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1 Assignment 1
1.1 Transforming an ODE to a Dimensionless State

Question. 1.1:

A series resistor-capacitor (RC) circuit with a current source has capacitance C (in farads), resis-
tance R (in ohms), and voltage across the capacitor V (in volts). The circuit is modelled by the
differential equation

C
dV

dt
+ V

R
= i0f(t).

The forcing function f(t) has amplitude i0 (in amps). Time t is measured in seconds. Scale the
dependent and independent variables so that the resulting differential equation is non-dimensional.
In other words, introduce a dimensionless time τ (a scaled time) and a dimensionless voltage v (a
scaled voltage) so that the differential equation for v(τ) is dimensionless.

Answer: We first summarize all our units:

[C] = farads = s

Ω
[R] = ohms = Ω
[V ] = [R][i0] = volts = ΩA
[f ] = s

[i0] = amps = A

If we therefore set τ = t
CR and v = V

i0R
, the natural differentials will be: dτ = dt

RC and dv = dV
i0R

. Thus,
in making the proper substitutions to the derivative term:

C
dV

dt
= C

(dvi0R)
(dτRC) = i0

dv

dτ

Furthermore, making the substitution of f(t) = f(τCR), now looking at the full ODE, we see:

C
dV

dt
+ V

R
= i0

dv

dτ
+ (i0Rv)

R
= i0

dv

dτ
+ i0v = i0f(τCR)

And so dividing by i0, we see:
dv

dτ
= f(τCR)− v

Which is a dimensionless ODE.

1.2 Buckingham’s Pi Theorem

Question. 1.2:

The speed of sound c in a compressible fluid depends on the bulk modulus K with SI units
[K] = kg/m/s2 and the medium density ρ with SI units [ρ] = kg/m3. Use Buckingham’s Π
theorem to determine a relationship between c, K, and ρ. Look-up, and cite, a reference on the
Newton-Laplace equation that gives the constant of proportionality in your relation, derived from
physical principles.

Answer: We begin by summarizing the units of this problem.
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[K] = kg/m/s2, [ρ] = kg/m2, [c] = m/s

Now, we make use of the standard matrix representation involved in applying the Buckingham Π Theorem:

k ρ c( )
kg 1 1 0
m −1 −3 1
s 2 0 −1

∼

k ρ c( )
kg 1 1 0
m 0 −2 1
s 0 −2 −1

∼

k ρ c( )
kg 1 0 1

2
m 0 1 − 1

2
s 0 0 0

Therefore, since we have a row of zeros in the RREF of our matrix, by Buckingham’s Π Theorem, ∃ one
dimensionless variable, π1. Thus, in setting C =

√
k
ρ , we see:

[C] =
[√

k

ρ

]
=

√
[k]
[ρ] =

√
kg/(ms2)
kg/m3 =

√
m2

s2 = m

s

Furthermore, from1, we know that indeed C =
√

k
ρ .

1.3 An Interdependent Economy

Question. 1.3:

In economics, an input-output model describes the interdependencies between different sectors of
the economy. Suppose there are n sectors of the economy and that the ith sector produces xi units
of a good. The goods produced by each sector can be inputs for the other sectors. We assume
that the jth sector must use ai,j units of the good from sector i to produce one unit of its good.
The good from the ith sector has di units demanded by consumers. This model takes the form of
a linear equation

x = Ax + d, (1)

in which x is the (unknown) vector of units produced, d is the known vector of units demanded,
and the matrix A has known entries ai,j . Let M = I − A. This model is well-posed if 1) M is
invertible, so that there is a unique solution and 2) the principal minors of M are all positive, so
that the entries of x are non-negative.

1. Explain in words the meaning of Eq. (1).

2. Describe a scenario in which a diagonal entry of A could be non-zero.

3. For n = 2, determine the following sensitivities: S(x1, d1) and S(x1, a1,2). For which pa-
rameter values are these sensitivities very large?

Answer:

1. In this form of the equation, sector i’s output is equal to the output of other sectors’ output weighted
by how much sector j needs of the good produced from sector i to produce one unit of good in its
own sector, then plus the demand for i’s goods.

2. Let’s take an electrical plant for example. Once running, to keep the electricity producing machines
running, one needs to supply a fraction of the electricity produced to do so.

1https://www.thermaxxjackets.com/newton-laplace-equation-sound-velocity/

3

https://www.thermaxxjackets.com/newton-laplace-equation-sound-velocity/


3. Since I−A is inevitable, we know that its determinant is non-zero, and hence we have the following:(
a b
c d

)−1
= 1
ad− bc

(
d −b
−c a

)
⇒
(

1− a11 −a12
−a21 1− a22

)−1
= 1
a11 − a11a22 + a12a21 + a22 − 1

(
a22 − 1 −a12
−a21 a11 − 1

)
:= 1

det∗(M)

(
a22 − 1 −a12
−a21 a11 − 1

)
(IMPORTANT NOTE: In the following computations, we use det∗(M) to denote (−1)·det∗(M).)
We therefore have:(

x1
x2

)
= M−1d = 1

det∗(M)

(
a22 − 1 −a12
−a21 a11 − 1

)(
d1
d2

)
= 1

det∗(M)

(
(a22 − 1)d1 − a12d2
−a21d1 + (a11 − 1)d2

)
We may now calculate S(x1, d1) and S(x1, a12) explicitly:

S(x1, d1) = ∂x1

∂d1

(
d1

x1

)
= (a22 − 1)

det∗(M)
det∗(M)d1

((a22 − 1)d1 − a12d2

= (a22 − 1)d1

(a22 − 1)d1 − a12d2

S(x1, a12) = ∂x1

∂a12

(
a12

x1

)
=
(
d1(a22 − 1)
−det∗(M)2

∂ det∗(M)
∂a12

−
(

d2

det∗(M) + a12d2

−det∗(M)2
∂ det∗(M)
∂a12

))(
a12

x1

)
=
(
−d1(a22 − 1)a21

det∗(M)2 −
(

d2

det∗(M) −
a12d2a21

det∗(M)2

))(
a12 det∗(M)

(a22 − 1)d1 − a12d2

)
=
(
−d1(a22 − 1)a21

det∗(M) −
(
d2 −

a12d2a21

det∗(M)

))(
a12

(a22 − 1)d1 − a12d2

)
=
(
−d1(a22 − 1)a21

det∗(M) −
(
d2 det∗(M)

det∗(M) −
a12d2a21

det∗(M)

))(
a12

(a22 − 1)d1 − a12d2

)
=
(
a12d2a21 − d2 det∗(M)− d1(a22 − 1)a21

det∗(M)

)(
a12

(a22 − 1)d1 − a12d2

)
=
(−a21

(
(a22 − 1)d1 − a12d2

)
− d2 det∗(M)

det∗(M)

)(
a12

(a22 − 1)d1 − a12d2

)
=
(
−a21a12

det∗(M)

)
−
(

d2a12 det∗(M)
det∗(M)

(
(a22 − 1)d1 − a12d2

))
= −

(
a21a12

det∗(M) + d2a12

(a22 − 1)d1 − a12d2

)

And so when (a22 − 1)d1 → a12d2 and det∗(M) → 0, the given sensitivities will be extremely
sensitive.

1.4 Numerical Eigenvalue Computation

Question. 1.4:

Let A be a real, square, symmetric matrix. Use the method of Lagrange multipliers to find the
stationary points of the function R(x) = xTAx subject to the constraint xTx = 1. Explain how
this result could be used to (numerically) compute the eigenvalues of the matrix A.
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Answer: We begin by providing an elementary result from Matrix Calculus and an easy Lemma to make
the calculations for this problem painless.

Lemma. 1.1: Matrix Calculus Lemmas

If x is an (n× 1) variable vector, and A an (m× n) constant matrix. Then we have the following
general result:

∂xTAx
∂x = (A+AT )x

Note: we use the “Denominator layout”, for this Question, i.e.; by yT and x.

Corollary. 1.1: Matrix Calculus Lemmas

IIf x is an (n × 1) variable vector, and A an (m × n) constant symmetric (A = AT ) matrix.
symmetric. Then we have the following general results:

∂xTAx
∂x = 2Ax

∂xTx
∂x = 2x

Proof. Since A = AT , the first equation is immediate from Lem 1.1. The second is achieved by taking
A = I.

We now shift focus to the question at hand. We set up our Lagrangian as follows:

L (x, λ) = xTAx− λ(xTx− 1)

And so:
Lx = 2Ax− λx by Cor. 1.1, and Lλ = xTx− 1

And so setting our derivatives equal to zero, we find: Ax = λx, and xTx = 1. We recognize the former
to be the standard equation for eigenvalues (λ), and eigenvectors (x) of the matrix A. Combining these
two equations yields:

xTAx = xTλx = λxTx = λ I.e. xTAx = λ

What we have done now is solved for the maximal value of our function subject to the given constraint;
namely, the maximal value is achieved by the eigenvector associated to the largest eigenvalue of A.

In terms of numerically solving for the eigenvalues of the matrix A, the following would be a possibility.
Firstly, let us assume that we have m unique eigenvalues, λ1, . . . , λm, where λ1 > · · · > λm. We maximize
xTAx subject to xTx = 1 to find the first Eigenvalue, λ1 (for example, via Lanczos’ Algorithm). Let
us call the value which maximizes the above as x̂ = x1. Next, we look for a solution to the following
problem: maximize xTAx subject to xTx = 1 and xTx1 = 0. Since all eigenvectors are orthogonal to
one other, the added constraint of xTx1 = 0 will yield the a solution x2, the eigenvector associated to
the maximal value of xAxT which is preciesly an eigenvalue of A (λ1 or λ2). Carrying out this method
while adding upon constrains (namely xTx1 = · · · = xTxk = 0 at the kth iteration of this method will
eventually yield to explicitly discovering every eigenvalue of A.
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1.5 Constraint Optimization: Lagrange Multipliers

Question. 1.5:

A shipping company has the capacity to move 100 tons/day by air. The company charges $250/ton
for air freight. Besides the weight constraint, the company can only move 50,000 ft3 of cargo per
day because of limited volume of aircraft storage compartments. The following amounts of cargo
are available for shipping each day:

Cargo Weight (tons) Volume (ft3/ton)
1 30 550
2 40 800
3 50 400

(a) Determine how many tons of each cargo should be shipped by air each day in order to
maximize revenue. Use the five-step method, and model as a constrained optimization
problem. Solve using Lagrange multipliers.

(b) Calculate the shadow prices for each constraint, and interpret their meaning.

Answer:
SUPER SUPER IMPORTANT NOTICE: Below you’ll find two solutions, the first is the proper
interpretation, which I used MATLAB to help solve as provided in the hint. The second is how I first
incorrectly interpreted the question, namely in that you could only choose discrete packages of Cargo’s
1,2, or 3.

1.5.1 Correct Interpretation

(a) We answer this problem via the five-step method.

1. The first step is to ask the question. Our question here is how can this shipping company
maximize its income while adhering to volume, tonnage, and discrete shipping quantities.

2. Our modelling approach will be via constraint optimization.
3. We now make explicit the problem at hand. Let x, y, z denote the amount of sent Cargo within

the Cargo’s 1,2, and 3 respectively. Our objective therefore will be to maximize income, subject
to several constraints. Explicitly:

maximize: 250(x+ y + z) subject to:
(1) x+ y + z ≤ 100
(2) 550x+ 800y + 400z ≤ 50000
(3) x ≤ 30
(4) y ≤ 40
(5) z ≤ 50

4. We now solve the model via Lagrange Multipliers. We introduce the Lagrangian as:

L (x, y, z, λ1, . . . , λ5) =
{

250(x+ y + z)− λ1
(
x− 30

)
− λ2

(
y − 40

)
− λ3

(
z − 50

)
− λ4

(
x+ y + z − 100

)
− λ5

(
550x+ 800y + 400z − 50000

)}
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Where we allow all the λ’s to non-zero or zero. As such, by hand we would have 25 = 32 cases
to check, and so we make use of the provided MATLAB function to easy our computations.
In doing so, we find the optimal solution as:

(x̂, ŷ, ẑ) = (30, 16.875, 50), ⇒ f(x̂, ŷ, ẑ) = $24218.75

5. After performing our optimization, we see that given the constraints, the most optimal strategy
is to ship a full container of Cargo 1 & 3, and 16.875/40 tons of Cargo 2. This strategy will
yield an income of $24218.75.

(b) We first note that in our solution, only λ1, λ3, and λ5 will be active since ŷ < 40 and x̂+ ŷ+ ẑ < 100.
Therefore, λ2 = λ4 = 0; I.e., a small change in the values of 40 and 100 respectively will have no
impact on our optimal solution. In taking derivatives with respect to x, z, and λ5, and setting
them equal to zero and plugging in (x̂, ŷ, ẑ), we find that λ1 = $78.125/ton, λ3 = $125/ton, and
λ4 = $0.3125/ton. I.e., when our constraints our flexed by 1 ton, we can expect our income to
change in the same direction by the given values above.

1.5.2 A Secondary Interpretation

(a) We answer this problem via the five-step method.

1. The first step is to ask the question. Our question here is how can this shipping company
maximize its income while adhering to volume, tonnage, and discrete shipping quantities.

2. Our modelling approach will be via constraint optimization.
3. We now make explicit the problem at hand. Let x, y, z denote the discrete (non-negative)

quantities of cargo 1,2,3 respectively. Our objective therefore will be to maximize income,
subject to several constraints. Explicitly:

maximize: 250(30x+ 40y + 50z) subject to:
(1) 30x+ 40y + 50z ≤ 100
(2) 30 · 550x+ 40 · 800y + 50 · 400z ≤ 50000
(3) (x− 3)(x− 2)(x− 1)(x) = 0
(4) (y − 1)(y) = 0
(5) (z − 2)(z − 1)(z) = 0

Our income equation is immediate from the Inequality (1) is immediate from the restriction
that gross tonnage must be less than 100tons. Inequality (2) comes from the fact that this
company can only move a maximum of 50000 ft3, and cargo 1, 2, and 3’s volume is 16500,
32000, and 20000 tons respectively. To restrict our possible values of x, y, z to non-negative
integers, we introduce equations (3), (4), and (5). Intuitively, for (3), the equation (x− 3)(x−
2)(x − 1)(x) = 0 is equivalent to x ∈ {0, 1, 2, 3} [and similarly for (4) and (5)]. The fact
that x, y, z can only assume values from {0, 1, 2, 3}, {0, 1}, and {0, 1, 2} respectively is because
30 · (x|x∈N,x>3) > 100, 32000 · (y|y∈N,y>1) > 50000, and 50 · (z|z∈N,z>2) > 100.

4. We now solve the model via Lagrange Multipliers. We introduce the Lagrangian as:

L (x, y, z, λ1, . . . , λ5) =
{

250(30x+ 40y + 50z)− λ1
(
(x− 3)(x− 2)(x− 1)(x)

)
− λ2

(
(y − 1)(y)

)
− λ3

(
(z − 2)(z − 1)(z)

)
− 11λ4

(
30x+ 40y + 50z − 100

)
− 12λ5

(
30 · 550x+ 40 · 800y + 50 · 400z − 50000

)}
7



Where 11,12 attain the values 0 or 1 depending on if we are looking for an interior or boundary
(respectively) solution with respect to the given inequalities. We now may actually cheat
slightly by only taking L ’s derivatives with respect to λ1, . . . , λ5 since simply checking these
cases will quickly yield our answer.

Lλ1 = 0 ≡ Restraint (3), Lλ2 = 0 ≡ Restraint (4), Lλ3 = 0 ≡ Restraint (5)
Lλ4 = 0 ≡ Restraint (1), Lλ5 = 0 ≡ Restraint (2)

(We provide Lx,Ly, and Lz part (b).)
And so by (3), (4), (5). The only possible values for (x, y, z) are:

(x, y, z) ∈
{

(s, u, v)
∣∣∣ s ∈ {0, 1, 2, 3}, u ∈ {0, 1}, v ∈ {0, 1, 2}}

However, we may additionally reduce the possible values of (x, y, z) down to only a few since
otherwise (1) & (2) will not be satisfied. Namely now:

(x, y, z) ∈
{

(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 0, 1), (0, 0, 2)
}

Furthermore, one can immediately reduce the number of possible values by only including the
maximal single-active variable conditions, and so now:

(x, y, z) ∈
{

(3, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 0, 2)
}

Finding the answer now is a trivial task of plugging in the 5 possible values into the shipping
company’s income function, π = 250(30x+ 40y + 50z). One finds that:

π|(x,y,z)=(3,0,0) = 22500, π|(x,y,z)=(1,1,0) = 17500, π|(x,y,z)=(1,0,1) = 20000
π|(x,y,z)=(0,1,0) = 10000, π|(x,y,z)=(0,0,2) = 25000

5. With this information, we are able to conclude that when subject to the given constraints, the
income maximizing strategy for the shipping company is to ship 2 “Cargo 3”’s, which yields an
income π = 25000, with a Weight = 100tons ≤ 100tons, and Volume = 40000ft3 ≤ 50000ft3.

(b) We begin by calculating Lx,Ly, and Lz:
Lx = 7500− λ1(4x3 − 18x2 + 22x− 6)− 3011λ4 − 1650012λ5

Ly = 10000− λ2(2y − 1)− 4011λ4 − 3200012λ5

Lz = 12500− λ3(3z2 − 6z + 2)− 5012λ4 − 2000012λ5

Since Constraint (2) is inactive in our solution, we have 12 = 0, and so λ5 does not exist. Further-
more, by plugging in our solution of (x, y, z) = (0, 0, 2), our equations reduce down to:

Lx = 7500− λ1(−6)− 3011λ4

Ly = 10000− λ2(−1)− 4011λ4

Lz = 12500− λ3(3(2)2 − 6(2) + 2)− 5012λ4 = 12500− λ3(2)− 5012λ4

However, since we already found a discrete solution subject to our constraints, we may equivalently
state the Lagrangian without the discrete properties inherently as a constraint within, and simply
limit our solutions to that of discrete cases. Namely:

L = 250(30x+ 40y + 50z)− λ4(30x+ 40y50z − 100)
which would yield:

Lz = 250(50z)− 50λ4

And setting Lz = 0, we finally have: λ4 = 250 (as it would’ve also yielded had we taken Lx or Ly).
Intuitively therefore, a unit increase in the constraint ≤ 100 equates to $250 increase in income.
Furthermore, since λ5 does not exist, intuitively this means that a unit increase in the constraint
≤ 50000 has no effect on income.
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