Formula”.

Proof.

(a) We first simplify Dt if µ = r − σ2

2 :

Dt := e−rtx0e
µt+σBt = x0e

−rt+(r−σ2
2 )t+σBt = x0e

σBt− 1
2σ

2t
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And since Dt = x0Zt where Zt := exp(θBt− 1
2θ

2t), θ ∈ R. We thus must leverage the previous
question to prove that Dt = x0Zt is martingale. Dt being non-anticipating and having E|Dt| <
∞ follow trivially since (respectively) {Bt}t≥0 is non-anticipating and E[Dt] = x0E[Zt] = x0.
The fact that E[Dt+h|Dt] = Dt follows also pretty trivially since when referencing the previous
question, we can see: E[Dt+h|Dt] = x0[Zt+h|Zt] = x0Zt = Dt. Thus, we have now shown all
three necessary properties for this random variable to be martingale.

(b) Answer: Our strategy will be as follows: We first write the expectation as an integral with
respect to the density function for BS . Then, break up the integral into the part where
XS −K ≥ 0 and the part where XS −K < 0.

To begin, we recall that Bt ∼ Normal(0, t), hence if we let Bt =
√
tY , then we have:

Xt = x0 exp
(
µt+ σBt

)
= x0 exp

(
µt+ σ

√
tY
)
, where Y ∼ Normal(0, 1)

We can now do this (quite lengthily) computation directly:

E
[
e−rt max(0, XS −K)

]
= e−rtE

[
max(0, XS −K)

]
= e−rt

∫ ∞
−∞

max
(
0, x0e

µt+σ
√
ty −K

) 1√
2π
e−y

2/2dy

Now, we note that:

max
(
0, x0e

µt+σ
√
ty −K

)
=
{
x0e

µt+σ
√
ty −K if y > log(K/x0)−µt

σ
√
t

0 if y ≤ log(K/x0)−µt
σ
√
t

And hence we may proceed in the following fashion (also let z := log(K/x0)−µt
σ
√
t

):

E
[
e−rt max(0, XS −K)

]
= e−rt

∫ ∞
−∞

max
(
0, x0e

µt+σ
√
ty −K

) 1√
2π
e−y

2/2dy

= e−rt
∫ z

−∞
(0) 1√

2π
e−y

2/2dy

+ e−rt
∫ ∞
z

(
x0e

µt+σ
√
ty −K

)
1√
2π
e−y

2/2dy

=
(
e−rtx0

∫ ∞
z

(
eµt+σ

√
ty

)
1√
2π
e−y

2/2dy

)
−

(
e−rtK

∫ ∞
z

1√
2π
e−y

2/2dy

)

=
(
e−rtx0

∫ ∞
z

1√
2π
eµt+σ

√
ty−y2/2dy

)
−
(

(e−rtK
(
1− Φ(z)

))
Next, we need to perform a little bit of algebra on the argument of eµt+σ

√
ty−y2/2 as follows:

µt+ σ
√
ty − y2

2 = µt+ σ
√
ty − y2

2 −
σ2t

2 + σ2t

2

=
(
µ+ 1

2σ
2
)
t−

( (y − σ
√
t)2

2

)
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And hence we may proceed with our calculations:

E
[
e−rt max(0, XS −K)

]
=
(
e−rtx0

∫ ∞
z

1√
2π
eµt+σ

√
ty−y2/2dy

)
−
(

(e−rtK
(
1− Φ(z)

))
=
(
e−rtx0

∫ ∞
z

1√
2π
e

(
µ+ 1

2σ
2
)
t−
(

(y−σ
√
t)2

2

)
dy

)
−
(

(e−rtK
(
1− Φ(z)

))
=
(
e−rt+

(
µ+ 1

2σ
2
)
tx0

∫ ∞
z

1√
2π
e−

1
2 (y−σ

√
t)2)dy

)
−
(

(e−rtK
(
1− Φ(z)

))

Now we can substitute µ = r − 1
2σ

2:

E
[
e−rt max(0, XS −K)

]
=
(
e−rt+rt(−

1
2σ

2+ 1
2σ

2)tx0

∫ ∞
z

1√
2π
e−

1
2 (y−σ

√
t)2)dy

)
−
(

(e−rtK
(
1− Φ(z)

))
=
(
x0

∫ ∞
z

1√
2π
e−

1
2 (y−σ

√
t)2)dy

)
−
(

(e−rtK
(
1− Φ(z)

))
We can make the change of variables x = y − σ

√
t ( =⇒ dx = dy), and hence:

E
[
e−rt max(0, XS −K)

]
=
(
x0

∫ ∞
z−σ
√
t

1√
2π
e−

1
2x

2
dx

)
−
(

(e−rtK
(
1− Φ(z)

))
=
(
x0
(
1− Φ(z − σ

√
t)
))
−
(

(e−rtK
(
1− Φ(z)

))
= x0Φ(σ

√
t− z)− e−rtKΦ(−z)

= x0Φ
(
σ
√
t− log(K/x0)− µt

σ
√
t

)
− e−rtKΦ

(
− log(K/x0)− µt

σ
√
t

)
= x0Φ

(
σ2t+ µt− log(K/x0)

σ
√
t

)
− e−rtKΦ

(
µt− log(K/x0)

σ
√
t

)

And substituting in µ = r − 1
2σ

2 again, we can see:

E
[
e−rt max(0, XS −K)

]
= x0Φ

(
σ2t+

(
r − 1

2σ
2)t− log(K/x0)
σ
√
t

)
− e−rtKΦ

((
r − 1

2σ
2)t− log(K/x0)
σ
√
t

)
= x0Φ

((
r + 1

2σ
2)t− log(K/x0)
σ
√
t

)
− e−rtKΦ

((
r − 1

2σ
2)t− log(K/x0)
σ
√
t

)
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3 Credit Risk
Forthcoming...
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Part II

Classical Examples
4 Examples: Previous APM466 Midterms
4.1 2010

Example. 4.1: 2010 Midterm

1. A stock is valued at $75 today. An option will pay $1 the first time the stock reaches
$100 in value, which it is assumed will happen with probability 1 at some point in the
future. Find the price of the option, and the replicating portfolio.

2. A stock is valued at $1 today. In a year, its price S1 can be worth either $2 or $0.50.
A convertible bond will pay max(1, S1), a year from now. Assuming 0 interest rates,
calculate the current price of the convertible bond.

3. With interest rates equal to 0, two different stocks S1 and S2, both valued at $1 today,
can be worth $2 or $0.50 at some point in the future. If the option that pays $1 when
both S1 = S2 = $2 is traded in the market and is worth $0.125, calculate the price and
replicating portfolio of the option that pays $1 when S1 = $2 but S2 = $0.5. (You can
leave the answer expressed in matricial form if you prefer).

Answers:

1. We note that Vstock := V = 75, and since P(ST = 100) = 1 =⇒ erT 75 = 100 ⇐⇒ rT =
log
( 100

75
)
. This implies that: Vbond = e−rT · P(ST = 100) · 1 = 75

100

2. By computing P(S1 = $2), we can easily price the bond. We recall the formula P(u) = V−d
u−d

from section 2.4.1, which =⇒ p = 1−.5
2−.5 = 1

3 . Therefore, Vbond = E(bond) = 2p + 1(1 − p) =
2 1

3 + 2
3 = 4

3 .

3. Let θ(x) denote the payoff of assets 1, . . . , n conditional on the state x being realized, i.e;
D(ωi) =

(
µ(a1|ωi), . . . , µ(an|ωi)

)
where µ : a × X → R. Also, let Θ denote an arbitrary

weighting of the assets 1, . . . , n. We thus compute:

D(ωi) =
(
µ(S1|ωi), µ(S2|ωi), µ(B|ωi), µ(O1|ωi)

)
=⇒ D(uu) = (2, 2, 1, 1)

D(ud) = (2, 1/2, 1, 0)
D(du) = (1/2, 2, 1, 0)
D(dd) = (1/2, 1/2, 1, 0)

Therefore, if we solve for Θ in the following equation:
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
2 2 1 1
2 1/2 1 0

1/2 2 1 0
1/2 1/2 1 0

Θ =


0
1
0
0


We can conclude that if q denotes a vector of length n of the prices of each asset, then the
price of O2 will be: Θ · q.
To solve the above system of linear equations, we can either solve for the matrix (let us call
it D) inverse, D−1, which will give us a general method for determining Θ(Oi)∀i, or we can
transform the matrix [D|b] to it’s reduced row echelon form to solve just for Θ(O2). If we solve
for D−1, we see that:

Θ = D−1


0
1
0
0

 =
(

1
3

)
0 2 0 −2
0 0 2 −2
0 −1 −1 5
3 −3 −3 3




0
1
0
0

 =
(

1
3

)
2
0
−1
−3


Which implies that price of O2 is Θ · (1, 1, 1, 0.125) = 5

24 .
If we had solved the problem by performing row reductions to the matrix [D|b], then we see
again that:

DΘ = b ⇐⇒


2 2 1 1 0
2 1/2 1 0 1

1/2 2 1 0 0
1/2 1/2 1 0 0

 ∼


1 0 0 0 2/3
0 1 0 0 0
0 0 1 0 −1/3
0 0 0 1 −1


Which implies the same value for Θ as was in the D−1 case, and hence we also see that the
price of O2 is 5

24 .
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4.2 2012
Example. 4.2: 2012 Midterm

1. A market has two stocks, IBB and IMM; IBB is worth $1.25 today, and after one year
it can be worth either $2 or $0.5. IMM can also be worth either $2 or $0.5 in a year,
but we do not know its price today.

We do know, however, that the option that pays $1 when both IBB and IMM go up in
price (and 0 otherwise) is worth $0.3, and the option that is pays $1 when both IBB
and IMM go down (and 0 otherwise) is worth $0.2. Money can be borrowed at 0% per
year using a bond.
Find:

(a) The price of IMM today.
(b) The risk neutral joint probabilities for the stock price outcomes.
(c) The correlation between the two stock prices using the risk neutral measure.

2. With interest rates equal to 0% per quarter, a stock S valued at $1 today can go up or
down in price by 10% each quarter.

(a) Calculate the arbitrage-free price of an American put option with strike $1 ma-
turing 9 months from now.

(b) Determine the values of S and t that will trigger such option to be exercised by
the holder before maturity.

Numerical answers can be rounded to the nearest cent. Algebraic expressions are valid
answers if given in explicit form (i.e. numerical calculations are optional, but recom-
mended).

Answers:

1. Let θ(x) denote the payoff of assets 1, . . . , n conditional on the state x being realized, i.e;
θ(x) =

(
µ(a1|x), . . . , µ(an|x)

)
where µ : a×X → R. Also, let Θ denote an arbitrary weighting

of the assets 1, . . . , n. We thus compute:

θ(x) =
(
µ(S1|x), µ(B|x), µ(O1|x), µ(O2|x)

)
=⇒ θ(du) = (1/2, 1, 0, 0)

θ(ud) = (2, 1, 0, 0)
θ(uu) = (2, 1, 1, 0)
θ(dd) = (1/2, 1, 0, 1)

Therefore, if we solve for Θ in the following equation:
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
1/2 1 0 0
2 1 0 0
2 1 1 0

1/2 1 0 1

Θ =


2

1/2
2

1/2


We can conclude that if q denotes a vector of length n of the prices of each asset, then the
price of O2 will be: Θ · q.
To solve the above system of linear equations, we can either solve for the matrix (let us call
it D) inverse, D−1, which will give us a general method for determining Θ(Oi)∀i, or we can
transform the matrix [D|b] to it’s reduced row echelon form to solve just for Θ(O2). If we solve
for D−1, we see that:

Θ = D−1


2

1/2
2

1/2

 =
(

1
3

)
−2 2 0 0
4 −1 0 0
0 −3 3 0
−3 0 0 3




2
1/2
2

1/2

 =


−1
5/2
3/2
−3/2


Which implies that price of O2 is Θ · (1.25, 1, 0.3, 0.2) = 1.4.
If we had solved the problem by performing row reductions to the matrix [D|b], then we see
again that:

DΘ = b ⇐⇒


1/2 1 0 0 2
2 1 0 0 1/2
2 1 1 0 2

1/2 1 0 1 1/2

 ∼


1 0 0 0 −1
0 1 0 0 5/2
0 0 1 0 3/2
0 0 0 1 −3/2


Which implies the same value for Θ as was in the D−1 case, and hence we also see that the
price of O2 is 1.4.

2. We first note that: P(S1 = x, S2 = y, S3 = z|S0 = 1) =
( 1

2
)3 since p = 1

2 at any given node
(quarter), and independence. Next, we compute:

pddd = (.9)3 = 0.729 pddu = pdud = pudd = (.9)2(1.1) = 0.891
puuu = (1.1)3 = 1.331 puud = pudu = pduu = (1.1)2(.9) = 1.089

Now, we recall from our definition of a puttable option, that f(aT ) = max(K − aT , 0), and
hence we arrive at the formula of

V (t = 3) = 1
8(1− 0.729) + 3

8(1− 0.891) = 0.07475 = 299
4000

However, before we finish, we must check that our Put is not more valuable at t < T = 3. For
t = 2, we get that:

pdd = (.9)2 = 0.81 pdu = pud = (.9)(1.1) = 0.99 puu = (1.1)2 = 1.21

And hence the valuation here would be:
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V (t = 2) = 1
4(1− 0.81) + 1

2(1− 0.99) = 0.0525 = 210
4000 <

299
4000

And similarly for V (t = 1):

V (t = 1) = 1
2(1− 0.9) = 0.05 = 200

4000 <
299
4000

By induction, one can see that ∀t ∈ N, V (t < T ) < V (t = T ) (i.e., V (i) = 1
20 <

21
400 <

299
4000 <12557

160000 < · · · ). Also by induction, one can find the formula for any n ∈ N:

V (t = n) =
bn/2c∑
j=0

(
n

j

)((1− (0.9)n−j(1.1)j
)

2n

)
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Part III

Applications
5 Calculating the Yield Curve
Overview
We follow Canadian Government Bonds for a two-week period (January 9-20, 2017), and calculate
the yield curve for each day. We compute the yield curves for each day using 10 unique bonds in the
context of three different models. Next, we calculate the forward curves and implied forward rates.
Finally, we take three time series of interest and compute their respective covariance matrices, and
the eigenvalues and eigenvectors associated with said matrices.

Preface:
Our methodology for this assignment goes as follows:

• We begin by computing the main questions under the assumptions of continuous pricing, i.e.,

P (t, T ) =
T∑
i=1

CT e
−ri·(i−t) + VT e

−rT ·(T−t)

Where P (t, T ) is price, CT is a coupon, VT is the value of the bond (i.e., here $100), and ri is
the interest rate of a (0, i) bond.

• We then generalize to the more accurate pricing model given the data observed, the discrete
case of pricing, i.e.,

PT =
T∑
i=1

CT
(1 + ri)i

+ VT
(1 + rT )T

Where the notation is the same as above.

• We then apply the Nelson-Siegel Model to derive a much nicer version of our yield and forward
curves. The N-S model is described as follows:

y (m) = β0 + β1
[1− exp (−m/τ)]

m/τ
+ β2

(
[1− exp (−m/τ)]

m/τ
− exp (−m/τ)

)
where y (m) and m are yield and maturity respectively, and β0, β1, β2 and τ , are parameters
to be fitted via a least-squares. Explicitly:

– β0 is interpreted as the long run levels of interest rates (the loading is 1, it is a constant
that does not decay)

– β1 is the short-term component (it starts at 1, and decays monotonically and quickly to
0);

– β2 is the medium-term component (it starts at 0, increases, then decays to zero);
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– τ is the decay factor: small values produce slow decay and can better fit the curve at long
maturities, while large values produce fast decay and can better fit the curve at short
maturities; τ also governs where β2 achieves its maximum.

For a complete history of the evolution of the code used, please visit my GitHub at:

https://github.com/jmostovoy/Mathematical_Finance
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5.1 The Yield and Forward Curves
We begin by importing our bond data and transform it a little for ease of use. We now have
either 44 or 43 data points for each date. Next, we create a function which automatically selects
the bond associated to the closest date to d + i, where the date, d ∈ {2017-01-09, . . . , 2017-01-20}
\{2017-01-14, 2017-01-15} and i = 1/2y, 1y, . . . , 5y (y = years). This yields the bonds to be used as:

Bd+1/2y
...

Bd+5y

 =



2017-08-01
2018-02-01
2018-08-01
2019-02-01
2019-09-01
2020-03-01
2020-09-01
2021-03-01
2021-09-01
2022-03-01


∀i

We then proceed to calculate the yield curves through “bootstrapping”, which is an algorithm defined
as follows:

1. Given d, First find r1/2 := the yield rate on a zero coupon 6 month Government of Canada
Bond. As an example, for the continuous pricing model, we do this by inputting values into
the formula:

r1/2 =
− log

(
P (0,1/2)
C1/2+V1/2

)
1/2

As an explicit example, for d =2017-01-09, this is evaluated as:

r1/2 =
− log

(
100.38

1.25/2+100

)
1/2 ≈ 0.4876%

2. Next, we recursively solve for r1, r3/2, . . . , r5 by first obtaining rk, k < i, then inputting this
to solve with these values for ri, i.e.:

ri =
− log

(
P (0,i)−

∑
0<k<i

Cie
−k·rk

Ci+Vi

)
i

Please reference page 6, for a thorough explanation on how we derived the “Classical (Implied)
Forward Rates (in %)”. Thus, after performing the described (in Question 1) “bootstrapping”, we
report the results:
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5.1.1 Under Continuous Assumptions

Yield Rates (in %)
Date r1/2 r1 r3/2 r2 r5/2 r3 r7/2 r4 r9/2 r5
2017-01-09 0.488 0.585 0.746 0.763 0.766 0.904 0.999 1.080 1.121 1.213
2017-01-10 0.488 0.585 0.733 0.764 0.768 0.887 0.991 1.062 1.096 1.188
2017-01-11 0.488 0.595 0.733 0.769 0.764 0.887 0.982 1.049 1.087 1.171
2017-01-12 0.507 0.595 0.726 0.769 0.760 0.880 0.979 1.041 1.075 1.152
2017-01-13 0.507 0.605 0.739 0.795 0.788 0.907 1.020 1.087 1.121 1.202
2017-01-16 0.527 0.615 0.739 0.790 0.788 0.907 1.002 1.066 1.105 1.179
2017-01-17 0.507 0.605 0.726 0.774 0.768 0.887 0.982 1.048 1.082 1.160
2017-01-18 0.507 0.595 0.713 0.759 0.760 0.884 0.996 1.062 1.098 1.177
2017-01-19 0.507 0.595 0.713 0.759 0.760 0.884 0.996 1.062 1.098 1.177
2017-01-20 0.527 0.605 0.713 0.764 0.788 0.904 1.011 1.077 1.126 1.198
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Cont. Yield Curve for 2017−01−09
Cont. Yield Curve for 2017−01−10
Cont. Yield Curve for 2017−01−11
Cont. Yield Curve for 2017−01−12
Cont. Yield Curve for 2017−01−13
Cont. Yield Curve for 2017−01−16
Cont. Yield Curve for 2017−01−17
Cont. Yield Curve for 2017−01−18
Cont. Yield Curve for 2017−01−19
Cont. Yield Curve for 2017−01−20
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Forward Curve for 2017−01−11
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Forward Curve for 2017−01−13
Forward Curve for 2017−01−16
Forward Curve for 2017−01−17
Forward Curve for 2017−01−18
Forward Curve for 2017−01−19
Forward Curve for 2017−01−20
Approx. Mean Frwd Curve

Classical (Implied) Forward Rates (in %)
Date f12 f13 f14 f15 f23 f24 f25 f34 f35 f45
2017-01-09 0.975 1.063 1.245 1.370 1.152 1.380 1.503 1.609 1.678 1.748
2017-01-10 0.944 1.038 1.221 1.339 1.133 1.360 1.471 1.587 1.640 1.694
2017-01-11 0.944 1.033 1.200 1.315 1.122 1.328 1.439 1.535 1.598 1.661
2017-01-12 0.944 1.023 1.190 1.292 1.102 1.313 1.408 1.524 1.561 1.597
2017-01-13 0.985 1.058 1.248 1.352 1.131 1.380 1.474 1.630 1.647 1.663
2017-01-16 0.965 1.053 1.217 1.320 1.141 1.344 1.439 1.547 1.589 1.630
2017-01-17 0.944 1.028 1.197 1.299 1.112 1.323 1.418 1.535 1.572 1.608
2017-01-18 0.924 1.028 1.218 1.323 1.133 1.365 1.457 1.597 1.619 1.640
2017-01-19 0.924 1.028 1.218 1.323 1.133 1.365 1.457 1.597 1.619 1.640
2017-01-20 0.924 1.053 1.235 1.347 1.183 1.390 1.488 1.598 1.641 1.684

5.1.2 Under Non-Continuous Assumptions

Yield Rates (in %)
Date r1/2 r1 r3/2 r2 r5/2 r3 r7/2 r4 r9/2 r5
2017-01-09 0.488 0.587 0.749 0.783 0.788 0.918 1.009 1.091 1.135 1.225
2017-01-10 0.488 0.587 0.736 0.768 0.780 0.901 1.000 1.073 1.110 1.199
2017-01-11 0.488 0.597 0.735 0.773 0.776 0.901 0.991 1.060 1.100 1.182
2017-01-12 0.508 0.597 0.729 0.773 0.772 0.894 0.988 1.052 1.089 1.163
2017-01-13 0.508 0.607 0.742 0.798 0.800 0.921 1.030 1.099 1.135 1.214
2017-01-16 0.528 0.617 0.742 0.793 0.800 0.921 1.012 1.078 1.119 1.191
2017-01-17 0.508 0.607 0.729 0.778 0.780 0.901 0.991 1.060 1.096 1.172
2017-01-18 0.508 0.597 0.715 0.763 0.772 0.897 1.006 1.073 1.112 1.189
2017-01-19 0.508 0.597 0.715 0.763 0.772 0.897 1.006 1.073 1.112 1.189
2017-01-20 0.528 0.607 0.715 0.768 0.801 0.918 1.021 1.089 1.140 1.210
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Classical (Implied) Forward Rates (in %)
Date f12 f13 f14 f15 f23 f24 f25 f34 f35 f45
2017-01-09 0.979 1.083 1.260 1.385 1.187 1.401 1.520 1.615 1.688 1.760
2017-01-10 0.949 1.058 1.236 1.353 1.166 1.379 1.488 1.593 1.649 1.706
2017-01-11 0.949 1.053 1.215 1.329 1.156 1.348 1.456 1.541 1.607 1.673
2017-01-12 0.949 1.042 1.205 1.305 1.136 1.333 1.424 1.530 1.569 1.609
2017-01-13 0.990 1.078 1.264 1.366 1.166 1.401 1.492 1.636 1.656 1.675
2017-01-16 0.970 1.073 1.232 1.335 1.176 1.364 1.457 1.552 1.597 1.642
2017-01-17 0.949 1.047 1.212 1.313 1.146 1.343 1.435 1.541 1.580 1.620
2017-01-18 0.929 1.048 1.232 1.337 1.167 1.385 1.474 1.603 1.628 1.652
2017-01-19 0.929 1.048 1.232 1.337 1.167 1.385 1.474 1.603 1.628 1.652
2017-01-20 0.929 1.073 1.250 1.361 1.217 1.411 1.506 1.604 1.650 1.696

5.1.3 Under Nelson-Siegel Model

We report (after using our Yield Rates from section 1.2.2 as the necessary inputs):

Yield Rates (in %)
Date r1/2 r1 r3/2 r2 r5/2 r3 r7/2 r4 r9/2 r5
2017-01-09 0.507 0.595 0.683 0.768 0.850 0.930 1.006 1.078 1.147 1.212
2017-01-10 0.506 0.591 0.676 0.758 0.838 0.915 0.988 1.058 1.125 1.188
2017-01-11 0.509 0.595 0.679 0.760 0.838 0.912 0.982 1.049 1.112 1.171
2017-01-12 0.509 0.595 0.679 0.760 0.838 0.912 0.982 1.049 1.112 1.171
2017-01-13 0.522 0.610 0.696 0.780 0.860 0.938 1.011 1.081 1.147 1.210
2017-01-16 0.540 0.621 0.701 0.779 0.855 0.928 0.998 1.065 1.128 1.187
2017-01-17 0.524 0.605 0.685 0.763 0.838 0.910 0.979 1.045 1.107 1.166
2017-01-18 0.520 0.596 0.675 0.753 0.831 0.908 0.982 1.054 1.123 1.189
2017-01-19 0.520 0.596 0.675 0.753 0.831 0.908 0.982 1.054 1.123 1.189
2017-01-20 0.534 0.609 0.686 0.765 0.844 0.923 1.000 1.074 1.146 1.215
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5.2 Covariance Matrix For Relevant Time Series
We now turn to calculating the covariance matrix of the time series of daily log-returns of yield
rates, forward rates and forward curve. Explicitly, we consider the random variable Xi, which has
a time series X(i,j) given by:

X(i,j) = log
(
r(i,j+1)

r(i,j)

)
, j ∈ J

We define our covariance matrix for the yield as follows:

Σ̂ =

σX1,X1 . . . σX1,X5
...

. . .
...

σX5,X1 . . . σX5,X5


For the forward rates, we define the implied yield rate from time î, 1 ≤ î ≤ 4 to time ĵ, î ≤ ĵ ≤ 5
as fîĵ . As such, we have 10 possibilities for îĵ, îĵ ∈ {12, 13, 14, 15, 23, 24, 25, 34, 35, 45}
Thus, the analogue for the described above time series would be Y(i,j), where j = d (as described in
Question 1) and j = îĵ. Thus, Σ̂ will now be ∈M10×10(R).
Another analogue for the forward rate time series will be the values, Zij , where i, j are analogous to
the how was described for the yield curves, except Zij is the value at ij on the forward curve. We
call these two different approaches forward1 and forward2 respectively.

5.2.1 Under Continuous Assumptions

Σ̂yield = 10−4 ·


1.8945 1.7087 1.5952 0.6403 0.6333
1.7087 2.8460 2.4633 2.4317 2.4154
1.5952 2.4633 2.8671 2.8959 3.1087
0.6403 2.4317 2.8959 4.2389 4.4687
0.6333 2.4154 3.1087 4.4687 4.8311


Σ̂forward1 =

10−4 ·



4.567 2.090 1.867 2.119 −0.391 0.511 1.299 1.418 2.148 2.879
2.090 2.182 2.490 3.024 2.274 2.690 3.337 3.108 3.871 4.634
1.867 2.490 3.867 4.528 3.114 4.871 5.420 6.635 6.579 6.523
2.119 3.024 4.528 5.832 3.931 5.738 7.076 7.553 8.657 9.762
−0.391 2.274 3.114 3.931 4.945 4.874 5.379 4.802 5.597 6.393
0.511 2.690 4.871 5.738 4.874 7.059 7.489 9.254 8.803 8.352
1.299 3.337 5.420 7.076 5.379 7.489 9.012 9.609 10.837 12.067
1.418 3.108 6.635 7.553 4.802 9.254 9.609 13.727 12.024 10.320
2.148 3.871 6.579 8.657 5.597 8.803 10.837 12.024 13.470 14.919
2.879 4.634 6.523 9.762 6.393 8.352 12.067 10.320 14.919 19.522



Σ̂forward2 =


0.015 −0.012 −0.001 0.008 −0.003
−0.012 0.023 −0.019 0.008 −0.004
−0.001 −0.019 0.031 −0.024 0.009
0.008 0.008 −0.024 0.043 −0.030
−0.003 −0.004 0.009 −0.030 0.060


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5.2.2 Under Non-Continuous Assumptions

Σ̂yield = 10−4 ·


1.9008 1.7136 1.6044 0.6508 0.6410
1.7136 2.8500 2.4649 2.4358 2.4212
1.6044 2.4649 2.8584 2.8845 3.0968
0.6508 2.4358 2.8845 4.2222 4.4579
0.6410 2.4212 3.0968 4.4579 4.8266



Σ̂forward1 = 10−4 ·



4.772 3.386 3.860 3.739 2.226 3.546 3.517 4.505 3.978 3.459
3.386 3.694 3.847 4.052 3.909 4.003 4.194 4.055 4.290 4.500
3.860 3.847 5.523 5.610 3.795 6.101 5.989 7.788 6.776 5.792
3.739 4.052 5.610 5.846 4.264 6.259 6.303 7.715 7.033 6.361
2.226 3.909 3.795 4.264 5.241 4.333 4.701 3.643 4.498 5.302
3.546 4.003 6.101 6.259 4.333 6.989 6.847 8.934 7.750 6.601
3.517 4.194 5.989 6.303 4.701 6.847 6.906 8.414 7.697 6.990
4.505 4.055 7.788 7.715 3.643 8.934 8.414 12.827 10.134 7.542
3.978 4.290 6.776 7.033 4.498 7.750 7.697 10.134 8.847 7.593
3.459 4.500 5.792 6.361 5.302 6.601 6.990 7.542 7.593 7.615


5.3 Eigenvalues and Eigenvectors
We know calculate the eigenvalues and eigenvectors of both covariance matrices.

To do so, we define our observed eigenvalues and eigenvectors respectively as:

Λ̂ =


λ1
λ2
λ3
λ4
λ5

 , Êi =


ei1
ei2
ei3
ei4
ei5


5.3.1 Under Continuous Assumptions

Λ̂yield = 10−3 ·


1.3304
0.2876
0.0409
0.0061
0.0027

 Λ̂forward1 = 10−5 ·



5588.2442
55.5107
32.5211
6.3227
0.0013
0.0002
0.0001
≈ 0
≈ 0
≈ 0


Λ̂forward2 = 10−4 ·


941.9447
432.8190
269.9097
67.0916
0.0000


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Êyield =
[
Ê1, . . . , Ê5

]
=


−0.1823 −0.6917 −0.3672 0.5799 0.1312
−0.3914 −0.4430 0.7666 −0.2002 0.1514
−0.4406 −0.2417 −0.4632 −0.6412 −0.3489
−0.5406 0.3326 0.1551 0.4609 −0.6005
−0.5720 0.3954 −0.1973 0.0105 0.6910



[
Ê1, . . . , Ê5

]
forward1 =


−0.196 0.130 0.860 0.159 0.386 0.094 0.054 −0.134 0.000 0.031
−0.212 0.390 0.245 −0.179 −0.797 −0.029 −0.022 −0.271 0.007 0.033
−0.304 −0.033 0.145 −0.201 −0.072 −0.251 0.065 0.642 0.394 −0.453
−0.315 0.058 0.023 0.076 −0.048 −0.081 −0.349 0.510 −0.589 0.393
−0.222 0.599 −0.258 −0.449 0.412 0.156 −0.246 −0.137 −0.063 −0.216
−0.341 −0.091 −0.102 −0.322 0.074 0.035 0.810 −0.013 −0.234 0.209
−0.340 0.041 −0.157 0.062 0.125 −0.223 −0.122 −0.100 0.611 0.625
−0.428 −0.604 0.012 −0.226 −0.079 0.500 −0.316 −0.183 0.038 −0.102
−0.383 −0.161 −0.121 0.249 0.077 −0.635 −0.065 −0.407 −0.241 −0.337
−0.338 0.260 −0.249 0.689 −0.073 0.438 0.188 0.092 0.076 −0.185



Êforward2 =
[
Ê1, . . . , Ê5

]
=


0.0637 −0.2707 0.6028 −0.4669 −0.5842
0.1987 0.5796 −0.4077 0.0116 −0.6769
−0.3870 −0.5550 −0.2209 0.5424 −0.4465
0.6086 0.0598 0.4439 0.6544 −0.0264
−0.6606 0.5284 0.4738 0.2437 −0.0227


5.3.2 Under Non-Continuous Assumptions

Λ̂yield = 10−3 ·


1.3289
0.2872
0.0409
0.0060
0.0027

 Λ̂forward1 = 10−5 ·



588.2442
55.5107
32.5211
6.3227
0.0013
0.0002
0.0001
≈ 0
≈ 0
≈ 0



Êyield =
[
Ê1, . . . , Ê5

]
=


−0.1841 −0.6917 −0.3678 0.5786 0.1325
−0.3927 −0.4402 0.7683 −0.1974 0.1509
−0.4401 −0.2426 −0.4611 −0.6436 −0.3472
−0.5398 0.3327 0.1514 0.4603 −0.6026
−0.5717 0.3977 −0.1972 0.0102 0.6899



[
Ê1, . . . , Ê5

]
forward1 =


−0.196 0.130 0.860 0.159 0.386 0.094 0.054 −0.134 0.000 0.031
−0.212 0.390 0.245 −0.179 −0.797 −0.029 −0.022 −0.271 0.007 0.033
−0.304 −0.033 0.145 −0.201 −0.072 −0.251 0.065 0.642 0.394 −0.453
−0.315 0.058 0.023 0.076 −0.048 −0.081 −0.349 0.510 −0.589 0.393
−0.222 0.599 −0.258 −0.449 0.412 0.156 −0.246 −0.137 −0.063 −0.216
−0.341 −0.091 −0.102 −0.322 0.074 0.035 0.810 −0.013 −0.234 0.209
−0.340 0.041 −0.157 0.062 0.125 −0.223 −0.122 −0.100 0.611 0.625
−0.428 −0.604 0.012 −0.226 −0.079 0.500 −0.316 −0.183 0.038 −0.102
−0.383 −0.161 −0.121 0.249 0.077 −0.635 −0.065 −0.407 −0.241 −0.337
−0.338 0.260 −0.249 0.689 −0.073 0.438 0.188 0.092 0.076 −0.185


Due to almost exact similarity to

[
Ê1, . . . , Ê5

]
forward2 in the continuous case, we omit[

Ê1, . . . , Ê5
]
forward2 for the discrete case.
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Second Assignment:

The Question

Calculate the 1, 3 and 5 year probability of default of Bell Canada under each of the following
assumptions:

1. A Markov chain model with two states: solvency and default, calibrated to one of its
bond prices.

2. A Merton model, using company’s assets, company’s liabilities and asset volatilities
implied by their stock volatility

Note: The assignment must contain: all explanations of the work done, all assumptions made, and
the results with probabilities in table and chart formats.

6 Markov Chain Model
6.1 Necessary Theory
6.1.1 Default Rates

We recall that the discounted value of cash flows over a countable period of times t ∈ I, when ∃ a
probability of default, is given by:

V =
n∑
i=1

pie
−ritiqi

Where:
V := the present valuation of our security.
n := the number of payments
pi := the amount paid at ti.
ri := is the continuously compounded (risk free) interest rate at ti.
qi := is the probability of solvency at ti.

Thus, if we let hi := − log(qi)
ti

, then:

V =
∑
i∈I

pie
−ritiqi =

∑
i∈I

pie
−(ri+hi)ti

Furthermore, if we assume a two credit states model (Solvency or Default), and assume the following:

P(Solvent at ti+1 | Solvent at ti) = qi

Then if s := solvent, d := default, and if S := {s, d} is our state space, we have that:

P(Xi+2 = s|Xi = s) =
∑
j∈S

P
(
Xi+2|Xi+1 = j,Xi = s

)
P(Xi+1 = j|Xi = s

)
= P

(
Xi+2|Xi+1 = s,Xi = s

)
P(Xi+1 = s|Xi = s)

= q2
i
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Thus, by induction and if we let P(X1|X0) := q, then P(Xi+k|Xi = s) = qk ∀i ∈ {1, . . . , n}. And
furthermore:

qi = qti =⇒ hi =
− log

(
qti
)

ti
= − log(q)

Moreover, we recognize this setup as a Markov Chain with the transition matrix of:

pij = P =
(
q 1− q
0 1

)
6.1.2 Setting up the Notation for Yield

As we mentioned in the previous section, given a corporate bond, the value of this bond is V =∑
i∈I pie

−(ri+hi)ti . Thus, if we would like to solve for the default rate, 1 − q = 1 − e−hi , then we
unfortunately have two unknown sequences of numbers, i.e., ri and hi. Thus, to be able to solve for
the hi’s, we need to first solve for the ri’s. However, since we are making the additional assumption
that hi = − log(qti)/ti = − log(q)∀i, then if we are interested in finding the 1, 2, 3, . . . probability of
default, then we need only compute the probability of default for year one: e−h1 , and by definition,
P(Default for t ∈ (0, t], t ∈ N) = e−h1·t.

For example; assume company Z has a n bonds, each pays a semi-annual coupon. We denote these
bonds by Z1, Z2, . . . , Zn. Furthermore, assume today’s date is d, and that bond Zi matures on t(Z)i,
where if y := 1 year, t(Z)i ∈ (d+ (i− 1)y/2, d+ iy/2).

Next, let us assume we have the same set up for 3 government bonds, R1, . . . , R3, and that
t(R)1, . . . , t(R)3 satisfy the same constraints as for t(Z)i (but t(R)i need not equal t(Z)i).

We also let P (Z)i, and P (R)i denote the prices for Z’s and the government bond’s respectively,
which are given. The annual coupon payment for Z and the government is denoted C(Z)i and
C(R)i respectively. And finally, the face value is denoted F (Z)i and F (R)i for each.

We now introduce one more necessary component. We let δ(d, tj) : (dates)2 → {0, . . . , 364} ∪
1leap year{365}, so that: δ(d, tj) = days between(d, tj)

We now have the necessary notation and theory to solve for Z’s probability of default implicitly by
computing the r1 and ρ1 - the 1 year yield of R and Z respectively. To do so, we recall that for a
government bond:

P (R)i = −C(R)i ·
(
δ
(
d, inf

{
{t|t = d+ n/2y, n ∈ N} ∩ {t|t ≥ t(R)i}

})
− δ(d, t(R)i)

)
︸ ︷︷ ︸

Days since last coupon payment

/(
365 + 1leap year

)

+
(
i−1∑
j=1

C(R)i
2 · exp

(
−rj/2 · (j/2)

))
+
(
C(R)i

2 + F (R)i
)
· exp

(
−rδ(d,t(R)i) · δ(d, t(R)i)

)
And letting R = Z, rj = ρj , we get our equation for pricing a corporate bond as well.

To simplify our notation, let us introduce the two functions:
ψ(d, t(X)i) := Days since last coupon payment (explicitly explained above)
φ(m) = m/(365 + 1leap year), φ : Im(δ)→ Q+

We can now explicitly solve for rk/2, k ∈ {1, . . . , n−1}. We do this by utilizing a recursive algorithm
(called bootstrapping) which we introduce in the next section.
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6.1.3 Bootstrapping for the Yields

We consider the same set up as above for a government bond (and note the complete analogous for
the yield of a corporate bond) as above. After moving a few variables to the other side, taking a log
and the dividing by −δ(d, t(R)i), we can see:

rδ(d,t(R)i) = −1
φ(δ(d, t(R)i))

log
(
P (R)i + C(R)i · ψ(d, t(X)i)− (C(R)i/2) ·

∑i−1
j=1 exp

(
−rj/2 · (j/2)

)
C(R)i/2 + F (R)i

)

Therefore, what seems natural is a “bootstrapping algorithm”, that is, given r1/2, r1, . . . , rk, we can
easily calculate rj , where j ∈ (0, k + 1/2y) from the above equation. This method of first starting
with calculating rj , 0 < j < 1/2, then using that to make an assumption about r1/2, then using
that assumed value to calculate rk, 1/2 ≤ k < 1, and so on is how we will solve for the necessary
information for calculating default rates.

6.1.4 Inducing the Probability of Default from the Calculated Yields

Once we have calculated r1/2 and r1 from the above algorithm, we then perform the exact same
operation to calculate ρ1/2 and ρ1. From here, the theory suggests that:

ρ1 = h1 + r1 =⇒ P(Solvent for t ∈ (0, 1]) = q = e−(h1) = e−(ρ1−r1)

6.2 The Theory Applied to the Question at Hand
We report our data set as follows:

d = 2017-04-04

Bond Eff. Maturity (t(R)i) Price (P (R)i) Coupon (C(R)i)
R1 2017-05-01 99.98 0.25
R′1 2017-09-01 100.38 1.50
R2 2017-11-01 99.81 0.25
R′2 2018-02-01 100.53 1.25
R′′2 2018-03-01 100.56 1.25
R3 2018-05-01 99.57 0.25
R′3 2018-06-01 104.14 4.25
R′′3 2018-08-01 99.77 0.50
R′′′3 2018-09-01 100.80 1.25

Bond Eff. Maturity (t(Z)i) Price (P (Z)i) Coupon (C(Z)i)
Z1 2017-09-13 101.37 4.37
Z2 2018-03-16 102.94 4.40
Z ′2 2018-04-26 103.73 4.88
Z3 2018-09-10 103.00 3.50
Z ′3 2019-02-26 107.41 5.52

We begin with the first data set (Government bond data). For the first four entries, no coupon
is paid in between today’s data and the maturity date; therefore, we can immediately solve for
rδ(d,t(R)i , i = 1, 2 by using the formulas previously derived and discussed in the preceding sections:
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rφ(δ(d,2017-05-01)) = r27/365 = −
(

365
27

)
· log

(
99.98 + (.25)(154/365)− (.25/2)(0)

(.25/2) + 100

)
= 0.5337%

rφ(δ(d,2017-09-01)) = r150/365 = −
(

365
150

)
· log

(
100.38 + (1.50)(34/365)− (1.50/2)(0)

(1.50/2) + 100

)
= 0.5568%

Thus, to find r1/2 we linearly extrapolate between r27/365 and r150/365. We see that we get an
intercept of b = 5.286266 ·10−3, and a slope of m = 1.878135 ·10−6 (per day). And thus we see that:

r1/2 = 5.286266 · 10−3 + 1.878135 · 10−6(183) = 0.5630%

Now, we can use r1/2 to find rx, x ∈ (1/2, 1):

rφ(δ(d,2017-11-01)) = r211/365 = −
(

365
211

)
log
(

99.81 + (.25)(154/365)− (.25/2)(e−(0.005630)(1/2))
(.25/2) + 100

)
= 0.5783%

rφ(δ(d,2018-02-01)) = r303/365 = −
(

365
303

)
log
(

100.53 + (1.25)(62/365)− (1.25/2)(e−(0.005630)(1/2))
(1.25/2) + 100

)
= 0.6072%

rφ(δ(d,2018-03-01)) = r331/365 = −
(

365
331

)
log
(

100.56 + (1.25)(34/365)− (1.25/2)(e−(0.005630)(1/2))
(1.25/2) + 100

)
= 0.6284%

Thus, to find r1 we fit the best linear model according to r211/365, r303/365, and r331/365. We see
that we get an intercept of b = 4.943038 · 10−3, and a slope of m = 3.917085 · 10−6 (per day). And
thus we see that:

r1 = 4.943038 · 10−3 + 3.917085 · 10−6(365) = 0.6373%

Now, we perform the same analysis on Bell’s (Z’s) bond data as follows:

ρφ(δ(d,2017-09-13)) = ρ162/365 = −
(

365
162

)
· log

(
101.37 + (4.37)(22/365)− (4.37/2)(0)

(4.37/2) + 100

)
= 1.2195%

Now, since ρ162/365 is 21 days away from ρ1/2, and since we only have 1 data point between now and 6
months from now, we make the assumption that the linear extrapolation we carried out to get r1/2 for
R implies the linear extrapolation formula for ρx, x ∈ (0, 1/2] takes the form: ρdays/365 = b′ +m′ =
b′ + m · (ρdays/365/rdays/365)(days), where m is from the previous section (m = 1.878135 · 10−6).
I.e., m′ equal to the previous m times the proportion between the two yield rates. Thus, plugging
in days = 162 =⇒ ρ162/365 = 1.2195%, r162/365 = 0.5591% =⇒ m′ = 4.0965581 · 10−6 b′ =
1.15314 · 10−2, and hence we now have:

ρ1/2 = 1.153171784 · 10−2 + 4.0965581 · 10−6(183) = 1.2281%
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We now use this value to solve for ρv, v ∈ (1/2, 1):

ρφ(δ(d,2018-03-16)) = ρ346/365 = −
(

365
346

)
log
(

102.94 + (4.40)(19/365)− (4.40/2)(e−(0.012195)(1/2))
(4.40/2) + 100

)
= 1.2643%

And in doing the same trick as we did to find ρ1/2, we see that our linear model should be ρdays/365 =
b′ + 0.012195/0.00629835

3 .917085 · 10−6(days) =⇒ b′ = 1.00188 · 10−2, and hence:

ρ1 = 1.00188 · 10−2 + 7.584343 · 10−6(365) = 1.2787%

We now have all the necessary information to induce the 1,3 and 5 year default rates implied by a
Markov Chain Model: As we saw in section 6.1.1 and 6.1.4, we have:

P(Solvent for t ∈ (1]) = q = e−h1 = e−(ρ1−r1) = e−(1.2787%−0.6284%) = e−(.006503) = 0.99352

And therefore:

P(Solvent for t ∈ (0, k]) =
(
P(Solvent for t ∈ (0, 1])

)k = 0.99352k

And hence:

P(Solvent for t ∈ (0, 3]) = 0.98069, and P(Solvent for t ∈ (0, 5]) = 0.96802

Which implies the following final answer:

P(Default for t ∈ (0, 1]) = 1− q = 0.648%
P(Default for t ∈ (0, 1]) = 1− q3 = 1.931%
P(Default for t ∈ (0, 1]) = 1− q5 = 3.198%

7 Merton Model
7.1 Necessary Theory
Let us begin by defining the following notation:

V0 := Value of company’s assets today.
VT := Value of company’s assets at time T .
E0 := Value of company’s equity today.
ET := Value of company’s equity at time T .
D := Amount of debt interest and principal due to be repaid at time T .
σV := Volatility of assets (assumed constant).
σE := Instantaneous volatility of equity - the standard deviation of the daily log returns (over the
past year).

If VT < D, it is (at least in theory) rational for the company to default on the debt at time T . The
value of the equity is then zero. If VT > D, the company should make the debt repayment at time
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T and the value of the equity at this time is VT −D. Merton’s model, therefore, gives the value of
the firm’s equity at time T as

ET = max(VT −D, 0)
This shows that the equity of a company is a call option on the value of the assets of the company
with a strike price equal to the repayment required on the debt. The Black-Scholes-Merton formula
gives the value of the equity today as:

E0 = V0Φ(d1)−De−rTΦ(d2) (14)

where:

Φ(x) := 1√
2π

∫ x

−∞
e−t

2/2dt, d1 := log(V0/D) + (r + σ2
V /2)T

σV
√
T

, d2 := d1 − σV
√
T

Under Merton’s model, the company defaults when the option is not exercised. The probability of
this can be shown to be Φ(−d2). To calculate this, we require V0 and σV . Neither of these are
directly observable. However, if the company is publicly traded, we can observe E0. This means
that equation the way we defined E0 above provides one condition that must be satisfied by V0 and
σV . We can also estimate σE . From a result in stochastic calculus known as Ito’s lemma:

σEE0 = ∂E

∂V
σV V0

Where ∂E
∂V is the delta of the equity. It can be easily shown that:

∂E

∂V
= Φ(d1) =⇒ σEE0 = Φ(d1)σV V0 (15)

This provides another equation that must be satisfied by V0 and σV . The Equations above thus
provide a pair of simultaneous equations that can be solved for V0 and σV . Therefore, after solving
for V0 and σV , we can apply these number to solve for the probability of default, defined as:

P(Default for t ∈ (0, T ]) = E0 − V0Φ(d1) +De−rT

De−rT
= Φ(−d2) = 1− Φ(d2)

7.2 The Theory Applied to the Question at Hand
Firstly, we consult Yahoo Finance to find out the following information about Bell Canada:

Variable Value
# of Shares Outstanding 898.54M

Total Debt 21.359B
Stock Price on 2017-04-04 $59.67

Therefore, E0 := Value of company’s equity today = (59.67$)(898.54M) = 53.616B$.
We next download Bell’s Daily Adjusted Close (adjusted to account for dividend payments) over
the past year (I.e. from 2016-04-04). Let us call the adjusted Close time series yt, t ∈ {1, . . . , 253}.
We then calculated σE as follows:
First define rt := log(yt)− log(yt−1), t ∈ {2, . . . , 253}. Then:

σE =
(

1
252− 1

253∑
i=2

(ri − r̂)
)1/2

, r̂ = 1
252

253∑
j=2

rj
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This calculation yields σE = 0.6233157%.

We also quickly note here that we define D as:

D := Total Debt · erT ·T

7.2.1 T=1

We use the RMFI Software v1.00 to carry out solving for the necessary nonlinear equations. Since
these calculations are pretty simple, and since Bell’s Delta will be around 1, we solve for σV and E0
through some rudimentary trial and error; I.e., guess a beginning answer, then update with a better
guess until we are within (say) 3-4 significant digits of satisfying each equation.

For T = 1, we make use of the additional data: r = 0.6373%, and we (as an assumption) make use
of Bell’s bond which Matures on 2018-03-16 since this is only 19 days away from exactly one year
from today. We recall that this bond has a price of 102.94, and coupon of 4.40. Furthermore, since
r = 0.6373%, we have D = 21.59317B$.

We now make use of our software to help find σV and V0 s.t. the following two equations are satisfied:

σEE0 = 0.334196209 = Φ(d1)σV V0 (16)

and:

E0 = 53.616 = V0Φ(d1)−De−rTΦ(d2) (17)

where:

Φ(x) := 1√
2π

∫ x

−∞
e−t

2/2dt, d1 := log(V0/1.044) + (r + σ2
V /2)1

σV
√

1
, d2 := d1 − σV

√
1

We can see that V0 = 75.113 and σV = 0.445% satisfy these equations. Therefore, by plugging in
these values, we have d2 = 280.309, and hence:

P(Default for t ∈ (0, 1]) = 1√
2π

∫ −280.309

−∞
e−t

2/2dt << 10−100

7.2.2 T=3 & T=5

We carry out in the exact same methodology, as above. Solving the necessary equations but with
r = 0.849%, T = 3, and D = 21.9100, we get σV = 0.4457%, V0 = 74.975. This therefore implies:

P(Default for t ∈ (0, 3]) = 1√
2π

∫ −160.452

−∞
e−t

2/2dt << 10−100

Finally, we carry out once more in the exact same methodology, as two above for T = 5. we have
here r = 1.089%, T = 5, D = 22.554242. We thus get from solving the same nonlinear equation (but
adapted for the above changes): σV = 0.4457, V0 = 74.975. This therefore implies d2 = 121.615,
and hence:

P(Default for t ∈ (0, 5]) = 1√
2π

∫ −121.615

−∞
e−t

2/2dt << 10−100

41



8 Results Presented in Tables and Charts
We summarize our results in chart and table format below:

8.1 Tables
Under Markov Chain Model

P(Default for t ∈ (0, 1]) = 1− q = 0.648%
P(Default for t ∈ (0, 1]) = 1− q3 = 1.931%
P(Default for t ∈ (0, 1]) = 1− q5 = 3.198%

Under Merton Model

P(Default for t ∈ (0, 1]) = 1√
2π

∫ −280.309

−∞
e−t

2/2dt

P(Default for t ∈ (0, 3]) = 1√
2π

∫ −160.452

−∞
e−t

2/2dt

P(Default for t ∈ (0, 5]) = 1√
2π

∫ −121.615

−∞
e−t

2/2dt

8.2 Charts
Under Markov
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And we do not present a plot for the Merton Model because our values are too close to zero to be
of great visual significance.
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