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Introduction

Going back to Weyl’s celebrated article on the asymptotics of Dirichlet regions in two
dimensions, there is an enormous literature on Laplacians associated to regions of
R™. Much of the literature is on the Dirichlet case which is easier, in part, because of
compactness results. In this paper, we want to contribute to the study of the Neumann
case, most particularly to identify the essential spectrum for Neumann Laplacians for
some special regions.

Given an open region, (2, in R", we let Q(—A%) be the set of all functions in L2?()
whose distributional gradients are in L? and we define —A% via the quadratic form

relation

(6, ~A2g) = / V(o) dna

It is a well-known result of Meyers and Serrin (cf. e. g. Adams [1], Gilbarg and
Trudinger [10]), that the functions in Q(—A%) which are C™ in the interior are dense
in Q(—AY). The closure of C$°(Q) is the form domain of the Dirichlet Laplacian.

Dirichlet Laplacians of bounded regions have discrete spectrum since it is not hard
to show their resolvents are compact. On the other hand, it has been known for
many years that Neumann Laplacians of finite regions need not have purely discrete
spectrum. Mind you, if the region is sufficiently regular, the Neumann Laplacian is
compact — for example, if there is a piecewise smooth boundary. The following is an
example of a region going back at least to Courant and Hilbert known as “rooms and

passages”.

To construct a typical rooms and passages—domain (as shown in Figure 1), take a
sequence of rooms (= open rectangles Ry, contained in the unit ball of R2, k € N,
Ry, symmetric with respect to the z—axis, and such that R, N R; = 0,k # j), which
are joined together by passages (= rectangles Py, k € N, P, symmetric with respect
to the z—axis) of height much smaller than the height of the adjoining rooms Ry, and
Ry_1.

Insert Figure 1 here.
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If the passages are narrow enough, the Neumann Laplacian for this region has 0 in
the essential spectrum. For, let ¢, be a function which is a large constant in the
n—th room and which drops linearly to 0 between the room and the midpoint of the
adjacent passages. Choose the constant so that ¢, has norm 1. Since they have
disjoint supports, the ¢, are orthonormal. The size of |V¢,| is proportional to the

width of the passages adjacent to box n and that can be made arbitrarily small.

One of the goals in this note is to actually show that for the rooms and passages
example, the essential spectrum is exactly {0}, if the passages are narrow enough.

QOur main theorem is

Theorem 0.1. Let S be any closed subset of [0,00) and let n be given. Then

there exists an open, connected subset Q of the unit ball in R™ so that

aess(—A%) =9 and aac(—A%) =10

If S contains 0, we will be able to construct € as a modification of rooms and passages
— essentially, we will add a partition accross each room with a hole in it. For general

S, we will modify instead another class of regions known as “combs”.

To construct combs, we attach a sequence of teeth (i.e., rectangles of bounded length
and shrinking width) to a fixed square @Q C R2. Here it is somewhat simpler to stack
the teeth together instead of having empty space between them.

Insert Figure 2 here.

Basic to our entire strategy is that one can decouple into simpler regions. In the
rooms and passages type regions, we’ll decouple into separate rooms and passages2
in the combs, we’ll decouple the teeth of the comb from the handle ). In the rooms
and passages, the barriers we put in will have Neumann boundary conditions on the

room side and Dirichlet conditions on the passage side. What we’ll show is that
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putting in such barriers on the infinity of room-passage joins will mean a compact
perturbation of the resolvent so long as the passages are narrow enough (and a trace
class perturbation on the level of square of the resolvent). Since oegs is left invariant
under compact perturbations, we’ll reduce the determination of the essential spectrum
to that of decoupled regions. Since each individual region has discrete spectrum, the
essential spectrum will be the set of limit points of spectra of the regions and that will

be easy to compute.

The somewhat surprising element of our decoupling is that from the passage side, the
boundary condition is Dirichlet. We call this the organ pipe lemma because it is a
reflection of the known fact that closed and open organ pipes have opposite boundary
conditions. The reason that eigenfunctions in the passages must vanish near the
boundary of the passage is the following: Because the passages are so small, for them
to matter, the wave function must live in the passage and not much in the rooms. If
these functions weren’t much smaller at the edge of the passage than in the middle,
they’d “leak” out into the rooms. This idea is made precise in Section 1, where we
investigate the behavior of eigenvalues, eigenfunctions and resolvents of the Neumann
Laplacian on two domains 2; and €2, which are joined by a passage of width w, in
the limit of w going to zero (Propositions 1.4 and 1.5). In Proposition 1.9, we deal in
a similar manner with the situation where a family of small handles is attached to a
fixed domain €2y. There has been previous discussion of the effect of narrow passages
and handles, not unrelated to our organ pipe-lemma, see Jimbo [11] and Arrieta, Hale
and Han [3].

In Section 2, we construct rooms and passages domains 2 by successively joining
a sequence of rooms by narrow passages and obtain norm-resolvent convergence of
certain approximating Laplacians H, to —A%. As in Simon and Spencer [16], the
spectral results then follow from the fact that (H; + 1)72 — (=A% + 1)72 is trace
class. Upon replacing each room in the above construction by a small rectangle with
a partition, each of these modified rooms will contribute (to the spectrum of H;) an

eigenvalue 0 plus another low-lying eigenvalue A , while the remaining eigenvalues



will be very large. By this construction, we can achieve to have
Oess(H1) = {0} U {limit points of {\;}}.

(Domains similar to a union of finitely many rooms and passages have been used by

Colin de Verdiére [4] to specify a finite part of the Neumann spectrum.)

In an analogous manner, we analyze combs in Section 3, beginning with simple combs
of the type described above and then proceeding to combs with small teeth D where
each Dy has a partition (with “door”) to make sure that each Dy contributes pre-
cisely one low-lying eigenvalue Aj to the spectrum of the fully decoupled comparison
operator, while the remaining eigenvalues of —Aﬁ’“ are very large. As a consequence,
we find that the essential spectrum of the Neumann Laplacian is given as the limit
set of the sequence {\}. Since this sequence can be preassigned in the construction

of examples, Theorem 0.1 follows.

R. Hempel should like to thank D. Wales and G. Neugebauer for their hospitality at
Caltech.

1. Organ—Pipes

In this section we analyze the Neumann Laplacian on domains consisting of two
“rooms” which are joined by a narrow passage of width w, w small. It turns out
that we have a natural Dirichlet boundary condition on the sides of the passage at-
tached to the rooms (corresponding to the natural boundary condition for the pressure
in an organ pipe at its open end). To be more precise, we will see that the resolvent
of the Neumann Laplacian on the full domain is well approximated (in the opera-
tor norm) by the resolvent of a certain decoupled operator which has pure Neumann
boundary conditions along the boundary of the two rooms and mixed Dirichlet and

Neumann boundary conditions for the passage.
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Here a word about the definition of Laplacians with Neumann or mixed boundary
conditions is in order. For a general open domain {2 C R", the Neumann Laplacian is
most naturally defined via quadratic forms, starting from the Sobolev space H!(Q) =
W12(Q). This Sobolev space may be obtained as the completion of the function space

{FeC®@|1flq <o}

under the norm ||, (), where

2
ey = [ 1P +1V5F
Then —A$% is defined (as in Reed and Simon [15; Section XIIL.15]) as the unique
non-negative, self-adjoint operator whose domain D(—A$%) is contained and dense in
H1(Q), and which satisfies
(—ARu,v) = (Vu, Vv) u € D(—AY) veH(Q)
Similarly, Laplacians with mixed Neumann and Dirichlet boundary conditions can be
defined in the following way: suppose I' = I' C 09 is given. Let
HE(Q) C HY(Q)
be the completion of

{£ €C™@ I/l < oo suwp AT =0}
and consider the unique self-adjoint operator associated with #'() this operator
will be said to be the Laplacian on € with Dirichlet boundary condition on I' and

Neumann boundary condition on 92 — T'.

For u € D(—A%), we have the a-priori information u € H(Q) and Au € Ly(Q), but
for irregular domains it may be very hard or impossible to obtain useful bounds for
sup |u|. In Lemmas 1.1 and 1.2 we shall show, instead, that control of the #!-norm

gives certain precise bounds on

/ u(z,y) drdy
s

for small rectangles S (we are in R? now). These bounds will subsequently play the
role of a weak substitute for a Dirichlet boundary condition in Lemma 1.3.



Lemma 1.1. Consider a rectangle R C R%, R = (0,1) x (0,h), made up of two
adjacent subrectangles, Ry = (0,1)x(0,w) and Ry = (0,l)x (w,h), where 0 < w < h.
Then, for u € H*(R) we have

1 1 ]
‘—:/ wdzdy — —— udxdy‘g(ho&"vmn
w R h—'u) Ro

Proof. Since C*®(R) is dense in #!(R) and R is convex, it is clear that we can assume

u to be C*°(R), without loss of generality.
Define

and

mzlfmwzéumww@

h
o = / Fly)dy = /R w(z,y) de dy

Clearly, there are points y; € [0, w] and ys € [w, h] such that f(y1) = m1/w, f(y2) =
ma/(h —w), and it follows that

w h—w

my ma ‘

Y2 Yo I )
f’(y)dy‘ﬁ [ [ teldsdy < b v
Y1

Y1

as claimed. Qé)

The important point in the following simple lemma, is to have the powers of w and [

. . . 1
in the asymmetric version w - [ /2.

Lemma 1.2. Let Q= (0,7) x (0,h) and let S = (0,1) x (0,w) (with0 <1<
and 0 < w < h/2) be a subrectangle of Q.
Then, for u € H'(Q) we have

ud:l:dy‘SCwll/2 Ul|4,1
/ by @)
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with a constant C' depending on h only.

Proof. Let
Q=(0,)x[w,h) Q '=SUQ

Applying Lemma 1.1 to Q*, we obtain

1 ! !
L < (Ih) " T )
‘w /Su < (th) 2 [Vulg, g« + (h — w) ‘/@u‘

S Ch l /2 ”u”'Hl(Q*)
with Cj = h"2(1 + 2/h), and the result follows. QP

In the subsequent Lemma we consider a passage P, = (0,L) x (0,w) of fixed length
L and width w < L, with two adjoining rectangles S; and Ss of length [ =1[,, = w1/2,
S1=(-1,0] x (0,w), and Sy = [L,L+1) x (0,w).

Let —Ag"jv denote the Laplacian on P, with Dirichlet boundary conditions at the

ends of P, and Neumann on the long sides of P,,. Also, let
O<pr Spe<...<pp<...

denote the eigenvalues of —Ag‘j\,, repeated according to their multiplicities, and let

{%;}jen denote a complete orthonormal set of eigenfunctions satisfying

—ADRY = pi; §=1,2,...

Clearly, any function v in the form domain of —Ag‘jv which is orthogonal to 1, ...,

satisfies the inequality
2 2
IVol™ 2 sk o]
We wish to extend this property to a family of functions v,, € H(S; U P, U S3) which

do not really obey a Dirichlet boundary condition, but instead, satisfy the condition

/ Uy = O(wl1/2) as w—0
5
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Lemma 1.3. Let k € Ny be fized. Suppose we are given a family {vy tocw<1 of
functions v, € H(S1 U Py U Ss) which satisfy the following conditions:

(i) HU"U"’?{I(S1UPWUSQ) <Cy, 0<w<1l, forsome constant Cy.
(it) (Vy, ;) =0, w—=0, j=1,....k
(iii) ‘fsq vw‘ < Awll/z, g=1,2, 0<w<1, forsome constant A.
Then, for any € > 0 there exists we such that

||va|'PwH22ﬂk+1||vw|_Pw||2—e 0<w < we

Remark. We will apply this lemma only in cases where (v,,%;) = 0, j
1,....k

Proof. Again, we may assume v,, € C*(S; U P, U S3).
On S; U P, USs we define the functions v = v,, by

B(a,y) = /Ow o(z, 2) dz

w

(Note that @ is constant in the y—direction.) We then have
IV [ Pul® < [Vo [ Pul®
~ 2 2 2
16T Pol” 2 v T Pull” —w? v | Pyl (1.1)

In order to prove (1.1), expand v [ P, in terms of eigenfunctions of —AX¥

v [Py = Z 9(p, q) €p,q

p,g€Np

where 9(p,q) = (v, e,4) and the e, , are given by

w™ L cos(lgv) cos(%) P,q € Ng



with normalizing factor between % and 2. Clearly,

(v—20) [Py = Z 5(p,q) €p,q

P,gENg
q#0
and, since v [ P, € H'(P,) = Q(—AL»),
2 2 p2 q2 2
wornl == Y (5+L) b
p,37(0,0)

so that ) )

- 2 w 2 w

(0= 5) [ Pul < 25 1901 < 25, (1.2

Next, assumption (7) implies that there exist —/ < z; <0 and L < z5 < L+ [ such
that
[5(zs,y) SAIT" 0<y<w

Let &1 = 0 and & = L, so that &; is the z—coordinate of the left or right end of P,,.
We then have

1

5(¢ny)| <Aw™"  0<y<w (1.3)

by the the following easy argument: Let h; = |9(z;) — 0(&)| for ¢ = 1,2, so that
[9(&,y)| < Al=" 4 h; for 0 < y < w. Using the trivial inequality

£0) = F)” <t / f(s)2ds | eH0,1)

we obtain

implying

2

w &; w g2
ol > Vol > [ [T loste )l dedy > [Ty z witect
0 x; 0
so that h? < Cyl/w, and (1.3) follows.
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Now let ¢ = ¢(z,y) be the (affine) linear function on P, which makes
(@-¢) &y =0 i=12 0<y<w
By (1.3) (and since the length of P, is held fixed), we have
91} = 0(w”) w0 (1.4)

As © — ¢ belongs to the form domain Q(—A%« ) and satisfies

(0 —¢,9pj)| <2 j=1,....k O0<w<uw,
(by (#2) and (1.2)), we obtain

VG~ 6) T Pol? 2 i (165 — ) T Pul?” — 452)
for 0 < w < w!. Using (1.1) and (1.4), it finally follows that

|Vo [ Pul? > Vo [ Pul? > V(5 —¢) [ Pul® — ¢
> st (5= 8) [ Pul® —4e) — e
> pirr [0 [ Pul? + O(e)

for 0 < w < w!, and we are done. QP

We now consider two domains Q7 and Q, in R?, Q; N Qy = (), with piecewise smooth
boundaries and (—A%" + 1)_1 compact, joined with a passage P, = (0,L) X (—w,w),
as shown in Figure 3. Note that we prefer P, to be symmetric with respect to the
z—axis, in this context. We require our domains §2; and €5 to satisfy the following

two conditions:
1. P,N(QUQ) =10
2. (—s,0) x(—s,8) CQy and (L,L+s)x(—s,s)C Qo

for some s > 0. We require conditions 1 and 2 because it simplifies notation, and

because they are satisfied by the examples we try to understand. They could be
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relaxed to require only that the boundary of the domains be smooth (with non-zero
z-derivative) around the points where the passage is attached, and that 9Q, intersects

the line segment [0,L] x {0} only once, for ¢ = 1, 2.
Insert Figure 8 here.

We define P, = [0,L] x (—w,w),
Qu=0%UP, UQ,, H, = —A%

and
H, =AY & -Apy © —AY

Let A; = Aj(w), for i = 1,2,... denote the eigenvalues of H,,,
0= < <...< <. ..

repeated according to their multiplicities, and let {¢;} denote an associated orthonor-
mal basis of eigenfunctions, ¢; = @;(w). Similarly, X\; = ;(w), ¢; = @;(w) denote the
eigenvalues and eigenfunctions of H,. Associated with the @; we also consider their
extension 1); € H'(Qy,), defined as follows:

1. If ¢; is an eigenfunction of —Ag‘g\,, it will be extended as 0 inside 2, ¢ = 1, 2.

2. In the case where @; is an eigenfunction of —A%l, the Sobolev Extension
Theorem (see Gilbarg and Trudinger [10; Theorem 7.25]) allows us to extend
@; to a domain that contains Q; U P,,. (Note that in our example, since
004 N B,(0) is a straight line, a simple reflexion argument would do). Let
these extensions be g;. Let j(z), smooth, be such that j(0) = 1 and j(L) = 0.
We then define

7. — gz(way)j(x) on P,
/lp’b ("E7 y) { 0 on QZ
It is clear, by dominated convergence, that 1); — @; goes to zero in Lo(f,)

and that ‘1@ |_PwH — 0, as w — 0.
HY (Puw)
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The eigenfunctions of —A% are dealt with in the same way.

It is our aim to show that the differences of eigenvalues A;(w) — \;(w) (and eigenfunc-
tions ¢;(w) — @;) go to zero as w — 0. To avoid notational difficulties in the case of
degenerate eigenvalues, we consider the spectral families {Ey} er and {E)}rer for
H,, and H,, and prove the following:

Proposition 1.4. Suppose the above assumptions are satisfied, and let A > 0

and € > 0 be given. Then there exists we such that
HEA(w)—EA(w)H <e€ 0<w< w,

for all X < A satisfying dist (\, 0(Hy)) > €.

Proof. Let 0 =iy < jip < -+ < Jix < --- denote the points of o(H,,) and let ky € N
be such that jix, < A, and fig,+1 > A. Note first that for w small enough, fix < A+1
and A; < A + 1 are independent of w.)) Without loss of generality, we may assume
that |A — figy| > €, |A — figg+1| > €, and that € is small enough so that the 2e—balls

around the points i1, ..., iy, do not intersect.
A. In this part of the proof we show that, for A <A,
(i) dimR(Exye_o) > dimR(E)).

(i) dimR(Ex_.) < dimR(Ey).
for w small (here R(E)) denotes the range of E)).
Suppose \; < ... < 5\,, < )\, while 5\p+1 > X so that R(E),) is spanned by @1, - - - s Pp-
Defining
M = span {1,...,%}

where the 1;2 are the extensions of the functions ; to all of Q,, of the functions @;,

we clearly have (for w sufficiently small)

IVl < Cp +e/2) 19 peM

1) Although this is not essential for the proof, it slightly simplifies the picture.
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and
dim M = dimR(E)) = p

Since M is contained in the form-domain of H,,, min-max implies that H,, has at
least p eigenvalues below A + €, proving (7).

If (i7) were not true, we could find u € R(Ex—), |u| = 1, u orthogonal to the range
of E,, whence

Although » will not in general belong to the form domain of H,, we nevertheless
conclude from (1.5) that

[V [ ) 2 Kot fu [
and similarly for Q5, while combining Lemma 1.2 and 1.3 yields an estimate
[V [ Pol > Kot [u [ Po]” — /2
for w small; we therefore end up with
IVl > Apor [ul* = ¢/2 (1.6)

for w small.
On the other hand, u € R(E\_.) implies [Vu]® < (A — €) |u|?, in contradiction with
(1.6) and \,41 > A. This proves ().

B. Denote the points where the e-balls around the iy, £ > 1, intersect the real line
by 1 < --- < x; < ..., so that zop, = fix + €, Top—1 = fir — € and let 79 = —o0.
Defining

P;j=E,, — E,, , Pj=E,, — E,, ,,

it is evident that P; = P; = 0 (as 21 = —e and zg = —00), and that P; = 0 for j odd.
Applying (i) and (i¢) succesively at the points z;, it is easy to see that all eigenvalues
of H, in [0,A] lie inside the intervals (fix — €, fix +€), k = 1,...,ko; furthermore,

if p € o(Hy), p < A, is an eigenvalue of multiplicity m, then there are precisely m

eigenvalues of H,, inside the 2e—interval centered at this y, counting multiplicity.
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C. Finally, we are in a position to prove that, for w small,
[Pi-Bi|<e  1<i<m.

There is nothing to be proven for j = 1, and we assume now that the assertion holds

for 1,...,7 — 1 < 2ky. By part B of our proof, we have
dim R(P;) = dim R(P;) (1.7)

If j is odd, then P; = 0 and also P; = 0, by (1.7), and we are done.

If j is even, let m = dimR(?Sj) and suppose that X\, = --- = A, 4,,_1 are in the interval
(zj_1,2),80 that Ap, ..., A\prm—1 liein the interval (z;_1,7;) while \pyrm > Aprm—6,
by part (B). Then

~ ~ 112
Yo = 193,17 = [V, +0(1)  w—0

where (noting that 1, € H'(,) = D(H,?))

T - |12 00 2
v = [af - [ raeid

-2
By the induction hypothesis, we know that HEmjflzppH — 0, as w — 0, and it follows
that
2
+ 0(1)

;\p > Ap ’lelp"p

2 ~
+ Aptm Y HPﬂPp
1>

Letting
d:mln{|ﬁk—/§l| | 1Sk‘,l§k0, k‘?él}

so that A,+p, > A, +d + 2¢, we may conclude that

(d — 2¢) Z HPlzszz <A t+e—Xp Z HPlzﬁsz +o(l) <e+o(l) ,w—0
>j ]

-2
as ) s HPlz/)p = 1+0(1). This implies |3, — P;@,|”> < 2¢/d+0(1), as w — 0, since
€ < d/4. Repeating the same argument for the eigenfunctions ¢p41,. .., Ppym—1 and
< € for w small enough. QP

using (1.7), it is easy to see that H’Pj ~P;
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Using Proposition 1.4, it is now straightforward to estimate the difference of the
resolvents of H,, and H,,.

Proposition 1.5. Let H, and H, as before, and assume that (—A%’ +1) e

By, for q=1,2. Then
H(Hw+1)—1—(ﬁ1w+1)—1H—>o w— 0
and

H(Hw+1)_2 . (Erw+1)—2‘ 50  w—0

1

where ||, denotes the trace norm.

Proof.
As in the proof of Proposition 1.4, let 0 = fi; < /12 < ... denote the points of o(H,)
and let zop, = fix + €, Tog—1 = jfix — €, P; = E;,;j — 1 P = E . Also let

Af(w) denote the (repeated) eigenvalues of —AY @ —AZ’“ ® —A%. By assumptlon,
(—Agz," +1)72 € By, and, by inspection, (—A% +1)72 € By. Since the eigenvalues
of —AFw are monotonically non-decreasing, as w — 0, and since \;(w) > A\ (w),
Ai(w) > AN (w), it follows that for e > 0 given, there exists A > 0 such that 1/A < e

and
D)+ D)2+ ) iw) + 1) <e (1.8)
Ai>A Xi>A
for 0 < w < s. Now let w, > 0 so small that the \;(w) € [0, A + 1] are independent of
w, for 0 < w < w, and suppose that p € N is such that Xp(w) < A, while 5\],.,_1 > A,
for 0 < w < w,. Finally, let K € N be such that ig_; < A, while ixg > A. Without
restriction, we may also assume that dist(A, ig) > ¢, for k =1,2,....

For the first statement,

(Hyp + 1)1 — (H, + 1)—1H

<ZHP (Hy +1)~" = Py(H, + 1)~ H

(0= B (Ho + D)7+ (1 = By (i + 1)
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Here the last two terms are bounded by 2A~! < 2¢. In the sum, the contributions
coming from j odd are zero. For j even, j = 2k, say, note that (z;_1,z;) = (fix —
€, ﬁk + 6)1 50

Pi(Hy +1)7" = (i +1)7'P;

and

[P3(Hy + 17 = G+ )7P5 < /(1 =€)

so that (e < 1/2, without restriction)
HPJ-(HH, + 1) — Py (Hoy + 1)—1H < HP,- - 759-H + 2

Using Proposition 1.4, it is now easy to obtain the first statement. For the second

statement, we proceed in a similar way:

| + )72 = (i, + 1)

B:

2K
<> |Pitr, + 1) = By, + 1)
7j=1

B

(1 = Bras) (Hy + 172, + | (1 = Brai) (Hy + 172

B

Here the last two terms are less than €, by (1.8). In the sum, we again have to consider

7 even only, where we now estimate

HPJ-(HU, )72~ P, + 1)—2‘

B
< HPj — P HB +2€|P)]5. < 2dimR(P;) HPj - 7%-” + 2edimR(P;)

<2p H'Pj - 753H + 2ep < dep

for w small, by Propostion 1.4, and the result follows.
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On the intervals of length w, where the passage P, meets the rooms (2, the decou-
pled operator H,, has Neumann boundary conditions from the side of the rooms and
Dirichlet boundary condition from the side of the passage. As we will see now, we
might as well decouple with a pure Dirichlet boundary condition on these intervals.
In view of later applications, we consider the Neumann Laplacian on a domain 2 and

investigate the influence of a Dirichlet boundary condition on the interval
Is=[0,0] x {0}CcR* 6>0 ;

note that we do not require Iy C 92. We have:

Proposition 1.6. Suppose Q is an open subset of R? with (—A%+1)~! compact.
Let —A%aN denote the Laplacian on Q — Iy, with Dirichlet boundary condition on I,
and Neumann boundary conditions on the remaining portions of 02. Then, given
€ > 0, there exists 6 > 0 such that

|(~a8,x+1) 7 = (A% +1) | <e  0<a<e

Proof. Suppose we associate the objects \;, @;, g, Ex with the operator —A%, and
\; etc. with —A%6 ~» as in the proof of Proposition 1.4. While the basic strategy of
proof is the same as the one leading to Propositions 1.4 and 1.5, we now use the u’s
instead of the fix’s as reference points, the yy being independent of §. Furthermore,
there are substantial simplifications in the details; in fact, we shall need neither Lemma

1.3 nor the extension process ¢; — ;. In particular, the estimate
() dimR(Ey) > dimR(Ex) M€R

is now an immediate consequence of the fact that —A% < —A%5 N> in the sense of

quadratic forms. Let € > 0. To obtain the estimate
(i4) dimR(E)) < dimR(Exye) A<A

for ¢ small, suppose that ¢1,...,¢, span R(E)). Applying Lemma 1.7, below, to
©1,...,Pp, Wwe obtain functions v1,...,, € Q(_A%,;N) which satisfy

lps — iy =0 d—=0
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Letting M = span{1,...,1,}, we again see that dim M = p and that
IVul> <A+ € Jul*  uweM

for 0 suficiently small, and (ii) follows. This corresponds to part (A) of the proof of
Proposition 1.4. Applying the above estimates successively to the points py + €, we see
that the eigenvalues of —A%a ~ lie in the e-neighborhood of the eigenvalues of —A$.
The argument given in part (C) of the proof of Proposition 1.4 is slightly simplified
as ¢p € Q(—AYR), so that the proof can start from

Sp = [V5,|2 = / A | By |

The rest of the arguments used in proving Propositions 1.4 and 1.5 remains basically

unchanged.

Qb

Lemma 1.7. Let Q C R? open and u € H1(Q). Then, there exists a sequence
{un} C H(Q) such that u, vanishes on the ball of radius 1/n, centered a the origin,

and |u —u,|, = 0 as n — oo.

Proof.
For € > 0 given, there exists M > 0 such that the function u; € H!(Q) given by

_ Julzy) if fu(z, y)| < M
up (z,y) = {u(:c,y)/ |lu(z,y)| otherwise

satisfies upr € H1(Q) and |u —uam|; < e. (This follows easily from the chain rule
(Gilbarg and Trudinger [10; Theorem 7.8]) via dominated convergence.)

Now, let p € C*(R?) enjoy the properties 0 < ¢ < 1, ¢(z,y) = 1 if 22 + y% > 4, and
o(z,y) = 0 for 2 + y2 < 1/n2. Also, define

or(z,y) = plkz,ky) k€EN
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From

lurr = opune| =0 k= o0

and |V(¢ruar)| < const., it follows that there exists a sequence {k;} C N such that
r;unm — upr weakly in H1(Q). Therefore, the Banach—Saks theorem implies that

N-1

1

N E Ok, unr —> upr ,  strongly in HH(Q)
Jj=1

as N — oo, and the result follows. @)

This concludes the preparations needed for Section 2. We note at this point, that
our proofs can be easily modified to obtain results similar to Propositions 1.4 — 1.6 in
higher dimensions.

For the construction of various combs in Section 3, we shall need variants of Lemma, 1.3
and Propositions 1.4 and 1.5 adapted to the situation where a thin “tooth” or handle
is attached to a given domain. In view of Theorem 3.7, we will allow for the handles

to be slightly more general than mere rectangles.

We begin with a variant of Lemma 1.3, dealing with a family of handles D,,, 0 < w <
wp, which are of the following type: for 0 < w < wy, each D,, is a bounded, open,

connected subset of the right half plane in R?, satisfying
Dy, N{(z,y) €eR? | 0 <z < Vw} = (0,vw) x (0,w) 0<w<wy (1.9)

(This means that D,, begins with an actual rectangular handle on the left-hand
side). Letting —Ag}‘(, denote the Laplacian on D,, with Dirichlet boundary condi-
tions on {0} x [0,w] and Neumann boundary conditions everywhere else, we require
that (—ABw + 1)~ is compact.

Also, let 0 < p1 < ... < p; < ... denote the (repeated) eigenvalues of —Ag}“v, with
associated normalized eigenfunctions 1;, 7 = 1,2,.... Finally, we need the adjoining
rectangles S,, = (—y/w,0] x (0,w).

With the above notation and assumptions we have the following lemma.
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Lemma 1.8. Letk € Ny, wy > 0, and suppose we are given a family {vy }o<w<wo
with vy, € HY(Dy U Sy) satisfying the following conditions:

(i) [vwlsr(pyus,) £ C for 0 <w <wo and some constant C.
(it) (j,vy) =0, asw — 0, for j=1,... k.
(i) | fSw V| < Aw™, for some constant A and 0 < w < wy.

Then, for any € > 0 there exists we such that

IVvw |_DwH2 > Pt [ow |_Dw||2_6 0 <w < we

Proof.
The simple averaging used in the proof of Lemma 1.3 has to be refined. We write

¥ = Uy, | = y/w and use the notation

he = (=1,1) x (0,w) C R?

TPL TqY
€p,q(T,y) = Cpq €COS —— cOS —— (z,y) € hy
21 w
for p, g € Ny and suitable normalizing constants ¢, 4; also, put op 4 = (v, €p ). Writing
Uy = Z Up.q€p,q > Ur=v[hy—Uy= Z Up,q€p,q
PENQ PENg
q=0 a€N

we now define, for (z,y) € D,,

N _ Jv(z,y) ’
901 = { ) + utettmg)

where ¢, () € C*°(R) is such that ¢, (z) = 1 for z > Jw, ¢p(z) = 0 for z < 0,
0 < ¢y < 1 and max |¢,| < 2w™ .

<

B

As in the proof of Lemma 1.3, the assumption |Vv|> < C implies |U:]> = 0 (w?) for

w small, so that v — 3| — 0. To estimate |V#|?, we first observe that 0,Uy =0, so

that
/\%Ws/\%ﬁ@mfs/l%w
hw hay hy
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On the other hand, looking at the z—derivative 0,9 = 0, Uy + @, (2)U;1 + ¢, (x) 0, U1,

we first note that

/ 16, (@) |02 < max |g,” |02 < C o tu?

w

Furthermore, as ¢ = 0 in Uy and ¢ > 1 in U3, Fubini’s theorem implies (9, Uy, 0,U1) =
0 and it follows that

/\awmz:/ |8wU0\2+/ (@) 10:01" + 0 (w™)
hw hy Ry
< (9wv2+0 w”
[, e+ o)

We therefore conclude that |Va|* < Vo] + O (w1/2>. The rest of the proof is similar
to the proof of Lemma 1.3; here, however, we will have to subtract from ¥ a piecewise
linear function which is 0 for z > \/w. QP

We now join handles of the type described above to a fixed domain Q C R2, where

we assume that

(—50,0) X (—s0,80) C

for some sy > 0, and

QND, =0 0 <w < wy
We will also require
Dy N{(z,y) |0 <z <w"} = (0,w") x (0,w)

which implies (1.9), for w < 1.

Now, letting Q,, = QU D', where D!, = D,, U ({0} x (0,w)), we define H, = —A%*
and H, = A —Ag}“\,. Also, let \;(w), i =1,2,..., denote the eigenvalues of H,,,
repeated according to multiplicity. We have
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Proposition 1.9. In addition to the above assumptions, suppose that (—A% +
1)=2 € By and that, more strongly,

() +1)72 50 N-ooo

uniformly for 0 < w < wqy. Finally, assume that, for any A > 0 given, the eigenvalues
of —Ag}”v in [0,A] are independent of w, for w small enough.
Then, as w — 0,

WH@+1Y4—(ﬁw+1fﬂw%0

and

—0

R !

Proof. Using Lemma 1.8 in place of Lemma 1.3, we closely follow the strategy of
proof which led to Propositions 1.4 and 1.5. Note that D,, now has a rectangular
handle (0,w") x (0,w), so that we can use the old extension and cut—off process to
extend the eigenfunctions @; of H,, to functions v; defined on all of Q,,, 1; € H(Qy),

d hmty;Dw 50, as w — 0.
and such that |4; [ (D) as w QP

Remarks. (a)The assumption that the eigenvalues of —ABWN in any interval [0,A]
be independent of w, for w small, is very restrictive. However, it is easy to see that
the proof of Proposition 1.9 can be modified to cover the situation where, for any 1,
the eigenvalue 5\1(w) of —AB}”V converges to some limit j\i, as w — 0, with A — 00 as
1 — 00.

(b) Some related results on shrinking handles attached to a fixed domain can be
found in Courant and Hilbert [5; p. 420] and in Arrieta, Hale and Han [3].
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2. Rooms and Passages

In Section 1, we considered the Neumann Laplacian on domains consisting of two
rooms, joined by a narrow passage. We now analyze the case where an infinite number
of rooms are joined by narrow passages and we determine the essential spectrum of the
associated Neumann Laplacian. More specific results will be obtained by choosing the
rooms to be either rectangles (Corollary 2.2) or rectangles with a partition (Corollaries
2.4 and 2.5). Rooms with partitions are particularly useful to attack the inverse

problem

(IP) Given a closed set S C [0,00), does there exist a bounded domain 2 C R?
such that gess(—AL) = S7?

We now define the general setting for rooms and passages (cf. Figure 4):

Suppose we are given two bounded, strictly increasing sequences {z}, {z}.} C [0,00)
which interlace, in the sense that z; < z}, < k41, for k =1,2,.... We also assume
z1 = 0, for simplicity. For k¥ = 1,2,..., let R, C R? be open sets satisfying the

following three conditions:

(—ARx 1 1)=2 s trace class. (2.1)
R C {(z,y) | zx < z < .} (2.2)

ORy ﬂBek((mk,O)) = {.’L‘k} X (—Gk,ek) OR; N Bek((IE;C,O)) = {:L';c} X (—ek,ek)
(2.3)

for some €, > 0, where B, ((zr,0)) denotes the ball of radius €, centerd at the
point (z,0). Conditions (2.2) and (2.3) in particular imply that the right half of
B, ((z1,0)) and the left half of B, ((z},,0)) are contained in Ry.

Insert Figure 4.

We then define the k-th passage, joining Ry, with Ry41, by
P, = Py(wg) = (2}, ,2p4+1) X (—wg,wg) 0 < wy, < min(eg, €x41) (2.4)
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While the rooms R may be considered as being fixed, the widths wj will be deter-
mined later on. For a sequence {wy} satisfying the requirements in (2.4), we now

define the rooms and passages domain {2 by

Q= Q ({w}ren) = Uil (R U Py) (2.5)

where P = [z}, ,Z41] X (—wk,wy ). Also, define the domains obtained by joining the

first n rooms

Qn = {with=1,..n—1) = Ui (Rk UP) UR, (2.6)
and the approximating operators
H, = Hy({wktren) = _A%n @ <@ (_AgkN ® _Aﬁwl)) 20
k=n
o= (oo = -2 0 (@ Cafyo-al)) s
k=n

Here the boundary conditions for —AZk, are as in Section 1, while the Laplacian
_A%fv obeys Dirichlet boundary conditions on the line segment where the passage
P, meets €2,,, and Neumann conditions on the remaining parts of the boundary 90€2,,.
Similarly, —Ag’j\, has Dirichlet boundary conditions on the line segments where the
passages P,_1 and Pj are attached, and Neumann boundary conditions on the rest of
ORy,. Hence H,, is the Neumann Laplacian on §, with all but the first n rooms and all
but the first n — 1 passages decoupled by pure Dirichlet boundary conditions. (Note
that the meaning of the “~” differs from Section 1).

The fundamental result of this section reads as follows.

Theorem 2.1. Suppose we are given R, C R?, k= 1,2,..., satisfying conditions
(2.1)—(2.8). Then, there exists a sequence of positive numbers wy, wy, — 0 as k — oo,

such that the Neumann Laplacian on Q = Q ({wy}) enjoys the following properties:

(i) Uac(_A%) = 0.

(i) Oess(~AR) = Oess (@ - Aﬁk) =Nu>1 (Uan o(—AR)

k=1

) Closure
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Remarks. (a) Any isolated point of oess(—A%) is an eigenvalue of infinite multi-
plicity or an accumulation point of eigenvalues. In particular, if 0 is an isolated point
of Tess(—AL), then it is necessarily an accumulation point of eigenvalues.

(b) The result of Theorem 2.1 holds true for all sequences {wy,} wich tend to 0 fast
enough; cf. Theorem A.l in the Appendix.

(c) It has been known for some time that rooms and passages examples may have a
non-compact embedding of H(Q2) into Ly(f2) (cf. Courant and Hilbert [6; p. 521]), in
which case the essential spectrum of the Neumann Laplacian can’t be empty. More re-
cently, Amick [2] and Evans and Harris [7, 8] analyzed various fundamental properties
of rooms and passages type domains related to Poincaré’s inequality and the measure
of non-compactness of the embedding of H!(Q) into Ls(); they also determined the

bottom of the essential spectrum in some cases.

Proof of Theorem 2.1.

(A) We first show that we can find a sequence {wy} of positive numbers such that

[(Ho + )7 = (Hapr + D7 < [(Ha 4 )72 = (Harr + ) 725 < 55
(2.9)

and
H(HnJrl)"l —(ﬁn+1)‘1H <Y & (2.10)
k>n

holds, for alln =1,2,... .
To achieve this, we first apply Proposition 1.6 to all the rooms Ry to obtain a sequence
{wy}, wy, > 0, such that

|a%+ D - al v < & (2.11)

provided 0 < wy < Wy (recall that —Ag’j\, obeys Dirichlet boundary conditions on the
line segments {zy} X (—wg—1,wr—1) and on {z}} x (—wg,w)).

We now proceed by induction. For n = 1, (2.10) follows directly from (2.11), as H;
and H; are fully decoupled. By Proposition 1.5, we can find 0 < wy < Wy, such that
(2.9) holds for n = 1. (Note that for H; as well as for Hy the rooms Ry, k > 3, are
decoupled.) Now suppose that 0 < w; < w;, j = 1,...,n — 1, have already been
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found. We then employ Proposition 1.5 to join £2,, P, and R, .1 together: Again,
since the rooms Ry, k& > n, are decoupled for H,_; as well as for H,, in order to
control (H, +1)~! — (H,41 + 1)1 it is enough to estimate

(—A%" @ —Ag"]\(,wn) ® _A§n+1 + 1)—1 _ (_A%n+1 + 1)—1
and therefore Proposition 1.5 provides us with a 0 < w), < w,, such that (2.9) holds
for 0 < w, <w!,. Applying also Proposition 1.6 to €2, we can find 0 < w,, < w], such

that
[af + 07 - Ay + )7 < &

(B) Now we fix a sequence {w,} which meets all the above requirements. Clearly,
the form domains Q(H,,) = D(f{;/z) satisfy

Q(H,) C Q(Hp41) CH'(Q) = Q(—-AF)
for all n € N, and, by Lemma 1.7, they exhaust H!(£2) in the sense that
Uy Q(H,) is dense in H(Q)

for all N € N. Since these quadratic forms are given by |Vu|?, for u € Q(H,)
or u € Q(—A%), we may conclude that H, — —AY% in strong resolvent sense, by
standard convergence theorems for quadratic forms (cf. e.g. Kato [12; Theorem
VIII-3.6 or Theorem VIII-3.11]).

Combining this result with (2.9) and (2.10), we see that H,, — —A% in norm resolvent
sense, and that

(Hi+1)72 = (-AY +1) 2 € B

s0 that oac(—A%) = 04c(Hi1) by Kato-Birman theory (see e.g. Reed and Simon [14;
pg. 30, Corollary 3]) and Gess(—AL) = 0ess(H1) by a theorem of Weyl and the spectral
mapping theorem. Now, since H; is the fully decoupled operator, with Neumann
boundary conditions in the rooms and Dirichlet-Neumann boundary conditions in

the passages, it is clear that o,.(H1) = 0 and

Uess(Hl) = O'ess(@ _Aﬁk)
k=1

(Note that the operators —AgkN cannot contribute to cess(H7) since the bottom of

their spectrum goes to oo, as k — 00.) This completes the proof of Theorem 2.1. @G

27



We now consider more specific R, and begin with classical rooms and passages where

each Ry is a rectangle. Let
Ry = (k,23) X (=3, 57) (2.12)

for some bounded sequence {7y}, nx > 0. As |z — z},| = 0, k — oo, it is easy to see
that
e o]
o-ess(@ _Aﬁk) = {0} U {m27r2a | m € N, a € E}
k=1
where

¥ = {limit points of {n;*}} (2.13)

and we obtain the following result:

Corollary 2.2. Suppose the rooms Ry are given by (2.12), with {nx} a bounded
sequence of positive numbers. Let 3 be as in (2.13). Then, there exists a sequence of

widths {wg}, wg — 0, such that the Neumann Laplacian on Q = Q({wy}) satisfies

Tess(—AR) = {0y Un? | ] m’%.

m=1

Remark. By Theorem A.l in the Appendix, Corollary 2.2 can be generalized to
hold for all sequences {wy} which go to zero fast enough. We believe that the result
holds true if wy — 0 at some exponential rate while the other quantities behave

polynomially.

Corollary 2.2 determines the essential spectrum of the Neumann Laplacian on typical
rooms and passages (for very narrow passages). However, due to the somewhat special
structure of the set US°_;m?%, it does not provide a really satisfactory answer to
the inverse problem (IP). While the best answer to (IP) will only be obtained by
the construction of modified combs in Section 3, we shall now make some progress
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by replacing each room R} by a small square room with a partition leaving open a

“door”, as shown in Figure 5.
Insert Figure 5 here.

These “double rooms” Ry, of side length k=2 will be chosen in such a way that —Aﬁ’“
has an eigenvalue 0, one low-lying eigenvalue less than 72k* (which can be adjusted
by choosing the width aj of the “door”), while the remaining eigenvalues are larger

than 72k*. In fact, we have the following lemma.

Lemma 2.3. Forl >0 and 0 < p <1, consider the open set in R?

Q(l;p) = ((—Z,O) U (Oal)) X (_lvl) U {0} X (—p,p)

Then, for any u € (0,72/41%), there exists p € (0,1) such that the (repeated) eigen-
values \j(p), 1 =0,1,2,..., of the Neumann Laplacian on Q(l; p) satisfy

MO =0 M) =u NPz (22

The proof of this lemma will be given at the end of this section. In the construction
of rooms and passages, let us now assume that |z}, — z;| = k™2 and that each room
Ry, is replaced by Ry, where Ry, is a square with a partition, leaving open a door of

width ag, as shown in Figure 4. We then have:

Corollary 2.4 (Modified Rooms and Passages). Let \i(ay) denote
the first non-zero eigenvalue of —Aﬁ’“. Then, for suitably chosen widths wy, of the
passages Py, the Neumann Laplacian on Q = Q({wy}) satisfies

Tess(—AY) = {0} U {accumulation points of {\;(az)}}
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An immediate consequence is the following inverse result:
Corollary 2.5. For any closed set S C [0,00), there exists an open, bounded,
connected set  C R? such that

Tess(—AY) = {0} U S

In Section 3 we will construct examples which do not necessarily have 0 in the essential

spectrum.

Proof of Lemma 2.3 We first exploit the monotonicity of the Sobolev spaces
H! (Q(l;p)) with respect to p,

H Q) CcHNQU;p)  0<p<p <l
to conclude that A;(p) < \(p), for j =0,1,2,...and 0 < p < p' <.

For p = 0, we clearly have

MO =00 =0 X(0) =
s0, by monotonicity,
2
Aa(p) 2 Xa(0) = 7 0<p<I

412
Since A1(0) = 0 and A1 () = 72/41?, the result will follow if we can show that A;(p)
depends continuously on p € [0,1].

To prove continuity at 0, we choose a function 1 € C*(R?), satisfying

Y(z,y) = > +y* >4

1

and let
Yo(z,y) =(p 'z, p7'y)  p>0

30



Letting x g and x denote the characteristic functions of the right and left portion of
Q(l;0) respectively, we define

2]p :"pp : (XR_XL)

We have: i, is orthogonal to the constant function, @, € H'(Q(l; p)), |Va,| < const
and @, — xg — xr in L?, as p — 0. Thus, for a suitable sequence {p;} converging to
0, we have @, — xgr — x1 weakly in %#*(Q(l;0)), and the Banach-Saks theorem yields
that the averages

1 N
UN = N;am

converge to xg — XL, strongly in H'(Q(l;0)). Therefore, given € > 0, we can find a
function we of norm 1, w. € H*(Q(l; p)), for small p, satisfying

Vw.| <€ we =0
I
Q(;p)

This proves \1(p) < € for p sufficiently small.

Continuity of A\i(p) in 0 < p < [ follows by monotonicity and a simple dilation
argument. Qé)

3. Combs.

We now apply the techniques of Sections 1 and 2 to Neumann Laplacians on comb-like
domains. Our combs are constructed by attaching an infinite number of thin “teeth”
(rectangles) of finite length to a fixed square forming the basis of the comb; each tooth
plays the role of one room and one passage simultaneously. In the second part of this
section, we shall produce combs with more sophisticated teeth (teeth of shrinking size

with partitions, similar to the double rooms in Section 2), which provide a complete
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answer to the inverse problem (IP) of Section 2. Each of the teeth with partitions will
contribute to the spectrum of the decoupled comparison operator precisely one low—
lying eigenvalue which again can be adjusted by choosing the opening of the “door”,

while the remaining eigenvalues will be very large.
We first describe ordinary combs.

Let the basis (or the “handle”) of the comb be the set Qo = (0,1) x (—1,0) C R?
and suppose we are given a bounded sequence {7} of positive numbers. The 7, give
the lenght of the k* tooth, k = 1,2,... . The width wy of the k*® tooth will be
determined inductively.

Suppose {wy} is some sequence of positive numbers such that Y wy < 1. We then
denote the initial z—coordinate of the k-th tooth by

k-1
ap =Y w;  k=12,... (3.1)
j=1
and the total width occupied by teeth as
A= Zwk (32)
k=1
For the k-th tooth, let
Dy = (ag,ar +wi) X (0,m) , Dy = (ak,ar +wg) X [0,nx) (3.3)
The comb-domain is then given by
Q=QoU(UpL,Dy) , (3.4)

while the approximating comb with only the first n teeth left, is given by
Q= Qo U (Ug=1 D) (3.5)

As in the rooms and passages example, we’ll also need two kinds of approximating

operators,

H,=-A%Yo (EB —Ag';v> n € Ny (3.6)
k>n
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and

H, =A%y @ (@ —Ag';v) n € N (3.7)
k>n
where the boundary conditions are chosen in the following way: —Ag’j\, has Dirichlet
boundary conditions on the line segment [ay ,ar + wg] % {0} and Neumann boundary
conditions on the rest of 0Dy; _AS[)ﬁv has Dirichlet conditions on the line segment
[@n+1,A] x {0}, and Neumann boundary conditions on the remaining portions of 92,
(cf. Figure 6 below). In particular, all the teeth are decoupled from the basis Q, for
the operator Hy. Similarly, for w1, ..., w, given, —A%g n Will denote the Laplacian on
2, with Dirichlet boundary conditions on the line segment [a,,+1,a,+1+ 0] X {0}, for
0 < 6§ <1-ay41 and Neumann boundary conditions on the rest of 0€2,,. Note that,

for fixed {nx}, the domains and operators defined above will depend on the sequence

{wn}.

Insert Figure 6 here.

Proposition 3.1. Suppose wy,...,w, are given, with wy > 0, fork =1,...,n,
and 2?21 w; < 1. Then there exists wy41 > 0 such that

|(Hn + )™ = (Hpr + )7 < 1/(n+1)2 n>0 (3.8)
|(Hn+1)72 = (Hpa + 1) 725 <1/(n+1)>  n>0 (3.9)
provided Wy, +1 < Wp41, for any choice of Wyt+2, W43, - - ., but still assuming > wy < 1.

Proof. Since the teeth D, 15, D, 13,... are decoupled for H,, as well as for H,, 1, it is
enough to compare (—A%" & —AD" 4 1)=1 and (—A%"** +1)~1, and the result will
follow if we can show that the assumptions of Proposition 1.9 are satisfied: Clearly,
the small eigenvalues on the dents are independent of w, for w small, while Neumann
bracketing yields that (—A%" +1)72 is trace class. QP
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We also have to consider the difference between the resolvent of H,, and ﬁn
Proposition 3.2. Letn > 1 and suppose wy,...,w, are given, with wy > 0, for
k=1,...,n, and >, wi < 1. Then, there exists 6, > 0, such that
~ 1
|+ 1) = (i + )7 < ~ (3.10)
for any choice of w11, Wny2,. .., provided ), ., wy < 0.

Proof. Since the teeth Dy, 11, Dy 49,... are decoupled for H,, as well as for H,, it is

clearly enough to ensure the existence of a d,, such that
1
Q, - Q, -
|2+ D7 - Ay + 07 < (3.11)

for all 0 < § < §, (recall the definition of —A%f; ~» given at the beginning of this
section). Hence the desired result follows from Proposition 1.6.

Qb

Again, the form domains Q(H,,) are non-decreasing and they exhaust H!(f), the form

domain of —A%, in the following sense:
Proposition 3.3. Let {w} be a sequence of positive numbers with > wy < 1.

Then Uy Q(H,) is dense in H'(Q), for N € N.

Proof. Let u € H'(Q). Lemma 1.7 provides a sequence {u} C H!(Q) such that
lu —ug|; — 0 and ug(z,y) = 0 for (z,y) in the ball of radius 1/k, centerd at the
point (A,0). Hence uj, € Q(H,,), for n sufficiently large, and the result follows. Q¥

We are now ready to put the pieces together.
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Theorem 3.4. Suppose we are given a bounded sequence of lengths {nx}, nx > 0.
Then there exists a sequence {wy,} of widths, wy > 0, such that the Neumann Laplacian
on the domain Q@ = Q({nx},{wk}), defined as in (3.1)—(3.4), enjoys the following

properties:
(i) —ASL has no absolutely continuous spectrum.

(i1) Oess(—AR) = w2 UL_, (ZLEL)2S, where X is the set of limit points of the

sequence {n; *}.

Remark. Fleckinger and Métivier [9] consider a class of combs with compact (—Ay+

1)~1, where they derive results on the asymptotic distribution of eigenvalues.

Proof. By Proposition 3.1, we can find some w; > 0 such that (3.8) and (3.9) hold.
Using Proposition 3.1 and 3.2 we then choose wy > 0 inductively, making sure that

(as we pass from k to k + 1)
(1) wg+1 < Wgy1 With W41 as in Proposition 3.1.

(44) Zf;le < Z‘;:le + 6, for s=1,...,k,

whith d, as in Proposition 3.2. (The meaning of condition (i:) is the following: If
w1, - .., ws have been defined, then Proposition 3.2 imposes the restriction ), o wy <
ds, and this is for s = 1,2,... .) Hence, for this sequence {wy}, (3.8) and (3.9) hold
for all n € N.

By Proposition 3.3 and Kato [12; Theorem VIII-3.6 or Theorem 3.11], we are able to
conclude that H, — —A% in strong resolvent sense. It follows by (3.8) and (3.9) that

H, — —A$ in norm resolvent sense, and that
(Ho+1) 72— (AR +1) 2 e B,

50 that gess(H) = 0ess(Hp) and oac(H) = 04c(Hp).
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Again, it is evident that o,.(Hy) = 0 and

oo
_ Dy,
Oess — Uess @ _ADN

k=1
= {(@m +1)/2*r% | m € Ny, a € T}

and we are done. QP

In order to arrive at a full solution of our inverse problem (IP), we now modify the

comb construction, using teeth of shrinking size with partitions of the following precise

type:

For w > 0 and 0 < v < w, the tooth D(w,~) is a rectangle of height w + w" and

"2 which leaves open a door of width

width w, with a horizontal partition at height w
v (cf. Figure 7). In the actual construction, we’ll attach a sequence of such teeth to
Qo = (0,1) x (—1,0). Again, let —Agg\qf”) denote the Laplacian on D(w,~y) with
Dirichlet boundary conditions on the bottom and Neumann boundary conditions on
the remaining parts of the boundary. We will use the following analogue of Lemma 2.3

to determine the parameter v in the further construction.

Insert Figure 7 here.

Lemma 3.5. Let0 <y <---

eigenvalues of _Agg\q;),y)’ for 0 <w

pi <oy pi = pi(w,7y), denote the (repeated)

<
<1and0<vy<w. We have:

(a) pi(w,vy) > pi(w,0), fori € N. In particular, ps — oo as w — 0, and, more
strongly, Y ,so(pi +1)72 = 0 as w — 0, uniformly in 0 <y < w.

(b) Suppose A > 0 is given, and wy > 0 is such that ps(w,0) > A, for 0 < w <
wy. Then, for any 0 < w < wy, there exists a vy = y(w, A) € (0,w) such that

p1 (w, y(w, A)) = A 0 <w< wy
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The proof is similar to the proof of Lemma 2.3.

Suppose now we are given a sequence {A;} C (0,00). The preceeding Lemma enables
us to find wy > 0 and functions 7x(w), defined for 0 < w < wy, such that the first
eigenvalue of the Dirichlet-Neumann Laplacian on D (w,vx(w)) is just Ay, whereas
the second eigenvalue is greater than k. We denote these families of teeth by Dy (w),
0 < w < wg. (In fact, in the actual construction of combs, we will use translates of

these Dy, but we will not make this explicit in the notation.)

Next, we define the objects ay, Q,, Q, H, and H, as in (3.1)-(3.7), with the only
difference that each tooth is now a set Dy (w), translated in the z—direction by an
amount of ai. Clearly, statements and proofs of Propositions 3.2 and 3.3 apply essen-
tially unchanged. By Lemma 3.5(a), and since /Jl(—Ag’j\;w)) = Mg, by construction,
we are in the position to apply Proposition 1.9 (also note that, by Neumann brack-
eting, (—A{" 4 1)=2 is trace class, for all n), and we obtain the estimates (3.8) and

(3.9) of Proposition 3.1. This leads to the following main result.

Theorem 3.6.  Suppose we are given a sequence {\x} C (0,00). Then, there
exists a bounded, open, connected set Q C R? such that aac(—A%) =0 and

Tess(—AY) = { limit points of {\}}

Proof. Again, we use (analogues of) Propositions 3.1-3.3 in order to find a sequence
{wy} of positive numbers so that all the estimates (3.8)—(3.10) hold.

As before, H, > ﬁn+1 > .-+ > 0, and so Proposition 3.3 combined with the usual
convergence theorems for quadratic forms implies that H, — —ASX, in strong resolvent

sense. By (3.8)—(3.10) this yields H,, — —A% in norm resolvent sense, and
(Hy+1)72 = (AR +1)72 e B,
Hence, 0,c(—AL) = 0,c(Hp) = 0 and
UeSS(_A%) = Uess(@ _Aglzcv(wk))

k=1
= { limit points of {A;}}
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and we are done. QP

It is clear that we can construct €2 as small as we please, without changing the result

of Theorem 3.6. This leads to the following solution of the inverse problem (IP).

Corollary 3.7. For any closed set S C [0,00) , there exists a bounded, connected
set Q contained in the unit ball of R2, such that

aess(—A%) =385.

Appendix

In this appendix, we discuss the main modifications needed in Propositions 1.4 and

1.6 to derive the following stronger version of Theorem 2.1.

Theorem A.l1. Suppose we are given a sequence of open domains R, C R?Z,
k =1,2,..., which satisfy conditions (2.1)-(2.3). Then there ezists a sequence {wy}

of positive numbers such that

aac(—A%) =0, UeSS(_A%) = UeSS(@ _Agk)
k=1

for any sequence {wy} satisfying 0 < wy, < Wy, k € N, where Q = Q({wy}) is given
by (2.5).

We shall need the estimates provided in Propositions 1.5 and 1.6 in a form which
is largely independent of the domains involved, in the sense that w. can be chosen
simultaneously for a whole family of domains Q,(It), 0<t<1, ¢g=1,2. In the sequel,

let B, denote the ball of radius g, centered at the origin in R2, for p > 0.
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Lemma A.2. Consider a family of domains Q®, 0 <t < 1, QW contained in
the left half-plane in R2, satisfying

(—s0,0) X (=s0,80) C QB 0<t<1
for some sg > 0. Then, for any M > 0 there exists a C > 0 such that
sup [t [ Bsy /2| +sup [V [ Byypo| < C

for any normalized eigenfunction v of —A%(t) associated with an eigenvalue X\ < M.

Proof. Let t € [0,1], A < M and suppose ¢ € ’D(—A%(t)) satisfies 4| = 1 and
—A%(”w — M. Reflection along the y-axis yields a function ¢ € H!(B,), which is
a weak solution of —A%”¢ = A in B,, for 0 < s < so. The desired result then
follows by repeated use of the a-priori-estimates given in Gilbarg and Trudinger [10;

Theorem 8.10], and an application of the Sobolev embedding theorem. Qé)

We now join two families of domains Qgt) and Qgt) by a narrow passage P, = [0,L] x
(—w,w). In view of Lemma A.2 we require Qgt) to be of the type described above,
while the domains Qgt) should lie to the right of {L} x R and should contain the set
(L,L+ sg) x (—sp,50). We furthermore require the operators (—Aszz,gt) + 1)~ to be
compact, for ¢ = 1,2 and 0 < ¢t < 1. Again, let /\Z(-t) and S\Et) denote the (repeated)
eigenvalues of
H® = — A%m

where

o® =P up, Ul
and of the decoupled operator

~ Q(t) Q(t)
HY = -Ay o -A0s 0 -AY

respectively, where the mixed boundary conditions on the passage are chosen as in
Section 1. Let {Egt)}, {E&t)} denote the spectral families associated with H{ and
fIS ), respectively. We have
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Proposition A.3. In addition to the assumptions made above, suppose that for
any A > 0 there exists a constant Cp such that

i | AP <Aay<ey  o0<t<l
Then, for any € > 0, there exists we > 0 such that
HEY) —E&”H <e 0<w<w,

for all X\ < A which satisfy dist()\,a(f{g))) > €.

Proof. Using Lemma A.2, we are in a position to control the extension process

@i + 1, described just before Proposition 1.4, in a t-independent way: We obtain

uniformly in ¢. The rest of the proof is similar to the proof of Proposition 1.4. @

Bi [PwH1 50, w—0

It is now easy to obtain the following generalization of Proposition 1.5:

Proposition A.4. Let QEP, g=1,2,0<t<1 be as above, and suppose that,
in addition,

YOP 41250, N-o

i>N
uniformly in 0 <t < 1. Then

H(Hg) + 1)~ (AD 1)-1H 50, w0,

H(Hg> +1)72 - (A® + 1)—2‘

w

-0, w—0,
B1

uniformly in 0 <t < 1.

Proof. Only some obvious changes in the proof of Proposition 1.5. QP

40



We finally have to change Neumann boundary conditions on the line segment {0} x

[—w,w] into a Dirichlet boundary condition.

Proposition A.5. Let Q%) be as in Lemma A.2, and let —A%(:N obey Dirich-
let boundary condition on {0} x [—w,w], and Neumann boundary condition on the

remaining portions of 0Q®) . Also assume that
/\z(.t) — 00, 1 — 00,

uniformly in 0 < ¢t < 1, where the )\Z(-t) denote the (repeated) eigenvalues of —A%(t).
Then

H(—Ag“) +1)71— (A% + 1)—1H 0, w0,

uniformly in 0 <t < 1.

Proof. The proof is similar to the proof of Proposition 1.6 but it requires a t-

independent version of Lemma 1.7 for eigenfunctions; see Lemma A.6 below. QP

Lemma A.6. Let Q®) be as above, and let A > 0. Then there exists a sequence
of cut-off functions ¢ € C*(R?2) with the following properties:

(a) 0 < ¢y <1,

(b) ¢r vanishes in a neighborhood of the origin,

(c) for any € > 0, there exists kg € N such that for k > ko,

lu = druly quy <€

for all normalized eigenfunctions u of —A%(t), associated with eigenvalues smaller than
A, for0<t<1.
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Proof. Applying the Banach-Saks theorem to the sequence of cut-offs ¢ used in

Lemma 1.7, we see that, for a suitable sequence {k;} C N

N

1

NZ%J' [ By -0 N-ooo
j=1 7{1(32)

We then may define ¢y = 1/N Zjvzl @k,;, for N € N. As the eigenfunctions u
(together with their gradients) obey a uniform bound on the ball B, /,, by Lemma
A .2, the result follows by straightforward estimates. QP

Proof of Theorem A.1. The proof now follows closely the lines of proof of Theorem
2.1, using Propositions A.4 and A.5 in place of Propositions 1.5 and 1.6, respectively.

6%

References

[1] R. A. Adams, Sobolev spaces. Academic Press, New York, 1975.

[2] Ch. J. Amick, Some remarks on Rellich’s theorem and the Poincaré inequality. J.
London Math. Soc. (2) 18 (1978), 81-93.

[3] J. M. Arrieta, J. K. Hale and Q. Han, Eigenvalue problems for nonsmoothly perturbed
domains. Preprint, Georgia Institute of Technology 1989.

[4] Y. Colin de Verdiere, Construction de laplaciens dont une partie finie du spectre est
donnée. Ann. Sci. Ecole Norm. Sup. 20 1987, 599-615.

[5] R. 16 and D. Hilbert, Methods of mathematical physics, Vol. I. Interscience, New
York 1966.

[6] R. 16 and D. Hilbert, Methoden der mathematischen Physik, Vol II. Springer, Berlin
1937.

42



[7]

8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

W. D. Evans and D. J. Harris, Sobolev embeddings for generalized ridged domains.
Proc. London Math. Soc. (3) 54 (1987), 141-175.

W. D. Evans and D. J. Harris, On the approximation numbers of Sobolev embeddings
for irregular domains. Quart. J. Math. Oxford (2), 40 (1989), 13-42.

J. Fleckinger and G. Métivier, Théorie spectrale des opérateurs uniformément ellip-
tiques sur quelques ouverts irréguliers. C. R. Acad. Sc. Paris (Sér. A) 276 (1973),
913-916.

D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order.
Second edition. Springer, New York 1983.

Sh. Jimbo, The singularly perturbed domain and the characterization for the eigen-
functions with Neumann boundary condition. J. Diff. Equ. 77 (1989), 322-350.

T. Kato, Perturbation theory for linear operators. Springer, New York 1966.
M. Reed and B. Simon, Methods of modern mathematical physics. Vol I: Functional

analysis. Revised and enlarged edition. Academic Press, New York 1980.

M. Reed and B. Simon, Methods of modern mathematical physics. Vol I1I: Scattering
theory. Academic Press, New York 1979.

M. Reed and B. Simon, Methods of modern mathematical physics. Vol IV: Analysis
of operators. Academic Press, New York 1978.

B. Simon and Th. Spencer, Trace class perturbations and the absence of absolutely
continuous spectra. Commun. Math. Phys. 125 (1989), 113-125.

43



