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“..que para sacar una verdad en limpio
menester son muchas pruebas y repruebas.”

“Don Quijote de la Mancha”, M. de Cervantes.

In [FS1] we announced a precise asymptotic formula for the ground-state energy of
a non-relativistic atom. The purpose of this paper is to establish an elementary in-
equality that plays a crucial role in our proof of that formula. The inequality concerns
the Thomas—Fermi potential Vpp(r) = —y(ar)/r, a > 0, where y(r) is defined as the

solution of

y'(z) = 2~ "y ()
y(0) =1 (1.1)
y(c0) =0

(Without loss of generality, in what follows we will take a = 1.)
Define
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where

Q; = supu(r) =u(re)  u(r) =ry(r)

The subscript for F' will be used whenever we want to emphasize the dependence of F'

on y.

Then, F(2) depends smoothly on 2 ([SW2]), and our main result here is as follows:

Theorem 1.1:
F'(Q)<ec<0  foralQe(0,Q) (1.2)

This is a quantitative form of the non-periodicity of almost all zero—energy orbits for
the Hamiltonian
H = ¢ + Vrr(|z))

on

R®={(z,§) |z € R® ¢eR%

In fact, an easy computation shows that a zero-energy orbit with angular momentum
Q is periodic if and only if the derivative F’(2) is a rational multiple of & (see [Ar].)
Hence, Theorem 1.1 shows that closed zero—energy orbits arise for only countably many
Q.

Theorem 1.1 will be used in our later papers ([FS5] and [F'S6]) to control the density

and eigenvalue sum arising from the three dimensional Schrodinger operator
Hy=-A+Z%Vpp (Z1/3|g;|)

for large 7.
Aperiodicity of zero—energy Hamiltonian paths is well-known to play a crucial role in
the study of eigenvalues and eigenfunctions. In our setting, Theorem 1.1 enters because

our formulas for the eigenvalue sum and density involve expressions of the form

s= ¥ ﬁ(Z;/SF(Z_l/?’l))

1<i<Z'3Q,

for elementary functions such as 3(t) = ¢ — [¢t] — 3. (Here [t] is the greatest integer in ¢.)
Since (3 is bounded, we obtain trivially the estimate S = O(Z 1/3). If F(Q) =mpQ+v
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with p rational, then the trivial estimate for S is easily seen to be the best possible. On
the other hand, if d*?F/d2* < ¢ < 0, then one can prove that the numbers

by = ZBF(Z 1)

are equidistributed modulo 7. (The argument is close to Hardy’s estimates on the
number of lattice points in a disc.) Since ((t) is periodic and has average zero, it
follows that S = O(Z7) with v < 3.

Thus, Theorem 1.1 allows us to improve on the trivial estimate for the sum S, which
appears in the eigenvalue sum and density for Hz. The complete proof of our results
on atoms is contained in this paper together with [FS2], [FS3], [FS4], [FS5], [FS6] and
[FS7].

The proof of Theorem 1.1 is necessarily rather delicate. For small perturbations of Vrp
in a natural topology, the analog of Theorem 1.1 fails. Therefore, we have to make
strong use of the differential equation defining y(r). Our proof uses computer—assisted
methods to solve that equation and to obtain bounds for F”. We remark, however,
that without a computer it can also be seen that F” vanishes at most finitely many
times (Proposition 4.8 below; see also the recent independent proof in [HKSW]), which
also implies that zero—energy periodic orbits have measure zero, which in turn also
implies the same results stated above for sums S, and therefore our result for atomic
energies. Theorem 1.1, however, is better because it implies better error terms for all
those formulas. Moreover, if one wants to understand ground—state energies to a greater

accuracy, then Theorem 1.1, with all its strength, is unavoidable.
In what follows, our proofs will not be computer—assisted unless stated otherwise.

It would be interesting to prove the aperiodicity of almost all zero—energy Hamiltonian

paths in the Thomas—Fermi potential for a molecule.

The complete programs used in our proof are publicly available by anonymous ftp
from the machine math.utexas.edu (Internet number 128.83.133.215) This machine
also supports other standard methods of such as gopher and wais. The interested
parties should contact their administrators about availability and usage of these pro-
grams on their machine. The machine math.utexas.edu has a user called anonymous
whose password is the e-mail address of the actual user. Our programs are stored in
the directory /pub/papers/feffsec. We refer the reader to the file README there for
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instructions on how to download the programs. Each one of them has instructions on
how to use them.

More information about how to interact with math.utexas.edu is available from the
Mathematical Physics Preprint Archive. In particular, the user can obtain detailed
instructions on how to install the public domain programs gopher and wais. Send
e-mail to mp_arc@math.utexas.edu for details.

We also remark that the American Mathematical Society maintains the e-math account
in the machine e-math.ams.com (Internet number 130.44.1.100). This account includes
a menu, one of whose entries is gopher. At the moment, the mp_arc gopher connection
is in the main menu. Going through different submenus, one can also reach the U.T.
Math. gopher server. The user may find out other machines that provide public access

to Internet services.

1. Preliminaries.

In this section we consider a smooth function y that looks like the Thomas—Fermi

function. More precisely, let u(xz) = zy(x); then, we assume the following holds;
a. y>0,y(0) =1 and lim,_, y(z) = 0.

b. There exists a point 7. s.t. u(z) < u(re) for & # re, u'(x) > 0 for 0 < z < 7,
and v'(z) < 0 for r. < z. Also, u”’(r:) <O0.

We will denote the two solutions of u(r) = Q2 by r1(Q) < r2(Q). We start by giving
convenient formulas for the derivatives of F. We point out that similar formulas were
given in [SW2]. One of the reasons we need formulas of the kind stated below is to
obtain expressions such as (1.7) and (1.8) below. Also, we will see that in the case of
an analytic y, not only is F' analytic on (0,Q.), but it admits an analytic extension

beyond €2.. However, 0 will be in general an essential singularity.

Lemma 1.2: Let y be as above. The following formulas hold:

F(Q) = / (u(z) — 92) ‘i—x



-y, dx

F'(Q) = —Q/ (u(z) — Q2)+

T

r2(Q2)—46 3 )
F'(Q) = — lim (/ (u(z) — )~ & y(x)dr + ()6~ /2>

6—0 1(2)+6

where ¢(Q2) is uniquely specified by requiring the finiteness of the limit.

Moreover, if b is any number less than r5(2), then

dz [t v, dz
— u(z) — Q) * =
dN2 (@) ( )+ T

equals

b s .
— lim (/ (u(z) — Q%) E y(x)dr + ¢1(2)0~ /2>

again, for a constant c, that makes the limit finite. The corresponding symmetric case
also holds.

Proof: The first two formulas are trivial. For the third, let

T2 (Q)—(S

H(5,Q) = / (u(r) — %)

r1(Q)+6 r

_Y, dr

Note that the formula for F” amounts to showing that

d .. . d
o lim H(5,9) = lim —< H(5,9) (1.3)

Indeed, the left hand side equals —F"', whereas the right hand side equals

r2(2)—0 _3. d r2(€2)—6 _y
lim 92/ (u(r) — Q%) B -I-/ (u(r) — Q%) il
50 r1(2)+6 r r1(Q)+6 r

—u(ry —h ,
—|—Q( — r (Q)— (U(’r1+iz+5( )) Tl(Q))}
. r2(®)—9 o\ — 72 dT'
= %l—%{/ﬁ(g)w u(r) — Q%) Zu(r) -

' (ri) |2 |r(@)67 " (1 + 0(9))
=D (@) }

1=1,2
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which agrees with the formula asserted for —F"' | provided that this previous expression
for ¢(€2)

u' ()|~ 2 |r!

actually makes the limit above finite.
Therefore, the lemma will follow if we show that both H(4,2) and B%H (6,€2) converge
uniformly on compact subsets of (0,€.) to C! functions. This will imply, first, that we

can interchange limits in (1.3), and, second, that the expression for ¢(€2) above is the

right one.

In order to see this, consider the change of variables given by

9 s .
Hr) = { (92 — u(r)) ifr>r, (1.4)

1
koo
— (2 —u(r)” ifr<r
Note that ¢ is smooth and strictly increasing in the range (0,00). We can therefore
consider its inverse, 7(t), and use it to rewrite

t2(6,Q2)

H(5,Q) = Q/ (D2 — )~ " w(t) dt

t1(6,Q2)

where

2 2 2 r'(t)
t1:t(7'1+5) tgzt(Tz—(S) D :QC—Q w(t):

Note that w is smooth on (0,.), and that
tl =-D (I—I—Tl((S)) tzZD(1+T2 ((S)) C(SS ‘TZ‘ SC(S fOI‘iZI,2 (15)

uniformly on compact subsets of (0,Q.), which implies that

H(5,Q) = Q/D ’ (1—2)" " w(tD) dt

D_ltl

converges uniformly to the C' function

1

H(0,Q) = Q/ (1) w(tD) dt = —F'(Q). (1.6)
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As for ZLH(5,9),

d%H((S, Q) = /D t2(1 - t2)—1/28% (m(w)) dt+92 Y Gi5,9)

D-1¢ 1=1,2

with )
_1/2 . - _1 .
w(t;) 50 (D™'t;)

The first term above converges with ¢ to the smooth function

/_11(1 — 1) a% (Qw(tD)) dt

uniformly on compact subsets of (0,€.). Thus, the lemma will follow if we prove that

Gi(6,Q) ==+ (1-D7?t)

G; goes to zero with § uniformly in Q. By (1.5), this will in turn follow if we prove that

0

8—9 (D_lti) = 0((5)

By (1.5) again, it is enough to prove that

0 1,12
But, for 1 =1,
0 1, 2 0 [(u(ri+0)—Q2
o0 (D7) = o0 ( u(ry) — Q2

_ (u(rl) — Qz) uw'(r1+ 0)ry(Q) — (u(rl +0) — Qg) uw' (r1)r ()
(u(ry) — Q2)°

e
(u(r1) — 22)°
((ulr) (ry +8) = u(ry + 8)/(m) = Q2 (u/(r1 + 6) = /(1))

The first factor above is trivial. The other is clearly bounded by Cd, and, doing the

same for 2 = 2, the lemma follows.

The last remark in the statement of the lemma follows in exactly the same way, with
the only modification that one of the G; is in fact constant in §, which of course does
not affect the uniform approach to a C! function. QP
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A closer look at (1.6) yields the following remark:

Corollary 1.3: Define w(t) as in the proof of the previous lemma. Then
1 ., 0
—F"(Q) = / (1—t3H)~" = (Qw(tD)) dt
1 o0

In particular, if y € C*(0,00), then F, € C*71(0,Q.), k > 2. Also, if y is analytic

F(Q) admits an analytic extension to a complex neighborhood of (0,$].

Proof: If y € C*, the same is true for u. Therefore, t € C*~1, thus r € C*~1(-Q,,Q.)
and 7(t) # 0, which implies w € C*~2(-Q,.,Q.), and, by (1.6), F' € Ck~2.

In the case of an analytic y, since w is analytic in some neighborhood around 0, it

admits a convergent power series expansion

w(t) =Y wat™  t<ty (1.7)
n=0
This implies
) 1
—F'(Q)=0Q) w2nD2"/ (1— 3~ 22" dt (1.8)
n=0 -1

since the odd terms clearly yield an integral 0, and thus drop out of the sum. This, in
particular shows that F' can be defined as an analytic function around €2.. Since, by
(1.6), F' is analytic also in (0,€2.), the corollary follows. QP

We will see later (Proposition 4.8) that the limit
lim F"(Q)QY  ~y= -V
Q—0 2

exists, is finite and not zero. This shows, in particular, that F' has an essential singularity

at 0 and that F' is not a linear function.

The proof of (1.2) will now go as follows:
We make an initial division of (0,€.) into two intervals (0,Q) and [Q,9.], that we

will refer to as Zone I and Zone II, respectively. In Zone I, we will use the formula in
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Lemma 1.2 to prove (1.2) uniformly on very little subintervals of (0,Q). We will deal
with this in Section 4.
Then, formula (1.8) will allow us to show (1.2) uniformly on Zone II, as explained in

Section 5.

Our proof will rely on a very precise knowledge of the solution to the Thomas—Fermi
equation. For this, we will use computer assisted techniques. The next section deals

with a description of how the computer will be used to yield theorems.

Acknowledgments We wish to express our deepest gratitude to R. de la Llave: in ad-
dition to stimulating conversations, he taught us everything we know about computer—
assisted proofs, gave us useful advice concerning the presentation of the paper, and went
through the excruciating pain of checking our computer programs. We are also grateful
to D. Rana for providing us with his interval arithmetic package. Finally, we thank the
Department of Mathematics of the University of Texas at Austin for their help with the

electronic distribution of the computer programs.

2. Computer—Assisted Analysis

Let R be the set of “representable numbers” in a computer, that is those numbers that
the computer can represent exactly. Depending on the specific machine, they are usually

real numbers with some finite binary expansion.

It is well known that computers can only perform arithmetic in an approximate way:
the addition —for example— of two representable numbers is another representable

number that will probably be close to the true sum, but is not exactly the true sum.

The idea to perform rigorous arithmetic is to instruct the computer on how to produce
upper and lower bounds to the true results of arithmetic operations between repre-
sentable numbers; in other words, we work with intervals with endpoints in R, and we
implement arithmetic operations on intervals in such a way that given two intervals,
the computer will produce a third that is guaranteed to contain the result of all arith-

metic operations between points in the initial intervals. This is usually called “interval



arithmetic”.

We denote the set of all these intervals by Z. Also, given a real function f(x), we denote

f)={fx)|zel} TeI

Binary functions of intervals are defined accordingly. In particular, a statement like
I, > I, means that > y for all pairs (z,y), z € I, y € Is. Also, given I = [a,b]
and € > 0, we introduce the shorthand notation I + € to denote an interval containing
[a — €,b+ ¢]. We also point out, although it really is redundant, that in what follows,
finite decimal expressions for numbers represent the rational numbers with exactly those

decimal expansions.

The next step is to perform a similar kind of arithmetic, but where objects are functions
in some Banach space, not numbers. A convenient Banach space to use in this theory is
the space of piecewise analytic functions, with a lower bound on the size of the domains

of analyticity.

Occasionally, it will be convenient to switch to genuine real variable theory, for which
we will do our work on C°[—1,1]. The reason for this is that inversion of functions
in R! is a little easier than the complex counterpart, mainly because the domain of
definition problem is trivial in the real case. We remark though, that the use of C? is

not essential, and the same analysis could be carried over to H' with a little more work.

More precisely, consider the Banach Algebras

H' = {f<z> TG =Y " Y | < oo}

and
C° = {f(z) | f is continuous on [—1,1]}

with norms
o0

17l =)lanl  1fle =sup|f(z)

n=0
respectively.
H' is a subspace of the set of analytic functions in the unit disk.
Then, our substitute for intervals are sets U (I, ..., In; Ch,Cy; k) of the form

10



€l 0SnSN 3l <Cnlol <Gy} (2)
n=N+1

{f(z) = Zan 2" +2%g(2)

where C}, and Cj are positive real numbers and I,, are intervals in the real line. The
parameter k£ will generally be problem—dependent and fixed. For the computer imple-
mentation, C and Cy will run over the set of computer-representable numbers, and
the intervals will be those with representable endpoints. We refer to Cj and C, as
high and general order error terms respectively, for obvious reasons. If intervals have
nonempty interior and Cj > 0, or if ¥ = 0 and C; > 0, then these sets are in fact a
neighborhood basis for the topology induced by | ;. For this reason, we will refer to
these U as “neighborhoods”, even if in general they will not be. We will refer to them
as neighborhoods of type k& whenever we want to emphasize the integer k£ in definition
(2.1). If C4 = 0, we refer to them as type co. In general, (k) means that U is a
neighborhood of type k. Also, we will refer to them as being of order N to indicate
that they consist of N 4+ 1 intervals. In our implementation, N will not be fixed, but

chosen adaptatively during the execution of the programs.

The reason why this is a convenient space to work in is because elementary opera-
tions, such as addition, product, integration, differentiation (composed with a slightly
contracting dilation), evaluation at a point and integration of initial value problems in
ordinary differential equations can be conveniently bounded by elementary formulas in
terms of this set of neighborhoods.

By trivial scaling, we will be able to do analysis on

H'(j2— 2] < 1) = {f<z> @)=Y (52) L Yl <oo}

a subspace of the set of analytic functions on the disk of center zy and radius r.

As for C°, we will use sets (that we will also refer to as “neighborhoods”) of the type:

N
U(Ip,...,IN;Ch,Cyi k; S) = {f(z) = Zan 2" 4+ 2V h(2) + 2Fg(2)

n=0

an € I,, 0<n <N, sup |h(2)| < Ch , sup|g(z)| < C’g} (2.2)
z€S z€S
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where S is a subset of [—1,1], and h and g are continuous functions on S.
We will use the superscript 0 or 1 whenever we want to emphasize in which topology
we are taking these “neighborhoods”.

Note the natural inclusion
U'(To, ..., IN;Ch, Cys k) CU° (Lo, - . ., In; Chy Cys k3 S)

for any S C [-1,1].

These sets of neighborhoods U°(k) will not allow us to perform as many operations
as their smaller brothers the U'(k), but we can still add, multiply, raise to fractional
powers and integrate (among others) in terms of them; furthermore, the formulas for

these neighborhood operations are exactly the same as those for the U (k).

We illustrate this neighborhood analysis describing how we can raise neighborhoods
to real powers. At this point, we make the following remark concerning our use and
description of algorithms:

Algorithms describe a procedure that, if successful, will allow us to construct (usually
upper and lower bounds for) certain numbers. When we describe these algorithms, we
will state under which conditions they fail; a failure means that the procedure is stopped,
an error reported, and no theorem proved. Obviously, if during the description of an
algorithm, we use another algorithm, a failure in the execution of the latter implies also

a failure of the former algorithm.

Lemma 2.1: Let0 < r < 1. Then

NrN o §f N >
sup (nr™) < 1 / — Mlogr]
n>N eTog7] otherwise
Proof: The function zr® attains its maximum when z = [logr|". Qr

Lemma 2.2: Consider, in any commutative Banach Algebra, the operators

T(y) = (1+y)~
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acting on |ly| < r < 1. Then, we have

IT*(y)] < Ka.2(a, Jy])
|7 HLip < Coaz(a,r)

where
i (1= Iy 1+ fol ) c1<ase
p s T~ Iyl
22(o y]) =
(1 — [y[)~!e! otherwise
o i (10l S el et} ci<a s
e r
Coq(a,r) =

la|(1 —7)~le1 otherwise

Proof: First, if -1 < a <2 and |jy1], |y2| < 7,

(1T+y1)* = (1 +y2)" i( ) 1 —Yz)

n=1

Now,
n—1
yr =y = —y2) Y ykyp P
k=0

and

nlk: -1

< nr"

Since 2 > a > —1, ‘(Z)‘ is a decreasmg sequence in n, for n > 1. Therefore,

1o _
nr”1
n

7 =T 3~

ly1 — ol

n=1
< |a|+7,|a| ‘a_l‘
- (1—r)2
On the other hand, for « in the same range,
|/
izl <3 |(4)]
n=0
lyl
<1+ |af
1=yl
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Now, for general a, and |y1|, |y2| < r, note that

le¥| < elvl

and
[log(1 + y)| < —log(1 — |y[)
Therefore,
T2 (y)] = e840 | < (1= )~
and

17°(0) = 7] = ol (0~ ) [ T (o + (1= 0e) dtH

<ol |y — ya| (1 — )~ 1o Qv

Algorithm 2.3: Given a neighborhood U(Iy, ..., In; Ch,Cy; k) satisfying
1. Iy > 0.
2. |Io| >3 oo In] +Ch + Cy.
3. ifa>2, then 2N > a — 1.

we construct another, U(k), such that, if f € U then f* € U(k).
The algorithm is independent of k, and of whether the neighborhoods are in H* or C°.
If Cy =0 for U, then the same is true for U.

Description: Assume first that o > —1.
Let f €U. Put f = (£(0)) " - f, 50 f =1+ y(2) + 2 g(2), where y(z) = zji(2),
1+y(z) eU(Iy, ..., Iy;Cy,0;0) (2.3)

for Il = f(0)~* - I, C; = f(0)' - Cy, and |g| < Cy/f(0). Bounds for all this can be
computed easily since we know that f(0) € Io.

Now,

(1+9()" = i (2)star+ 102
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where h(z) = zN*1h(z). In the H' topology, |h|; = |k|1, and

~ o
i< 3 |(2)
n>N
« pN+1
<
“I\N+1/|1—-1r
for
N
r=>_|Ij|+C}
=1

where we have used condition 3. in the statement of the algorithm. In the C° topology,

i < 32 |Gl

FNA+L
<
<N + 1) 1—r
for
N
r=>Y_|Ij|+Cj.
=1

As a result of this, the computation of |&| is done in exactly the same way whether we

are in the CY or H' topologies.

Concerning the computation of the factor l—iT, it is done as follows: we first check that
€ (0,1) the check for » > 0 being unnecessary, harmless but convenient; then, we

compute an upper bound for 1—; with our interval arithmetic package, knowing that

an overflow will be reported and the program terminated if we cannot find such upper

bound with machine—numbers.
Also,

(1+y(2)* - (f(2)) = 0(z)
which implies that general errors are of type k. In the case that we are in H!, since

multiplication by z is an isomorphism, by Lemma 2.2, we see that general errors are
bounded by

[0 +yE) - f2)" lyl + lgl)

If, however, we are in C°, apply Lemma 2.2 to (R!,+,-), to get

(1 +y@)" = F)°| <[1+9E) - )] Caz (@ lgle + Iylo)
< |24 191oq - Ca2 (@ I le + 1))
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since |y(2)], [f(z) — 1| < 9] + Y] and Ca2(a,t) is increasing in ¢.

Therefore, say that

by (2.3). Then,

with
_ o pN+1
C’L_C"+‘<N+1> 1—7
and
Cy = f(0)7'Cy - Caa (e, |y + Cyf (0)71)
and

fa € f(O)a . U(f(), .. .,fN; éh,ég; k)

In the case o < —1, we can find an integer k such that 2%« > —1. Then, we can find

a neighborhood containing f2_k°‘. By ordinary multiplication we can thus construct a
k

N2
neighborhood containing f* = (f2 k"‘) : QP

Although computer—assisted analysis has become fairly standard, we refer the reader to
[Mo] and [KM] for a description of the basic ideas. The technique for solving ODE’s is
adapted from [Se2] and [Sel], and is tailored to handle our particular ODE. See [Lo] for
a thorough discussion on ODE solving techniques, with very good general algorithms.
Also, we refer the reader to [EKW], [EW], [FL], [LL], [Ll] and [Ra] for a sample of
computer—assisted proofs of a wide variety of problems. Main ideas in our approach go

back to those proofs.

Our interval arithmetic package is an adaptation of the one used in [Sel] and [Se2],
which in turn is an adaptation of the one developed by D. Rana. See [Ra] and [Sel] for

details on the software.
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3. The Thomas—Fermi Equation

In this section we will be concerned with the problem of getting good bounds for the
solution of the Thomas—Fermi equation (1.1).
It is well known ([Hi]) that

—wo = lim y'(r) <0 (3.1)

exists, and that y admits a power series expansion
y(r) = 144r™ (Z b r_""‘) (3.2)

convergent for r large enough, with by =1, by < 0 and o = 3(v/73 — 7).

Also, y is always positive, decreasing, and it is the only such solution of the ODE
satisfying (3.1) and (3.2).

The Initial Value Problem away from the Singularities.

In this section we will be concerned with the solution to the Initial Value Problem

u' (z) = z Py (z)

u(z0) = uo (3-3)

for zg,up > 0

The solution to this problem will be in terms of a function f € H'! satisfying
u(z) = ug +uy -7 -2+ 22f(2)

where z = (x — xg)/r and r is a small positive representable number (in particular,
T < Tp).
Note that the solution of (3.3) can be viewed as the fixed point of

. uth ()
T(u):u0+/ u1+/ —,ds | di
o g S

and that T induces in a trivial way an operator T of which f is its fixed point.

Throughout this section, we will do our work on H*, and | | will always denote | ;.

17



Algorithm 3.1: We deduce conditions on ug, uy, g, 7 and o under which T is a

well-defined contraction in B(0,«) C H', and we compute an upper bound for HT

Description: Let g = ) a,2™. Consider the operators

Ty(f) = rusz + 22£(2)
Ty(g) = (uo + g(2))™
Ts(9) = (rz+z0)~ 2 - g
Ti(g) =r* Z (n+ 17;(n+ 2)

It is clear that
T(u) = ug + U1z + 2% (Ty 0 T3 0 Ty 0 T1 ) (f)

and thus, T=Ty0T30Ty0Tj.

Now, T7 is affine with an isometry as the linear part, and

,’,2

1Tl < 3

Using Lemma 2.2, and putting 8 = r/xo, we can see that

1
|Talys, < (2 +20) 7|

<y "Koa(—3,8)

Here we assume 3 < 1, otherwise we say the algorithm fails.
For T, we have
1
/:
|T> HLip < “0202-2(37’)’)

whenever
v>uy' sup |Ta(f)|
Ifl<a
Since ]
_ r\ul| + o  def
ug! sup |Ti(f)| < —— = %

Ifl€a Uo

we have

~ 1,1
T o < ir2zy PuKao(—3, 8)Caa(3, 7o)

Also, here we assume vy < 1, or else the algorithm fails.
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Next, we need to show that T maps B(0, ) into itself. In order to do this, note that
IT4(g)| < %73 lg|, which implies

HT(O)H < %7‘2 H(rz + xo)_1/2 . H(uo + 7"u1z)3/2
1, 3 rlu
< ir?ag Pug? Koa(—1,8) Koy <§, |u—01|>

Note that our assumption on 7y guarantees that the last term above is well-defined.

Then, since

T(O)H Yo HT

Lip

we see that T maps B (0, @) into itself provided

_1y s r|u
Ir2zy Pu Ky a(—3%, B)Kaa (% |u1‘> <a(l-1L)
0
whenever L is an upper bound for T‘ L The algorithm also reports a failure if the
ip
upper bound L obtained using (3.9) is not strictly less than 1. QP

Note that if the previous conditions are satisfied, we also know that the solution w is
strictly positive on [zg — 7,29 + r]. Also, we know that it is defined as an analytic

function on |z — xg| < 7.

Algorithm 3.2: Given intervals *, ug and uj, and representable r, we construct a
neighborhood U(Iy, ..., In;0,C4;0) such that for any xo € x*, ug € ug, and ui € uj,
and any solution u of (3.3) with any of these initial conditions, we have

uw(z) = up +uy - (z — x0) + 22 f(2) p=2" 10

r

for some f € U.
We can also make that neighborhood to have the form U(Iy,. .., In;Ch,0;00).

Description: First, we construct, in a heuristic way, a polynomial



which approximately solves Tp = p, and we set « such that Ip| < a. Next, we look for
ap > « such that the conditions on zq, ug, u1, 7 and ag given by Algorithm 3.1 hold
uniformly for all zg € z*, up € ug and u; € uj.

Next, since f is the fixed point of T, we have

-t

v
1 T‘

Lip

Ip—fI <

Now, formulas (3.4) and (3.5) allow us to compute an upper bound for the numerator,
Algorithm 3.1 allows us to compute a lower bound for the denominator, and we set C,
to be the resulting upper bound for the ratio. This immediately yields the required U,
by putting I; = [p;,p;] for : =0,...,N.

In order to obtain neighborhoods of type oo, note that by power matching, for a given
i, we can produce an interval I; that contains any of the ¢’th Taylor coefficient for any
of the solutions to the ODE for all zg € z*, up € ug and u; € uj. Next, we pick any
polynomial p(z) = Zév p;izt, with p; € I;, and carry out the previous procedure, to
obtain an upper bound C for |p — f|. It is clear then that f € U(Iy,...,In;C,0;0),
since, if f =) a,2", then

S lad < [f-pl<C Qb

n>N

Remark: Note that the previous algorithm enables us to construct a neighborhood

of type 2 that contains u as a function of z.

Algorithm 3.3: Given disjoint intervals z; and =7, and representable uy and u;, we
construct intervals y§ and yi such that the solutions u to (3.3) with initial values ug
and uy for x € x satisfy

u@) €y u'(2) €y

for any =’ € x%.

Description: Choose a representable r such that r > |z§ — z7|, (if we can’t, we report
a failure) and run the previous algorithm for this . Then, y3 can be readily obtained

by simply evaluating the neighborhood U produced by the algorithm at the interval x7.
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In order to obtain yi, we note that

u'(z") = uy —I—/ u”(s)s™ " ds

and this can be also easily computed. For a sharp bound, note that by the previous

remark, we have u(s)[as a function of z = *=*] € U(ly,...,In;0,C;2), and thus, we
also have

u(s)%s_l/2 las a function of z] € U(Iy,...,In;Ch,Cy;2)
After integration, this reduces general error terms by a factor 3 compared to the ones

that would follow from the weaker statement
u(s)%s_l/2 las a function of z] € U(Iy,...,In;Ch, Cy;0) QP

The following lemma has a trivial proof.

Lemma 3.4: Say y1 and yo are positive solutions of y"' = x_1/2y3/2 on the interval

[x1,22], with 21 > 0.

1. If y1(x1) > y2(z1) and yi(z1) > y4(z1) for all x € [x1,22], then we have that
y1(z) > ya(z) and y1(z) > yy(x) for all x € [x1,z2].

2. If y1(x2) > ya(z2) and yi(z2) < y4(x2) for all x € [x1,22], then we have that
y1(z) > y2(z) and y1(z) < yy(z) for all x € [z1,22].

Definition: Let z} = [z¢",z,?] for i = 1,2 be two intervals. Then, we define

2} Ur 23 = [ min ", max z}?
i=1,2 i=1,2

Algorithm 3.5: Given disjoint intervals gy and =37, and intervals ug and uj, we con-
struct intervals y§ and yi such that all solutions u to (3.3) with initial values equal
to any up € uy and any uy; € uj, for any x € x are guaranteed to exist as positive

solutions on [x,z'], and furthermore satisfy
u@) eyy  W() €yl

for all 2’ € x7.
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Description: Assume first that z3 < z%. Say uf = [ud®,ug?], and u} = [uf™,u}P].

Next, run the previous algorithm: first, for uyp = ug™ and u; = u{®, to obtain intervals
wg and wi, and, second, for ug = up® and u; = u;*, two obtain intervals z and z}. Note
that if the first algorithm is successful, this implies that all solutions with initial values
uy? and ud" for any = € z* are well-defined as strictly positive functions all the way up
to 2/, and, by the previous lemma, all other solutions involved will be bounded above
and away from zero: this implies that they can all be well-defined as positive functions
all the way up to z’. We can then apply the previous lemma again to conclude that we
can put
Yo = wp Ur Zg y1 = wi Ur 2

If 2§ > %, then we run the previous algorithm, first, for ug = ug® and u; = uP,

p

to obtain intervals w§ and wf, and, second, for ug = uy® and u; = ud™, two obtain

intervals z3 and zj. It is then clear as before, that we can put

* * * * * *
Yo = wo Ur 2 Y1 =wy Ur 2 QP

The Initial Value Problem at O.

Here we will be concerned with the solution to the Initial Value Problem

W (z) = 2~ 2u” (z)
u(0) =1 (3.10)
u'(0) = —w
for w > 0.

In this case, the solution to this problem will be in terms of a function f € H' satisfying
w(z) =1—w-r-22+22f(2) (3.11)

where z = (z/r)” and r is a small positive representable number.

The solution of (3.10) can be viewed as the fixed point of

T(u):l—}-/ow (—w+/0t%ds> dt

and again 7' induces in a trivial way an operator T of which f is its fixed point.
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Algorithm 3.6: We deduce conditions on w, r and o under which T is a contraction

in B(0,), and we compute an upper bound for HT

Lip

Description: Let g = ) a,2". Consider the operators

Ti(f) = —rwz?+ z3f(z)
To(g) = (1+9(2)) ™

n (3.12)
3 (077%4
T3(g) = 4r” n
3(9) = dr HX;; n+1)(n+3)
It is clear that
T(u)=1—wz+ 2 (T30 Ty 0 Ty)(f) (3.13)

and thus, T = T30 Ty o Tj.

Just as in Algorithm 3.1, T} is affine with an isometryt as the linear part, |T3|;, < 4%

3’1"
and, for T, we have

|7 ”Lip < 02.2(% Yo)

where, in this case

[N
@
N

sup [T1(f)] <rw+a
If1<a

Yo

We check that vy < 1; otherwise, the algorithm fails.
Therefore,

4,.% 3
L < 37 2C2.2(5, )
ip

|

Then we check that the upper bound for |T|r;, thus obtained is strictly less than 1;

otherwise, the algorithm fails.
Next, note that |T3(g)| < 2r” |g[, which implies

7o)

4,.%

3,’, 2)3/2

IN

(1 —wrz

3
< %7‘ /2K2_2(%,wr)

Then we see that T maps B (0, @) into itself provided

%

%r?’/ng_z(%,wr) <a <1 - HT

Lip)
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Algorithm 3.7: Given representable w and r we construct a neighborhood
U(Lo,...,In;0,Cy,0)

such that the solution of (3.10) is well-defined on [0,r] and satisfies

uw(z) =1 —wz + 2°f(2) z= (%)1/2

for fel.
Description: Similar to Algorithm 3.2.

Algorithm 3.8: Given representable w and r, we construct intervals y; and yi such
that the solution u of (3.10) satisfies

u(r) eyy  u'(r) € yi

Description:
Yo can be obtained with a trivial variant of Algorithm 3.3, via Algorithm 3.7.
For y7, note that, if we put

w” () = (TeoTh)f(2) = Zanz"

then

Note now that in our representation z = (z/r)”2, we have a neighborhood of type 3
containing u(z) as a function of z. We can thus construct another neighborhood of type
3 such that

Z anz" € U(Ip,...,In;Ch,Cy; 3)
n=0
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Thus,

whenever

1
el > 55 + 3G Qb

Lemma 3.9: Let uy and ug be the solutions of (3.10), with values wy and wa, w1 < wa.
Then, assuming that uy 2(z) are well-defined and strictly positive for x € [0,R], we have
that uy(z) > ua(z) and u)(x) > ub(x) for x € [0,R].

Proof: Let f; and fy be associated with u; and ug as in (3.11). Since
uy(z) > 1 —wiz — 2° | f1

and

uz(z) <1 —woz + 23 | f2|

for all z small enough, we have that uq(z) > ua(x) and thus uf(z) > uf(x). Since the

u) are integrable at the origin, we conclude that
x x
uy(z) = / uy (t) dt —wy > / uy (t) dt — wa = ub(z)
0 0
for all  small enough. The lemma now follows from Lemma 3.4. QP
Algorithm 3.10: Given representable r and t, and an interval w*, we construct inter-

vals y; and yi such that any solution u of (3.10) for any w € w* can be continued to
[0,t] and satisfies

ult) eyg  U(t) €1
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Description: Run Algorithm 3.8 twice, once for each endpoint of w*, to obtain two
pairs of intervals w§, w and 2§, z7. Lemma 3.9 then shows that all solutions of (3.10)
with w € w* are bounded above and away from 0, and can thus be extended as well-
defined positive functions over [0,t]. Then, Lemma 3.9 again allows us to put

* * * * * *
Yo = wo Ur 2 Y1 = wy Ur 2z Qé)

The Initial Value Problem at Infinity.

Here we will be concerned with the solution to the Initial Value Problem

W (z) = 2~ 2u” (z)
u(oo) = 0 (3.14)
by =0

where the last condition is interpreted in the sense of (3.2).

The solution to this problem in this case will be expressed as

u(r) = 1;—; (14 bz + 2% f(2)) (3.15)

where f € H!, z = R*z~%, for some R large. In this case, the operators involved are

not so obvious. Define

Ti(f) = bR 2z + 22 f(2)
To(g) = (1 +9)"

anzn—2

T3(g9) = 12 r; (na+ 3)(na + 4)

where, in the last formula, g(z) =), <, an2". Then, put

772215<>15()11

We now check that if f is a fixed point of T in H?, then u defined as in (3.15) solves
(3.14). Note first that

u”(z) 12144
I

(T 0 T1) (f)
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where

(TooTy)(f) = Z anz" apo=1 a; =3bR™“
n=0

Therefore, since u and its derivatives vanish at oo,

[ee) [ee) 3/2
u(x) :/ / utl/gt) dt dr

144 12 a4 95
=3 (1+ Gra@d+a)T? T(f))

Since o = 3 (/73 — 7) satisfies the equation (a + 3)(a + 4) = 18, u satisfies (3.14).

The problem here is considerably more subtle than in the previous cases, due to the
fact that T3 does not scale with R. As a consequence, contraction properties of T’ either
hold or don’t, and taking large R won’t help much. We are lucky, however, that the

norm of T3 is essentially g, and that the norm of T3 is essentially

12
20+ 3)(2a+4

N[

)<

which says that the Lipschitz norm of T will approximately be %. We make this precise

now.

Lemma 3.11: Put 3 = 0.3. Assume that |b| = R~*|b] < 0.23. Then T is a contraction

in B(0, 8), and H’_f’ < 0.8652.
ip

Proof: (Calculator—Assisted) Let fi, fo € B(0,8), and put f = f; — fa.

3\
(TyoTu)(f) =1+ 2 (bz+2°f) + 3 (02> + 202 F + 2 %) + ) | (;) (bz + 22f)"
n>3

So,

(Te0Th)(f2) — (To o Th)(f2) = %Z2J?+ %BZSJF‘F s (24(f12 - 22))
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Now, since T3 is linear, bounded, and the sum converges absolutely, we have

T(f1) = T(f2) = 3T3(2*f) +

3bT3(2°f) + 375 (24 (2 - 13))

+"Z>;f <”) & ((BZ +22h)" = (b2 + z2fz>")

N

Note now that, for any f € H', we have

a4 < - =

k
ko + 3) (ko + 4) |51
and that
(bz+22f1)" — (b2 + 2% f2)" = 2" T h(2)
|02+ 2212)" = (b2 + 220)" | <nlfa = Fal (] + B)"
Thus,
7l <3 12 3/b| 12 +§ 12-2-83
‘ Lip — 2 (2a+3)(2a + 4) Ty (B3a+3)(3a+4) ' 8(4a+3)(4a+4)
3 12n
-2
712223 (n (n+1)

b (n—1)
a+3)((n+1)a+4) (6l +6)

_ b 20
<0.72+4 .27|b| + 0.218 + X + Y%
< 0.8652

where we have set

20 3
X= nz::g (721) (n+1a+ ;)2(n(n +1)a+4) (161 + 8"
and
y ‘(3)‘ 1221 >‘<g) 12n
21/ | (22 +3) (22 +4) ~ |\n/| (n+ 1)a+3)((n+ 1)a+4)
for n > 21, and we have used

5 20
X <0.019 YM

_ <9.10710
1—1b|-p
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On the other hand,

Tom0) = 3 (2)r

n>0
Thus,
¥ <%> 12[p]"
5 l\n (na+ 3)(na +4)
Bl

< 16> + 0.0225[5* + 00066 -

< 0.01022
Therefore,

HT(f)H < 0.01022 + 0.86520 < f

and T maps B(0, §) into itself. QP

Algorithm 3.12: Given b* (interval) and R (representable), we produce Uy such that,
for any b € b*, the solution u of (3.13) is given by
144
y(z) = -5 (L+ bz +2°f(2)) z=R*™%
with f € Uy;. Here, Uy depends only on b*, i.e., it is independent of which particular b

in b* we are considering.

Description: We first check that we are in the hypothesis of Lemma 3.11. In this case,
T has a fixed point f, and, as we saw before, y defined as above satisfies the ODE.

In order to obtain bounds for f, we first look for a heuristic guess p: for example,
we iterate T (and truncate) a few times, starting with the function 0. Then, since
computing rigorously Tp for all b € b* poses no difficulty in view of Algorithm 2.3, we

conclude that

To—r| _
=l < H —oey ST5|Tp-p|  albvewr
Note that p is the same for all b € b*, but T p still depends on b. However, the compu-
tation of
sup Tp - pH
beb*
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poses no problem, since it is less than or equal to pr — pH in the interval arithmetic
sense.

The algorithm fails if the hypothesis of Lemma 3.11 are not met, or if |p| > 0.3. QP

Algorithm 3.13: Given b and R, we produce two intervals ug and uj such that, if u
is the solution to (3.13), we have

u(R) € uj) u'(R) € uj

Description: First, run Algorithm 3.12 for these values of b and R.
Again, it is easy to obtain ug.
Let f be related to u as in (3.15). Then, say

2 %
Q+b27*+22f(2)) " = anz” €U(Iy,...,In; Ch, Cy;2)
n>0

Then,

144 -12
u'(R) = —/ pe Zanz" dx

R

_144 12 a
N R4 Zna—l—él

N
—144 12
c ————
(&)

Ch c,
<
4 N+ Da T 1520 @

with

Remark: Note that it is enough to run this algorithm for representable values of b,
due to the monotonicity of the T-F equation (Lemma 3.4). We omit the trivial details,
which are similar to those in Algorithm 3.5
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The Boundary Value Problem

Next we discuss how to solve the Boundary Value Problem

u'(z) = z Py (z)
u(0) =1
u(oc0) =0

We first describe how to obtain bounds for wyg.

Lemma 3.14: Let u be the solution of (3.3), with u; < 0. If

then, there exists a point t > xy such that u can be extended as a well-defined positive

solution of the ODE to [xo,t) and, furthermore, inf ¢ 4o +)u(z) = 0.

Proof: Assume the lemma is false. It follows from general ODE considerations that,
either v can be extended as a positive well-defined solution of the ODE, or else there
exists a T' such that sup,¢ (4, 1) u(z) = oc.

Let
Y
u1|zg”
d == T
2
Ug
and note that in both of the two cases above u extends to a well-defined positive solution
of the ODE to (zg,zo + d) and furthermore, u < ug on [xg,zo + d]. Indeed, consider

two cases:

a. u can be extended as a positive solution of the ODE all the way up to oo.
Then, if «/(z) < 0 it is trivial. Otherwise, let 1 > xo be the first (and only)
zero of u'; this means in particular that u < ug on [zg,z1]. Then, our claim

follows by noting that

lup| < sup u’-|zg—z1] < ug/2xal/2 o — X1

(%0 ,71)
which implies [zg,2z¢ + d] C [zo,21].
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b. wu can be extended as a positive solution of the ODE all the way up to T', where
it blows up. Since u'(zp) < 0, there exists z1, such that zo < x; < T and
u'(z1) = 0. As before, z; is the first (and only) zero of v/, u < ug on [zg,z1],
and xg +d < 271.

3
& ug? on [xg,xo + d], we conclude that

Then, again, since u” < zy
u?

u(z) < uo + ur(z — o) + L1/(93 — o)
2x,?

2 x € [xo,x0 + d]

The lemma then follows by noting that this parabolic bound attains its minimum at
exactly zo+d, and that this minimum is non—positive if the hypothesis in the statement
of the lemma is satisfied. QP

Algorithm 3.15: Given a representable w, we construct an algorithm that, if successful,

will indicate whether w < wg or w > wy.

Description: By repeated applications of the previous algorithms, we can determine
points z; and intervals I;, I/, for i = 0,...,n, for n large, such that the solution to the
TF equation with initial values u(0) = 1, u/(0) = —w satisfies u(x;) € I; and u/(z;) € 1.

These algorithms also guarantee us that v does not vanish on [0,z ].

If, for some ¢, we have I; < I;11, or I/ > 0, this implies that for some 7o < z,, u is
increasing and convex on [rg, 7o+ €), and u will either not vanish at oo, or blow up and

cease to exist at a finite Ry. It is then clear by Lemma 3.9 that wy > w.

On the other hand, we know that if u becomes arbitrary small on (0,t) for some ¢, then

wp < w. Using the previous lemma, we then know that, if for some i, we have

ol 4
= < |}

Z;

then we have that wo < w.

If neither of the above happens, then we quit the algorithm without making any claims

for bounds for wy. QP
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Algorithm 3.16: Assuming bounds for wy, and given x; € R, we can produce y; and
y'T €Z,i=0,...,m, such that

y(z;) €yF  Y(w) ey i=0,...,m

Description: Apply Algorithm 3.10 for r = zy, and then iterate Algorithm 3.5 for the
x;. This algorithm will fail if either Algorithm 3.10 or any of the runs of Algorithm 3.5

fails. QP

In order to ensure success for all algorithms, the choice of the z; will in practice be

rather delicate, as will be explained in Section 7.

Lemma 3.17: Let u; and us be the solutions of (3.14) with by = a1 and by = aq
respectively; then, if a1 < ag and u; > 0 on [M,00), then we have that ui(z) < us(x)
and v} (x) > uh(z) for all z € [M ,00).

Proof: Obviously it is enough to assume a; < ay. Let f; and fs be the functions
associated with the w; as in (3.15), with R common for the two of them, and large
(perhaps a lot larger than M). Then,
144 _
ni) < 5 (14 smr 42 10D)

and 144
o) > 25 (14 2toar 2 1)

Now, take R large so
a1 R~ + | f1] < a2R™% — | f2]
aR™ %+ |f1] <1

This ensures that 0 < ui(z) < ug(z) for £ > R and thus uf(z) < uy(z) for all z > R.
Now, note that

u;(z) = —/ w;(t)dt  fori=1,2

which implies that, not only do we have 0 < ui(z) < ua(z) for z > R, but also
0 > uj(z) > uh(z) for all z > R. Finally, if R is larger than M, we apply Lemma 3.4
to guarantee that 0 < ui(z) < us(z) and v} (z) > uh(z) for z € [M,R] and thus for all

x> M. %)
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Algorithm 3.18: Assuming bounds for by, we can produce v; € R, and y}, y'; € Z,
1=1,...,m, such that

1%

y'(z;) €Y} i=1,...,m

*

y(x;) € y;

Description: We choose the z; in increasing order in ¢. We apply Algorithm 3.13 and
Lemma 3.17 for R = x,,, and then iterate —going backwards— Algorithm 3.5 for the
x;. This algorithm will fail if either Algorithm 3.13 or any of the runs of Algorithm 3.5

fails. @)

Remark: Strictly speaking, the choice of the z; above is purely heuristic, and any
choice yields a rigorous answer. In practice, most choices of z; will yield as an answer
"failure”, which, although completely rigorous (after all, no theorem is claimed), is
not very useful. As a result, it is important to make a good choice of the x;. In practice,
these z; will be the same as the one used in Algorithm 3.16, whose choice is explained

in Section 7.

Algorithm 3.19: Given a representable b, and assuming bounds for wgy, we construct
an algorithm that, if successful, will indicate whether b < by or b > b;.

Also, assuming bounds for by, and given w, we indicate whether w < wqg or w > wy.

Description: Let y be the Thomas—Fermi function, and u be the solution of (3.13).
Assuming bounds for wgp, Algorithm 3.16 allows us to produce representable z; and in-
tervals I; and I}, such that y(z;) € I; and y'(z;) € I]. For these x;, using Algorithm 3.13
and repeated applications of Algorithm 3.5 (going backwards), we can produce intervals
J; and J! such that u(x;) € J; and v/(z;) € J]. In this situation we can again guarantee
that u > 0.
Then, if for some i

I, > J; or I <J

then we have b < by. If, however, we have
I, < J; or Il > J!
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then we have b > b;.

We report a failure if
LNJ;#0  IINnJ #0

for all 7, in which case no relation is claimed between b and b;.

The rest of the algorithm follows along the same lines. Qr

Note that the last part of the previous algorithm constitutes a refinement of Algo-
rithm 3.16, but it requires bounds for b;. Also, Algorithm 3.15 allows us to obtain an
initial, probably wasteful, bound for wg. This initial bound allows us to obtain a bound
for b1, which in turn will allow us to improve our initial bound for wy. Iterating this
last algorithm in this way allows us to obtain improved bounds for both wg and b1. The
intersection of the bounds produced by Algorithms 3.16 and 3.18 are improved bounds
for the Thomas—Fermi function and its derivative at points x;. These translate imme-
diately to better bounds for the solution of the Thomas—Fermi equation, and related

constants.

Algorithm 3.20: We can produce z;, r; € R, and
ULy, ... T;Chiy Cgin2) i=1,....,m
such that
y(@i+z-1) €U(LE, ... Iy; ChiyCgin2)  i=1,...,m

and

w1 (zi —ri, @i+ 1) = (21— 71,Tm +71m ) C (0,00)

Description: Our previous remark gives us the x;, r;, I3 and I{. The rest follows by

applying Algorithm 3.2 for every :.

Lemma 3.21: The following inequalities hold:
1.588071022611278 < wp < 1.588071022611471
—13.270973847925352 > b; > —13.270973848125353
0.486348538043594 < Q2 < 0.486348538046869
2.104025280219502 < r, < 2.104025280273837
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Needless to say, the decimal numbers quoted above stand for the exact rational numbers

they represent.

Proof (Computer—Assisted): The inequalities for wy and by follow by carrying out
previous algorithms.

The inequality for r. follows by checking that
u/(2.104025280219502) > 0 > /(2.104025280273837)

The bounds for 2. are then trivial. @7

4. Zone 1.

The purpose of this section is to prove (1.2) for all 2 in Zone I, as defined at the end of
Section 1. We will do this as follows:

First, we partition Zone I into “fat” intervals {W;}?_;. Note that the first such interval
will have the form (0,Q.], for an Q to be picked (much) later in our proof. In fact, the
role of the W; will change as they approach zero: the larger ones (most of them, by the
way) will receive identical treatment. Then, there will be a family of them, rather close
to zero, which will receive a sort of special treatment, and then the single W; = (0,€]
which will be on its own.

Second, each fat interval W is divided into a finite partition of (lots of) suitably small
subintervals Q* (except W7 which will be both a “fat” and “thin” interval at the same
time.) Our aim is to produce uniform bounds for —F" () for all Q € Q*: for W; we will
be able to produce only lower bounds, since —F" is unbounded there; for the others,

we will be able to produce both upper and lower bounds.

Say Q* = [z1,22] is contained in the fat interval W = [wy,w2].

We construct two functions a(2*) and b(2*), constant on each subinterval *, such that
r1(Q) <a < b<ry(Q2) Qe”
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In practice, a and b will be very close to r; and r9 respectively.

Now, we recall Lemma 1.2; our job is then to compute each of the following

b 3
L = / (u(r) — Q%) " () dr (4.1a)

I, = lim ( / ’ (u(r) — 92) ™2 y(r) dr - 01(9)5—%) (4.1b)

d—0 1(Q)+6

r2(Q)—4 3 1
I3 = lim (/b (u(r) — Q) & y(r)dr — Go(2)6~ /2> (4.1¢)

0—0
with G; such that the limit is finite.

The computation of I; is done as follows:

Break up
n tit1 3 n
I, = Z/ (u(r) — Q%) & y(r)dr = Z Ji(Q2)
i=1"ti i=1

where t1 = a and ¢,41 = b.

Note that each J; can be computed directly, since it involves only elementary operations.
However, computing all J; like that will take a very long time. To remedy this, we do
as follows:

First, we take two numbers @(€2*) and b(Q2*), constant on each subinterval Q*, such that

a=t, b=t;

with 1 <4y and ¢; < n. Normally, we will have that 7o < ¢;. It could happen, however,
that 49 > ¢; meaning that the computation of the J; is always done directly, without
using the faster method below.

Then, we take t; for i = igp,...,4; to be the same for all Q* = [21,20] C W = [wy,w2],

and we compute once and for all the following numbers:
tit1 o\~ tip1 LA
oni= [ () —ud) P yrdr =3 [ (ulr) - ud) Pyl dr
t; t;

fOI‘k:1,2, andi:io,...,il.

Next, note that the functions

fi(w) = /t " ) — w0t y(r) dr

i
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are increasing and convex on W. Therefore, if w € [wy,ws],

max (f;(we) (w —wk) + fi(we)) < fi(w) < filwn) = fiws)

k=1,2 w1 — W2

(w—w1) + fi(wr)

Thus,

max (bg; (2 — wg) + axq) < J;(Q) < G102

(Q — wl) + a; QeWw
k=1,2 W1 — Wa
This gives us intervals J;(Q*), such that
Ji(Q) C ()  ip<i<iy QeQf (4.2)
In practice, @ and b will be far from 71 and 72. They will enclose a region which is safely

away from the singularities of the integrand in our formula for F”, for which we can

expect (4.2) to be sharp.

For i outside of the range [ig,i1], we compute f;(z1) and f;(2z2) directly, and, by our

previous remark,

o
Hh

€

Ji(Q) € Ji(Q) = [fi(z), fi(22)]

Thus, we have defined J (Q*) for alli =1,...,n, and we conclude that

L) e) Ji(Q) Qe
=1

Computation of I. Consider a small number 0y < €., that we can make coincide
with one of the endpoints of the fat intervals W;.
We distinguish two cases: > Oy and Q < Q.

If Q> Q, we use Algorithm 3.2 to compute ; such that

u(z) = Q% + 2f(2) z:ll(m felh

r

where 7 > |a — r1(Q)| and U, is uniform for all Q € Q*. Note that f(0) > 0. Also,
in order to apply Algorithm 3.2, we need to obtain bounds for r1(2) and for u'(rq);

the first can be done by obtaining heuristic bounds 74, and 7y, and checking that
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u(ran) < Q% and u(ryp) > O2, which can be easily checked using the information given
by Algorithm 3.20. Bounds for '(r1) can be obtained using the bounds for r; and
the information on yrr (hence on u) given by Algorithm 3.20. See the section on
implementation for more details.

Therefore,

a

[ -0 @ [ e de

1(Q)+6

for a new function f(z) = y(x)f —% (z), that can also be enclosed in a computable Us.

Note that f(0) > 0 also. Thus, if

f(z) = Zanz" eU(Jo,...,IN;Ch,Cy; 1)

n>0
we see that

/ L (u@) - 9) P @) do =

= a—r:(Q)
(47%% n—1
DD D G
nZO 2 ZZ%

This implies that

1
n - Q 2
ey e (2700
nZOn—§ T
N n_l
Jn a—r1(Q) 2
€ +
Tnz::o”—%< r ) ‘
with o
h
< 2C,
o< (Fag+20)

When Q < Q,, we proceed as follows:
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Consider the change of variables given by r(t), the inverse of u. Then, by the last remark

in Lemma 1.2,

a _Y, dr u(a) 9 Y,
Iz:d% (Q/n(ﬂ) (u(r) — Q%)™ %) :d% (Q/ (t—02)"" w(t)dt)

92

for

In order to compute w, we consider the following;:

Let 2o and € be small numbers satisfying
a. u'(z) >1—¢ for x € [0,z0].

b. For a sequence {b,} € I, we have

u(z) == (1 + Zgnin&) x <z
n=2

Furthermore, we know that

14+ bpz™ €U, ..., In; 0,Cs 2) (4.3)

n=2

with Iy = [1,1] and I; = [0,0]. Here, Z denotes z/zo, and b, = by, - ;.

- (5)
t=|—
Zo

We also consider a small number 7 < u(xp). It will be chosen so that (4.10) below

Define

holds. We start by obtaining expressions for u'(r) and u"(r) similar to the one for u
in (4.3). Note first that (4.3) is equivalent to an expression for y(z). Then, by the

Thomas—Fermi equation, and by integration, we have

oo % o0
1 = n 1 n 1 1
yia =t (Z bnd /2> =" Zy:ﬁ: b= Py (") Yo =
n=0 n=0
R 1 —wo n=>0
V) =3 =) vo={ b mo
n=

E:L'O Yn—1
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from which we obtain

e o]

w(z) = 2y (@) +y(e) = D u® " = uy(2") (4.4a)
n=0
1 n=>0
u, =<0 n=1
b+ Yl 520 n>2
W'(2) = 25"(5) + 2/ () = (3 Zu”- (4.40)
iy —2wyg n= 0
Uy = Yo, 1
2y, + x5’y n>0

Note that since we know a neighborhood of type 2 that contain y, we can enclose yp,

and u, also in neighborhoods of type 2, and y, and u,, in neighborhoods of type 3.

We start our analysis understanding r(t).

First, a technical algorithm.

Algorithm 4.1: Given a function r(t) =t - R(t) with
R(z) e U’(a}, ... ,a%;Cn,0;00; ) ag =[1,1]

valid fort € S C [0,1], and given a neighborhood U' in H', we can compute another
neighborhood UY, also of type oo in C°, also valid ont € S, such that if

ft) = ch U'(Iy, . .., In; Ch, Cy,m)

then G(t) € U3 for

G(H) = 1(r fj( )%

n=0

We assume that 0 < r(t) < xo fort € S.

Description: Consider any a; € a}. Put

N v no
(Z ant™ —I—t_N"'lh(f)) = Zanﬁt_" + ™ (4, ne + 1)
n=0

n=0
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with an 4 € ay, ., the aj,

Ty easily determined intervals,

v
|h(t; 7, nO)HCO < €yno-

We can see, on one hand, that

N n/2 N N—n
_ (r(t) _ - ik | FN+1l-ny (f
35 (1) S etn (3 st 47—

n=0
with
N
[h(t)] < Z Cnl€n N—nt1
n=0
N
< Z ‘In| €n N-n+1 + Cg n:%?fNe%’N_"‘H
n=0
and
dn - Z EZ . a’j,l
1+j=n
def
€ Z Iz A + €n Ee d;
i+j=n
where
CoSUDpcicn |On—gi| Hfn=m
€n <
0 otherwise
On the other hand, since
n N+1)
o0 /2
_ r(t r(t 2
5 ol (19)" <0+ (19)
n=N+1 Zo
(N+1)
N 2
< (Cy+ Cp)tNH? (1 + > lan| + CN)
n=1
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we conclude that
F(r(t)) = G(t) € U°(d, . .., di; Cn, 05 00)

with
(N+1)
N 2 N
Cr = (Cy + Ch) (1 +> lanl+ ON> + 3 [ In| €ny N-nt1
n=1 n=0
+Cy max €ny Noni1 Qé)
n=m,...,IN
Algorithm 4.2: Given N > 0, we produce intervals a3, ...,a%, and a constant Cy,

such that

< CNt-t_N+1

r(t) — t<1 + ianf")

for constants a; € a¥, i =2,...,N, and fort <.
i n

Description: First, we will construct an inductive procedure to define numbers a,,
such that
u(ry(t) =t(1+0@EN*)) t—0 (4.5)

where
N
rn(t) =t (1 +> anf")
n=2

By induction. For N = 1, let ro(t) = t. Note that r(t) > ro(t), that ro(t) < zg for
t <1, and that, if ¢ <7 < u(zp) then ¢ < 1.
Therefore, we have
u(ro(t)) =t [ 14 bat™
n>2
Thus,
‘Zn>2 bntn/2

inf, efro(t),r(t)] [0/ (7))

ro(t) —r(t)] <t

(4.6)

Since, for ¢ small enough, 7(t) < xo, the denominator is bounded below by (1 —¢€’), and

we conclude

ro(t) — r(t) = O(t?)
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For general N, we set
N
ra(t) =t (1 +> ant”>
n=2

where as, ..., an_1 satisfy the induction hypothesis.
Note that we have

> barn () =Y burn_a(t) = (TN (4.7)
n=1 n=1

Thus, if for any real number v we put

we see that

: (ibt"(é aiptt + O(FN)) + O(EN“))
:t(1+NZ_1an£”) : (icnfn-i-O({N-l_l)) (4.9)

n=0
where

k
Cr, = E bn *Qkg—n,"y Co = 1.
n=0

By the induction hypothesis, (4.9) is equal to ¢(1+ O()). Thus, using (4.7), we can
see that

u(rn (1)) = ¢ (1 + z_: anl™ + aNtN) : (Z et ™+ O(tN“))

where the ¢, here are the same as those in (4.9).

Therefore, by putting

N—2
aN = — E AN_kCk — CN
k=1

we get rid of all £V terms, thus obtaining (4.5).
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So far, we have proved the existence of numbers a,, such that (4.5) is satisfied.

This procedure also gives us an algorithm to compute the a;,. Indeed, bounds ay, , for
the a, , can be computed explicitly, since by the induction hypothesis we already know
af,fori=1,...,N — 1. As for the ¢, recalling (4.3),

k k
7 *
Cr = E bn “Qk—n,np € E In COk_n + €

n=0 ne0
with |
In particular, it follows immediately that a; = —by = xo - wo € —I5.

To obtain a good value for the constant Cn, we proceed as follows:
First, check that

n- (1 +> |an\> < zo (4.9a)

(See also (4.10) below.) This allows us to invoke Algorithm 4.1, with S = [0,v/n/z¢],

to obtain
y(ra(t)) = f(E) €UL(-+5-++;00)
and thus we can write
u(rn(t)) =rn(t)- f(t) =t-g(t)
with g belonging to U°(Iy, ..., In; 511, 0; 00;t < 1), the product neighborhood of

Z/{Q(&S,,GR{,0,0,00,I‘IS 77)

and UY. Now, since (4.5) implies that g(f) = 1+ O (¢ V*+1), we can take Ip = [1,1] and
I, = [0,0], for i = 1,..., N. Note that this is relied crucially on the fact that &° is of

type oo; in fact, since
g() eU’(Iy, ..., In;Ch,0;00;t < 1)

we can find constants p; € I; such that

N
g(®) =  pit*
k=0
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On the other hand, since g(f) = 1+ O(¢¥*!), we must have py = 1 and p; = 0 for
1=1,...,N, thus .
g() — 1] < Cut N

If Algorithm 4.1 had produced a neighborhgod of any other type, it would have been
harder to conclude this without changing C,. More precisely, if we have ¢(t) defined
ont e [—1,1] such that

‘gb(t) = ant”

n=0

N
<Ct* and ¢(t) =) ant™ = O(tN )
n=0

for t € [—1,1], we cannot conclude

$t) = > ant™

n=0

< oVt

with the same constant C' unless £ > N. Counterexamples with £ < N are readily
available (simply take N = k = 0, ¢(t) = t3 — ¢, ap = 0; then, |¢| < 2= 72 but ¢(¢) is not
bounded by 2~ %|¢|.)

So, we have that )
lu(rn(t) —t| < Cp-t-ENTL 1<y
Next, note that
u(rn(t)) —t|
info<p<max(r(t),rn (1)) 1% (7)]
Then, the fact that n < u(xp) and (4.9a) imply that

rn(t) —r(8)] <

lu'(r)] > (1 —€) 0<r<max(r(t),rn(t)) t<n

from which the lemma follows by taking

Algorithm 4.3: We produce a neighborhood U°(Iy, . .., In; Ch,0;00) such that
ht) ¥ ') +w(t)=f@  feu

fort <n.
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Description:
We note that

() = — () = — (' (£)° " (r ()

Therefore, we check that

n=1

N
n- (1 +> lanl+ CN> < 1 (4.10)

and as a result of this, we can apply Algorithm 4.1 and obtain neighborhoods of type

oo in C? containing functions f, f, and fp, s.t.

rit)=tf(t) () =50 1) = fp)

which are valid for ¢ < 7. These functions are obtained by putting

1 Y
t) = : fH=—f3 t ?
0 up ((r(t)/20)") flt =85 ()
Note that with this definition, f and f, are normalized to be 1 at 0, and f;,,;(0) = 2w.
Thus,
wi) =9 = 3 (L0 )
: _'w M) _1 L (LD
o= () -1 ()4 (48)
and

() o) — 1 [ 2B (BON (o)
hE) = t(E) +wlt) =t (ﬂa <ﬂ®)>+<f®>
= fn(?)

for a function f;, belonging to an easily computable neighborhood of type oo in C°.
Note that by our normalization, the ¢t~! terms drop out. Furthermore, there are no
t~11 terms since neither f nor f, have { terms, and in fact f,(0) = wg, which we can
easily see as follows: first, f(f) = 1 + wot + O(£3), fo(}) = 1+ 2wet®> + O(¢3) and
Jpp(t) = 2wo + O(t), therefore

-1 fp(f)_ fp(ﬂ ? — —w —173 = —w
t (ﬂa (ﬂﬂ)>_ 0+ O(77) = —wo+ O
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and

(1)
f®)

thus f5(0) = wo.

Moreover, if we set

Bt () i ([ for(®) 0 e 0 00
10 (f(f)) ! (f(f))ez””m---’ffv+z, 103 00)

then
fo €U (gt I, ..., 3y  INgo; Ty e, 05005t < 1)

valid for ¢t < n.
Now, let
N
fu@®) = Zant" + H(t)
n=0

with
HE)| <et]¥ t<ny

Finally, then, let § be a small number such that u(8) < 7, set Q3 < y/u(6), and consider
Q) < Q, for which we set a(Q2) = 4:

d o o\~ dr d [, (970 VR
o) Q o (u(r) — Q%) — =2 Q 1 (t—1)" 2 w(tQ?)dt
T1

Q 2u(d) L,
:29/ (t—1)" " h(t0?) dt
1

— 2 (u(6) - 92) " w(u(6))u(6)

N . 972u(5) L (411&)
=20 a.z; /29"/ (t—1)" "% dt
n=0 1
~ ~Y 2u(9)
+ h(Q) - (u((S) - 92) 5u/(5)
with @-us)
- (N+1) u 1, (N+1)
‘h(Q)‘ < 20N+2¢, 007 2 / (t—1)""2t 2 dt (4.11b)
1
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At this point, we introduce another small number, 2., on which we impose, first, the

condition
u(8) > 202 (4.11¢)

Expression (4.11a) above can be computed easily for all 2 > Q.. The evaluation of
integrals of the type [(t — 1)_1/2 t7 dt can be done by enclosing the integrand locally in
neighborhoods in H'. We omit the trivial details.

When €2 < €., consider first the following trivial Lemma.

Lemma 4.4: If R > 2, then

R
1./ (t—l)_%ﬂdt < 2R3 when v > 0.
1
R 1
2. / (t—1)""2t7dt > 1 when —1 < .
1
R 1 1
3. / (t—1)"2t"dt = O(R"H'?) when v > —1.
1

Then, by (4.11c¢), a., b., ¢. and Lemma 4.4,

where we have set ay+1 = —¢€p.

Computation of I5 Here, we also consider two cases: Q > Q3 and Q < Q3. The first
case is dealt with in a similar manner to Is. We omit the trivial modifications. The
second case is also treated in much the same way, with a few differences coming mainly
from the different powers in the asymptotic expansion of u at 0 and at oo. We include
the details, although many of the differences are basically typographical considerations,
because conclusions are somewhat different. In particular, as will be noted below, I3 is
mainly responsible for the singularity of F” at Q = 0.
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Let M be a large number satisfying

a.

b.

Define

We also
holds.

u'(M) <0 and u”(z) >0 on [M,o00).

For a sequence {b,} € I, we have

144 144 s e
u(x):?u()(x):? (1—|—§_:lbnx ) x>M

Furthermore, we know that

14+ bp2" €U(lo, ..., Im;0,Cg32)  Tp=[1,1]

n=1

Here, & denotes x/M, and, as a rule, we set b, = b, /M".

|u/(z)| >2-144273(1 — €) for x > M.

SV AN
=
12

(4.13a)

(4.13b)

consider a small number 7 < u(M). It will be chosen so that (4.19) below

We start by obtaining expressions for v’ (r) and u” (r) similar to the one for « in (4.13b).

Note first that (4.13b) is equivalent to an expression for y(z). Then, by the Thomas—

Fermi equation, and by integration, we have

12-144 [ - ' 12.144
y'(@) = —— (Z bn ‘”a> == Ui "y
n=0

3
o

n=0
o)

—3.144 & 4 —3-144
/ — "= — _ ! ==
V) = S (e e = T Yk

n=0

from which we obtain

W) =/ @)+ ule) =~ Y (et ) e

3 — 2

2-144 L

== 3 Up(il? a)

6 - 144 __
' (z) = zy'’(z) + 29/ () = — Z Qyl —yl)z "
n=0

6-144

= v U’Pp(x a)
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for u, and wup, in H', normalized so u,(0) = uy,(0) = 1.
The strategy will be, as in the case for I, to change variables to the inverse function of
u, r(t).

Algorithm 4.5: Given a function
r(t) = 12t~ - R(f)
with
R(z) eU(a}, ..., a%; Cn,0;00;5) ay =[1,1]

satisfying the hypothesis
r(t) > M  whenevert € S C [—1,1]

and given
g(@) =Y 2" €U (lo,...,In;Ch,Cyym) 2= (x/M)™®
n=0

we compute another neighborhood of type oo in C°, such that, if we set

60 =s0w)=Y (") "

n=0

then
GE) e U(dy, ..., dy; C,0;00; S)

valid fort € S.

Description: Consider a; € aj, for j =0,...,N. Put

N 2 no
(Z ant " +fN+1h(f)> = Zanﬂf” + T h(E v, g + 1)
n=0

n=0

*

.~y and

with a,, 4 € a

|2 (t; 7, no) ”0 < €y,m0

o1



We can see, on one hand, that

N ’I‘(t) —na N N—n
_ _ - In Tk rN+1—n I.
E Cn, (—M ) = E Cnl ( E ak,—nat” +1 h(t; —na, N —n + 1))

n=0 n=0 k=0

N
=) dpt™ +1 N Th(2)
n=0

with
N
B(t)] < |enl€—naN—nt1
n=0
N
< Z ‘In‘ €—na,N—n+1 + C1g max €_po,N—n+l
n=m,...,N
n=0
and
dn= Y & ia
i+j=n
def
* & *
E Z I’L ¢ aj’_ia :I: Gn = dn
i+j=n
where

CySUPj—p,...n |Gn—i,—ia| fn>m
€n <

0 otherwise

On the other hand, since

we conclude that

g(r()) = GE) e U°(dy, ..., dx; Ch, 0; o0)
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with

N —(N+1)a N
Ch = (Cg + Ch) (1 - Z |an| - CN) + Z |In‘ €_na,N—n+1
n=1 n=0

+Cg max €_npo,N—n+l
n=m,...,N

If we cannot check that N
(1—Z|an\—CN) >0
n=1

the algorithm fails. QP
Now, we analyze r(t).

Algorithm 4.6: Given N > 0, we produce intervals a3, ...,a%, and a constant Cy,
such that

< CN t_1/2£N+1

N
r(t) — 12¢~ % (1 +> anf")
n=1

for constants a; € a}, i =1,...,N, and fort <.

Description: First, we will construct an inductive procedure to define numbers a,,
such that N
ra(t) = 12t~ % (1 +> ant”>
n=1
satisfies
ulry(@®)=t(1+0@E ")) t—0 (4.15)
By induction. For N = 0, let ro(¢) = 12¢~ 2. Note that, since u(z) < 144z~2, then
r(t) < ro(t). Also, ro(t) > M for t <1, and if t < n < u(M) then ¢ < 1. Furthermore,
t <n <wu(M) implies r(t) > M, which we will need below.
Therefore, we have
u(ro(t)) =t [ 14 ) by127"*¢"%
n>1
Since u(r(t)) =t,
Szt bal2netns

inf, crr@),ro@)] [0/ (7)]

ro(t) — ()| <t
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Note that hypotheses a. and c¢. imply

oo

t

[w(r)] 2 ' (ro()| 2

Our previous remarks, and our assumption on 7 then imply
ro(t) —r(@®)| < Ct™>  t<u.
Here we have used the fact that r(¢) > M for t < 7.

For general N, we set

N
ry(t) =12t~ "% (Z ant") ag =1
n=0

where a1, ...,an_1 satisfy the induction hypothesis.
Note that we have

S barn ()7 = D burn 1 ()7 = O(E V)
n=1 n=1

Thus, if for any real number v we put

N-1 v N
(Z ant"> =Zan775"+0(5N+1)
n=0 n=0
we see that

N
ot ™ + O(FNH)
n=0

u(ry—1(t)) =t (

—
NE
(=]
3
3
//
M=
8
|
3
2
.
: -
=
=
+
N
+
Q
2
+
~

n=0 1=0

N N

¢ (Z an st ™+ 0N ) [ cut + 0(tN+1))
n=0 n=0
where
k -
Ck = Z bn Ok—n,—na co=1
n=0

(1-¢) provided 7 € [7(t),ro(t)] N [M ,00)

(4.16)

(4.17)



By the induction hypothesis, (4.18) is equal to ¢(1 + O(f")). Thus, using (4.16), we

can see that

u(rn(t)) =t (Z n,—ot ™ = 2ant N + O(FNT) ) (Z tN+1))

n=0

for exactly the same ¢, as in (4.18).

Therefore, by putting

5 Gn,—2Cm

m+n=N

we get rid of all £V terms, thus obtaining (4.15).
So far, we have proved the existence of numbers a,, such that (4.15) is satisfied.
This procedure also gives us an algorithm to compute the a;,. Indeed, bounds ay, , for

the a, 4 can be computed explicitly, since by the induction hypothesis we already know
af,fori=1,...,N — 1. As for the ¢, recalling (4.13b),

with .
| < 4 SUP2gn<k |k—n,—na| - Cy ifk>2
— 10 ifk<1

In particular, it is easy to see that a; = b1/2 € 11 (recall (4.13)).

To obtain a good value for the constant C, we proceed as follows:

By Algorithm 4.5, we can construct a neighborhood UY such that
F@) =g (rn(t)) € U Ty, . .., In; Ch, 0; 005 < 1)
(see (4.13a)) provided ry(t) > M for t < 5. At this point then we check that

N
120" 2 (1—Z\an|) > M

n=1

See also (4.19) below.
If we put



then,
u(rn(t) =t-g(t)- f(t)
with
F(t)=g(t)- f(t) € Uy, ..., In; Ch, 0;00)

and U° is the product neighborhood of U and U,. Note that (4.15) implies that
F() =14 O(t¥*!), therefore, we can take Iy =[1,1]and I; = [0,0], fori =1,..., N.
This implies that

lu(ry () —t| < Cp-t- eVt <y

Now, note that
u(rn(t)) — ¢

ry(t) —r(t)| < -
() =)< inf pr < <max(r),ra () 1@ (7))

At this point, we check that a; < 0 for alli = 1,..., N, which implies that ry (t) < ro(t).
We then conclude, by hypothesis c., that

[/ (r)| > ‘u' (ro(t))‘ > %t% (1-¢€) M <r <max(r(t),rn(t))

from which the algorithm follows by taking

_ 6Cy
R (r) @

Now we compute bounds for the derivatives of r/(t), also in the C° topology; this will

:’((tt)). We check first that

allow us to compute bounds for w(t) = —

N
1207 % (1 =) lan| - éN> >M Cn=4Cn (4.19)

Algorithm 4.7: We produce a neighborhood U°(Iy, . .., In; Ch,0;00;t < n) such that

o
N

€

ht) = tw'@t)+wt)=t"1-f(t) feU

for t < n, where we define w(t) = —r'(t)/r(t).
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Description:
We note that

(1) = ﬁ Pt = — (' (1) u ((2))

As a result of this, in view of (4.14a) and (4.14b) and Algorithm 4.5, we obtain neigh-

borhoods containing functions f, f, and fp, s.t.
rt) =120 (@) ()= —6 20 () =9 fp(D)

which are valid for ¢ < n, and where

B0 =20 (w(CD) @ = 500w ()7
Thus,
—r'@t) _ 1 (fp)
o= = 5 (%5 )
i (TN @) _ 1 (O3 (fw®

0= (59) -5 = (F) ~a (55

and
b = /() +ult) = £ (%%) (%) - %f?’ig))
= %tfh(ﬂ

for a function f;, belonging to an easily computable neighborhood in C°. @)

Note now that our choice of functions was normalized so that f(0) = f,(0) = fpp(0) =1,
which implies that fz(0) = 0. This is important: it says that if the Thomas—Fermi
potential were equal to cx™3, then F’(£2) (which still makes sense) would be constant
(recall Section 1), and would make Theorem 1.1 completely wrong. But it is not, and

one can easily see that

fu(t) = —5—ot ™" + 0(t) (4.20)

as follows: recall that



Note that

r(t) = 6t~ (1— G2 % + (1))

2.12«

) =0 (1 =g 1 o)

which are easily guessed by termwise differentiation of the expression for r(¢), and —not

so easily— checked using the formulas for /() and r"’(¢) above. This yields

1 oa— «@ «@ a— «@ @
() = g7 (20— S ) (= ghet™) + (1= ) (1= et

6-12>

“3(1+ PG (1 - ghet™) + 007
which immediately implies (4.20).
Now, let
N
fr®) = Zant" +H(t)
n=1

with
€h
|H(t)] < \t\N ' t<ng

Finally, then, let L be a large number such that u(L) < 7: we set Q3 < +/u(L), b(Q) = L

for all Q < Qg, and, arguing as before, we have

d r2(%) _y, dr
L=-—2-19Q -7 " =
T a0 /L (ulr) ) r
d u(L) _y
=—|Q S
o /Q . ( ) Cw(t)dt
d Q2 Q—Zu(L) _y, Q2 d
= —-1)" "
ol® [ e-nTueea

Q™ 2yu(L) ”
= 29/ (t—1)" 2 h(tQ?) dt
1

~ 2 (u(@) — 92) " w(u(L))u(L)

N no Q_2U(L)
— 101 an M na _ — S$n—1
=103 o /1 (t—1)"" 5Lt
~ ~t 2u(L)
Q L)—0%)" " 4.21
+h(Q) + (u( ) ) Lu/(L) ( a)

o8



with

1
2

M (N+1)a 20~ 2u(L) 1,
Q-LHa(N+1) (E) / (t—1) = tE VD1 (491p)
1

h(@)| <
Now, we recall (2., on which we impose now the extra condition
u(L) > 202 (4.22)

Both (4.21a) and (4.21b) can be computed easily for all Q > Q.. The evaluation
of integrals of the type [(t — 1)_1/2157 dt can be done by the same method as in the

previous section.

When © < €, note that the first term in (4.21a) goes to infinity as Q& — 0, while all the
others remain bounded. We use this to obtain a uniform lower bound for the absolute
value of this derivative.

By (4.20) we know that a; > 0; thus, we have

r2(Q) 1 r
4 o)

L T
(L)M?\">
a ) M ny
> lQ—1+a - L _— /2 Uu
=2 ‘“(12) +ull) ;0%( 144
n>3 (4.23)
02\~ 2u(L)
+ (u(L) — Q) Tl (L)
where we have put any41 = —¢€p.

Note that, since the exponent v = o — 1 does not fall under the cases considered in
Lemma 4.4, (4.23) is only correct provided as > 0. Of course, one can try to modify
Lemma 4.4 to include the case n = 2, but since it so happens that as > 0 there is no
need. By this we mean that we check as > 0: if the check fails, our proof of Theorem 1.1

fails, and we claim no theorem.

Putting together now (4.1a)—(4.1c), (4.12), (4.11c), (4.22) and (4.23), we conclude that,
if

then .
) QL T (Q) + To(Q) + T (4.24)

99



for

a
ny

T3:/5 (y(r))_l/2 dr >0

72

The following is a consequence of formulas (4.21a,b), (4.11a,b) and Lemma 4.4.

Proposition 4.8: We have
F”(Q) = _COQ_1+a + 0(1) co>0

as 2 — 0.

We now organize the main results in this section in the following algorithm.

Algorithm 4.9: Given representable 6 (small) and L (large), and given neighborhoods
in C° containing the functions h(t) in Algorithm 4.3 and 4.7, valid for 0 < t < u(9)
and 0 < t < u(L) respectively, we compute strictly positive lower bounds for —F" ({2*)
for all thin subintervals Q* of Zone I.

Description: Note that our hypotheses imply that the requirements for the smallness
of n and largeness of L have already been checked.

Break up —F" into the three terms in (4.1). I; can be computed as described earlier
all the way down to €2 = 0.

If Q* > Qs (similarly for Qg), I> can also be computed as described above. Thus we
are left only with the computation of I5 for 2* < Q, (similarly for I3). Note that the
dicotomy Q35 > Q, or Q35 < Q5 can be trivially achieved by choosing 5 to be one of the
endpoints of the Q*.

We assume first that Q* > Q.. We begin by computing bounds for Q*?u(d): if we
cannot check that these bounds are greater than or equal to 1, we report a failure and
quit. Otherwise, we compute bounds for I using (4.11a) with the error bound for &

given by (4.11b). Note that this procedure will prove, in particular, that Q, satisfies
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the smallness requirement above. This is of mild importance since the choice of Q5 will
not be explicit in our computer implementation.

When Q < Q,, we simply check that the right hand side of (4.24) is strictly positive for
Q = Q.. Trivial monotonicity properties will then imply the positivity for 0 < Q < ..
We also check that requirements (4.11c¢) and (4.22) for Q. are satisfied. QP

5. Zone 1I.

The purpose of this section is to prove (1.1) for all Q close to €.

Lemma 5.1: Let f(z) be analytic in |z — zo| < R, continuous up to the boundary,
with

1. () £0.

2. f(z) = wy if and only if z = 2.

3. If |z — zo| = R, then |f(z) —wo| > T.
Then, there exists F(w) analytic,

F: B(wy,T)— B(z0,R)

such that f(F(w)) = w for w € B(z, R).

Proof: Counsider the curves

Ls(t) = f(7s(t)) |7s(t) — 20|l =s 0<s<R

with v, positively oriented.

Condition 2 implies that

1 f'(2)
n(Cs,wp) = 2—m[/s mdz
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is continuous in 0 < s < R, and it is therefore constant.

Condition 1 says that n(I's,wg) = 1 for all s small enough. Thus,

n(Cs,wp) =1 0<s<R

(5.1)

Finally, let € > 0 be given. Condition 3 implies that B(wg, T — €) does not intersect I's

for R — ¢ < s < R, for some other ¢: indeed, assume not: then, there exists z,, such

that |2z, — zo| = R such that |f(z,) — wo| < T — e. Passing to a subsequence, z — 2

with |2eo — 20| = R and |f(2e) — wo| < T — €, which contradicts 3.

Therefore, B(wy, T — €) is contained in one of the connected components of the comple-

ment of I'y for R — ¢ < s < R. This implies that the index is constant in w, i.e.

n(Ts,w) =n(ls,wp) =1 R—€¢ <s<R  we B(wy, T —¢)

Thus, if a;(w) are the solutions of f(z) = w inside B(zp, R),

Zn(ai,vs): 2%”/ f(]:)%dz:n(w,ﬂ)zl

for

R—-é <s<R w € B(wy, T — ¢)

from which, taking ¢ — 0, we deduce that there is only one a; and f'(a;) # 0. This

implies that f~! exists and is analytic.

QP

Lemma 5.2: Let u € H'(|z — r.| < R), smooth on the boundary of B(r., R), of the

form
T,

u(z) = Q2 —uaR? 2% + 22 f(2) i=—7

f(O) = U3R3
satisfying
1. |f] £ h, ug >0 and ugR? > h.

2. For a constant M we have

d4

X

62



Then, t(x) as in (1.4) can be extended analytically to B(r., R), and there is an inverse
r(w) of t(x), analytic in |w| < T where

TS ’U,sz—h

and

2\/ Ug + hR_2

/
sup |7 (w)| <
|w|ST| ( )| 2U2—3|U3|R—éMR2
dart! 24/ hR—2
72(0) <nlT™" U2 + - n>0
dwnt 2up — 3 |uz| R — g M R?

Proof: First, note that 1. implies that

t(z) = z/uaR% — zf(2)

exists as an analytic function in z € B(r., R) (i.e., |z| < 1), since the radicand never
vanishes and a ball is simply connected, and note also that this definition agrees with
(1.4) if z is real.

Also, note that ¢(z) satisfies the hypothesis of the previous lemma in the circle z €
B(re, R). Indeed, t(x) # 0 unless z = r. (by 1), and if |z — r.| = R, then |z| = 1 and

t(z)| > VueR2 — |f(2)| > T

Therefore, by the previous lemma, r(w) exists for all jw| < T, and we also have |r(w) —
re| < R.

Now, note that

Y,
sup |r'(w)| < sup 1 (Sup M)

<2
|lw|<T |z|<1 |t'(z)] |z|<1 |u’($)\2

Since
h|x — rc|3

[u(w) — u(re)| < s o —rel” + =3

and

! (z)] > 2uslz — 7| — 3 |ua| |z — re|” — 1M |z —r,[?

> |z — re| (2u2 — 3 |ug| R — tMR?)
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we deduce that

lu(z) — u(re)| < ug + hR™2
W@ (2us - 3|us| R — LMR?)?

The other conclusion follows from Cauchy’s inequalities applied to r'(w) on |w| < T.

QP

We now switch to the notation of Lemma 1.2.

Algorithm 5.3:  Given Uy (I, .., Iani1;Ch,0;00) and bounds A° < Ay, we construct
a representable T and Uy, such that if

r—Tc

R

u(z) = Q2 — 22 f(2) z=

and
A® < y(z)| < Ao z—7| <R

with f € Uy, then w(t) = g(t/T), with g € U

Description: Note that, since y satisfies (3.3) on B(r., R), we have the identities

JyPy Ly
"
) ('T) ) 77 - 5.’133/2
_ 2 1
" 3 (Y 2 (y,) 292 2y 72 Yy’ Yy 72
( ) — 4 A + T $3/2 $5/2

which imply

¥'(@) <Ay € AP/(r—R)" (5.20)
def Q2
Y@ <A = E o+ AR (5.20)
| ///(x)| < A déf 3A;)/2 Ay + Aizb (5 26)
P T - mE T 20— R |
1 1 3
A0 A2 242 247 A AL
(@) <A, B2 o 0 0| (5.2d)
(re—R)? Te=R  (r,—R)™® (r.—R)"”
W"(@)| < M E 443+ Ag(re + R) (5-2¢)
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Choose representable T and T such that

2N+1

T<T<\VIhb—h h= Y |L|+Ch
n=1

and put 5 =T/ T. Here we assume that Iy > h and 8 < 1. Otherwise, the algorithm
fails.
By the previous lemma, r'(t) can be written as 7'(t) = >, <, 7, (t/T)", where r; can

be computed by power-matching, for n =1,...,2N + 1, because we have Cy = 0, and

S e ROIER g
" T R2(2|lo| -3|NL|) - gMR* 1-p

(5.4)
n>2N+1

A neighborhood of type co and order 2N + 2 containing 7(¢) can be obtained by inte-
gration.

This allows us to construct a neighborhood ; of type oo and order 2N + 1 containing
the function g in the statement of the algorithm, by simply dividing the neighborhood
for 7' by the neighborhood for . QP

Algorithm 5.4: We compute a bound for F" in Zone II.

Description:
Note that

1 ' 2\ —1,2
anz—/(l—t)_2t”dt

TJ-1

1 2 i0 —ig\2n
:722"*12'2”# ; (e —e ) do

_ (2:>2—2n (5.5)

so their computation poses no difficulty. Note also that a,, > a,41 for all n > 0.
Therefore, by (1.8), if we set

- n
W, =1 - w,

we can see that
[e’s) D 2n
—LrQ)=0Q Vo | = n
tr@ =03 o (7) o
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N D 2n D 2n
:szzn (?) O[n+Q Z Waop, <?> Ay,
n=0 n>N
The first term is a polynomial in £2, so we can easily compute its derivative anywhere.

In fact, its derivative equals

N N 90
Z ’11_)27,,0[”’7” + Q Z ’u_)2nnan’7n_1 ( T2 )

n=0 n=1

- (3)

Here we check that Zone 1I is included in the set of 2 that make v < 1. Otherwise, we

with

report a failure and we quit the proof.
As for the other term, using Lemma 2.1, and taking

Ch 2 Z ‘U—)Zn|

n>N
we have

d B D 2n
n>N
<

Qp [Wap | ny™ ™t
Cnewiy™ 4202 3 2]

n>N

N+1 293 n—1
< Chrans1 | ¥ + T2 sup nvy
n>N

2(N + 1)Q? .
ChaN-l-l’YN (’Y+ %) itN+12> “0—1g,y|
<
202
Crhani1 (’yN“ + 7C> in any case
eT?y[log~|

All previous expressions can be easily computed using (5.5). Also, note the slight
improvement in the result as a consequence of taking the neighborhoods in the previous
algorithm to be of odd order. Qé)

This concludes the description of all algorithms needed for the proof of Theorem 1.1.

We summarize its computer—assisted proof in the following algorithm.
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Algorithm 5.5 (Proof of Theorem 1.1): We produce a constant ¢ such that
Theorem 1.1 holds.

Description: Run Algorithm 3.20 (and algorithms thereof) to obtain all necessary

knowledge of the Thomas—Fermi function.

Take () as explained at the end of Section 1. to define Zone I and Zone II. As stated

earlier in this section, we check that y(€2) < 1. Then, we compute an upper bound for

F" in Zone II, and check that it is strictly negative.

Choose €, Q, and Q3 as in Section 4, and a partition consisting of fat subintervals of
[Q¢,Q] whose endpoints contain both Qs and Q3 and a subpartition of thin intervals
Q2f. We compute the numbers ay ; and by ;. Next, we check that F” is bounded above
by a strictly negative number on the interval (0,Q.] and on [Q,,Q] as described in
Algorithm 4.9.

Theorem 1.1 then follows by taking the maximum of all these —finitely many— strictly
negative constants. QP

6. Some Extensions.

The purpose of this Section is to extend Theorem 1.1 to a neighborhood of the Thomas—
Fermi potential, in an appropriate topology. As pointed out earlier, the fact that The-

orem 1.1 holds is a rather delicate one. The following theorem shows this precisely.

Theorem 6.1: Given any two large numbers N and R, and given € small, there exists

a smooth function f(x) such that
a. f(z)=y(x) for0 <z < R.
b. For all x > R, and all n > 0, we have that

dn
< —3-n
dxnf(:z:) T y(z)| < eCpzx
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and, however, we also have that F¢(Q2) vanishes at least N times in (0,9.). (Note that,
if R is large enough, Q. is independent of f.)

The C,, are universal constants. In particular, they are independent of ¢, R and f.

Proof: Note that we can assume R to be as large as we need.

By Corollary 1.3, F(£2) is bounded in the range Q. < Q < Q.. Also, F{(Q2) = F;/(Q?) <
0 in the same range.
From a trivial adaptation of Section 4, it follows that if

144

f(x) g (1+bz7°) x> R

then
F{(Q) = c1bQ™ 1 + 0(1) a=1(V73-7) <1
for ¢c; > 0, uniformly in 2. Therefore, taking b = ¢, there is ; < €, such that
F{(€1) > 0. This gives a function f such that F}/ has at least one zero. To get more
zeros, take Ry large depending on §2; so that F(Q2), Q € [©1,8.), is independent of
f(z) outside of z € (0,R1). Then, define
144 .
f(a:):?(l—e:v ) x> 2R,

and smooth. Then, for Q3 small enough F¢'(€22) < 0. This gives us two zeros for Fy.
And so on. 5%

From this theorem it is then clear that if we want Theorem 1.1 to hold, we need a

stronger grip of the behavior of the function f at infinity.

The following theorem is just a consequence of the rest of this article. Its proof is

computer assisted.

Theorem 6.2: There exist N large integer, C' and x1 large constants, and ¢ > 0 and
xo > 0 small, such that if f(x) satisfies

1. ”f - yHCN[wO,wl] <e.

2. f(z)= 1—w-z+z g ((a:/xo)l/2> with |lw — wo| < €, g analytic and |g — go|; <

€, where yrp(x) =1 —wo -z + $3/2g0 (m(x/a:o)l/g).
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3. Recall formula (4.13a). Then,
with

Here, € is assumed to be small enough so that our assumptions on f stated at the

beginning of Section 1 are satisfied.

Then,
Fi(2) <e<0 Q€ (0, max|rf(r)|)

Proof (Computer—Assisted): Take 7 any small number. If € is small enough, hy-
pothesis 2. and 3. imply that formulas (4.11ab) and (4.21ab) remain valid for f(z) by
perturbing the a,, and €, by at most n percent. Also, for € small enough, hypothesis 1.
implies that the value of integral I; in (4.1a) remains valid for f also with an error at
most 7 percent. As a consequence, T7, To and T3 will change by at most Cn percent.

Therefore,
M

~ (0%
- }’(Q) > %dl (E) Q—1+a -C
where d; and M differ from the ones in (4.20) by at most n percent. In fact, we only

need a; > %al > 0.
Therefore, taking Qy < Q., we see that F"'(Q2) < ¢ < 0 for Q € (0,Qp).

Now, set
d= inf |E/(Q)>0
qelnt | [Fy @)
(This is the only point where we use a computer—assisted result.) From formula (1.6),

it follows that hypothesis 1., for € small enough, implies that

\F}'(Q) —F;(Q)| < 1—105 Qe [Q,)

which concludes the proof of the theorem. @)
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7. The Implementation

The aim of this section is to provide details about the way algorithms were implemented.

The section will be organized as follows:

1. General remarks; in particular, the choice of several heuristic parameters is of special
importance for a successful run of the computer proof: we list the approximate

values.
2. The second deals with the computer programs, which can divided into two groups.

a. One is a general package that performs general arithmetic and functional op-
erations on certain general objects. This basic interval arithmetic package is a
variation on the one used in [Sel] and [Se2], which in turn is an adaptation of
the one developed by D. Rana in [Ra]. It is too long to present here, but we
will give enough information about it so that a similar package can be built with
little thought. In particular, we will list all function names with a very brief

description of each.

Such packages are quite common already, and probably they will soon be stan-

dard.

b. The other is a package which takes care of the specific functions needed to prove
our theorem. It follows very closely the algorithmic presentation in the present
paper. We will list all these programs, preceded by a short explanation for each
function, which will relate each of them to the corresponding algorithm in the

text above.

7.1 General Remarks. According to the general package, (see below) we can store
functions locally using the neighborhoods in function space U(Iy, ..., In; Cp,Cy; k) in-
troduced in Section 2 as follows: say f(t) = f (*=2), where f € U. Then, our knowledge

T

of f can be stored as a structure variable, consisting of
1. A pointer to an array of intervals: it is used to store the I;.

2. Two integers: one has value NN, the order of the Taylor approximation. The
other has value k, the type of the neighborhood.
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3. Two doubles, to store C}, and Cj,.

4. Two doubles, to store x and r.

By considering arrays of the structures above, we can store our global knowledge of
functions as a single structure variable, consisting of a pointer to an array of the struc-
ture variables above. As a consequence, objects like the Thomas-Fermi function y(z),
are represented as a single variable. This gives a special computational meaning to
Algorithm 3.20, the main result of Section 3.

We divide our remarks according to the section they are related to.

Section 3. In Algorithm 3.20, note that the choice of the x; and r; is in principle
arbitrary, but in practice, it is very important that they are chosen carefully. Main

points to take into account are:
1. All runs of parent algorithms should be successful

2. Error bounds Cj ; and C, ; obtained when we run the algorithm are sensitive
to our choice of z; and r;. The proof Theorem 1.1 is in turn sensitive to these
error bounds. In principle, the smaller the r; the better. It is important that

these error bounds are small enough so that we can prove our theorem.

3. The number m is important also: a large m is a consequence of small r; which
will give small error terms for the C' m s but will make the computation of I;
in Section 4 very slow, maybe too Sl(;;W to prove our theorem in a finite time.
On the other hand, a small m will speed up the computation of I, but will
yield bad bounds for the C by . Similar considerations hold for the choice of
N.

The choice of N is fixed on a trial and error basis. N ~ 10 works. About the z; and
r; note that their choice was made in Algorithms 3.16 and 3.18. They were picked
adaptatively inside the program, in the sense that if during the execution of Algo-
rithm 3.2 (a parent algorithm), one of the error bounds grows outside a pre-specified
range, then we make the next r; a little smaller. And viceversa, if that error goes be-
low a certain range, then we make the next r; a little bigger. The error we look at
in deciding this is |p — T'p|/|p| in Algorithm 3.2, and we wanted it to be within the
bounds [~ 10717, ~ 10715]. We chose zg ~ 0.008 and ro ~ 0.0008. The radii grow

as we leave the origin. In carrying out this procedure we made z;y1 ~ z; + ;. This
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gave enough overlap between intervals to capture the behavior of our functions all over
(o — 70,Zm + Tm ). As a result of this method, we obtained m ~ 800 and z,, ~ 300.
The following remark is of mild interest: when choosing the x;, we instructed the com-
puter to include the point ~2.10 with the idea in mind that r. is close to this number.
Since the information given by Algorithm 3.20 is the only one we would like to use
when computing F”', the neighborhoods for yrr(z) around r. which would have to be

computed in Section 5 turn out a little better.

Section 4. The actual value for Q is about 0.6956, only ~ 1072 from .. Thus,
Zone II will turn out to be very small. This is unavoidable using our complex—variable
methods for Zone 11, since with radii larger than that, we cannot exclude the existence

of other zeros of u(z) — Q2 in the vicinity of 7, in the complex plane.

The first heuristic choice we have to make is the numbers ¢ and b as a function of 2. We
describe the choice of a. The choice of b is similar. In the notation of Algorithm 3.20,

choose the z; closest to r1 such that

N
M| <o |- <1
k=1

This is a trivial prerequisite if we want to understand (u(r) — Q?) =" in H'. The choice
of 4 is delicate, though: if it is very close to 1, then the fractional power operation will
yield bad error bounds. If it is very small, we will be forced to take z; far away from
r1. This will hurt the error terms when we compute Iy, and it could even make the
computation of I not possible with our method. The problem is that we will be forced
to solve O.D.E.’s at rather large distances (this is already dangerous), and, even worse,
we will have to take fractional powers of Taylor expansions with large radii: this may be
impossible if, for instance, the solution of the O.D.E. has zeros within our large radius
in the complex plane. A value of about 0.3 for § works most of the time, but it needs
fixing for some values of 2. We refer the reader to functions alim() and blim() in the

program listings for the specific choice of § as a function of €.

We continue now with the computation of I, the most time—consuming procedure. The
division into fat intervals is done with intervals of length ~ 1073. This is large enough
so we can cover the all of Zone I = [0,Q] with not so many of those fat intervals, around

1000 of them, and it is also small enough so that the approximation given by (4.2) in
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terms of the ay; and by ; is good enough. As we approach Q, we made the length of
these fat intervals smaller, about 10~%. Note that a reduction in the size of the W;
results in having to compute the a; and b; more often, but if we are close to 2., the
interval [r1(£2),7r2(€2)] is very small anyway which require few 4, and thin W; won’t hurt.
Next, we have to choose a and l;, or, which is equivalent, we have to choose ig and ;.
We chose them to be 79 = 10, i; = n — 10. This works. The choice of the Q* is the
most delicate. What we did, is give the computer an initial interval of length [ and let
it compute bounds for I; as well as I and I3: if these bounds are good enough so that
we can show that —F" > 0 on Q*, we tell the computer happily to take another Q*
inside W;, and do the same, until all of W; is covered with tests. If for some interval
we cannot produce the bound —F"” > 0, then we tell the computer to subdivide that
interval into two halves, and try each half recursively until (hopefully) we finish. The
process finished, so we conclude —F" > 0 all over W;. The length of the Q* that work
is about 5-107°, degenerating until about 107 near : note that this will generate a
lot of computations.

In principle, we could have given the computer as a first try all of the interval W;, even
without hope, but let the computer figure out how much finer to go before getting the
desired bounds. This is fine from the rigorous point of view, but we would be wasting a
lot of precious time asking the computer to make checks that we are confident are going
to fail. It is thus important to grind W; into finer intervals before feeding the computer

with this recursive procedure.

Concerning the computation of I and I3, they are analogous, and the only thing worth
mentioning is our choice of the following heuristic parameters: M ~ 291, L ~ 295,
xg ~ 0.012 and 6 ~ 0.0099. The degrees of Taylor expansions we chose are 10 for I3 and
20 for I. Also, Q. ~ 1072, Qy ~ 0.0932 and Q3 ~ 0.03469. See the implementation

comments for functions secder0() and secder1() for more about the Qg,g.

Section 5. We finally discuss the peculiarities of Zone II. Recall that the diameter
of Zone II is about 1073. Also, it follows from Section 5 that it is rather easy to
obtain good bounds for the value for —F"(€Q.). The analysis for Zone II therefore
looks unnecessarily complicated, since it would follow from the apparently easy, but in
practice deep statement that |F"(z)| is bounded by about 1000. Since it is numerically
evident that |F”(x)| is bounded by a number much smaller than 1000, maybe one can

obtain a good bound for F" which would make the analysis of Zone II trivial.
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The only parameter of real importance is R. Too large R are bad because, as mentioned
before, it forces us to carry our fractional power analysis to large distances. Too small
R will force us to take small T and therefore small T, and will result of restricting our
knowledge of w(t) = g(t/T) to a too small neighborhood of 2., thus being unable to
cover all of Zone II. Our choice was R ~ 0.462. Once R is chosen, we take T as large
as we can, still satisfying (5.3), and we are left with the choice of T only. Of course, we
would like to take T' as large as possible, but note that the closer we take T to T, the
closer 8 will get to 1, which will give us a bad error estimate in (5.4). This negative
effect can be neutralized by taking N, which until now was arbitrary, to be big, so that
the power 822 makes the right hand side of (5.4) very small. We took T’ ~ 0.0605 and
N ~ 26, but larger N will be even better. The only problem with large N is that it will
force us to invert a polynomial of large degree. Even with our sloppy implementation
of the inversion procedure, errors and speed are of negligible importance.

It follows from these remarks that the analysis of Section 5 will work on an interval
around (2. whose length depends basically on how large we can take R. Without a more
refined analysis, our choice of R is imposed on us by the apparent complex solutions of
u(z) = Q2 around 7., and thus is not subject to improvement. In other words, there
is a good reason for taking 2 ~ 0.6956 and not smaller: Zone II is given to us by the
problem, not by the computer’s ability to compute fast or accurately. As a result, with
a slower or less accurate computer, which would not be able to compute —F" in Zone I
all the way up to €, we wouldn’t be able to prove our theorem in this way. One would
need to perform a real variable analysis to a larger Zone II, in a similar way to the
analysis of Iy and I3 for 2 < (29, Q3.

Finally, all programs are written in C, and were run on several IBM RS600 simultane-
ously. As explained later, our problem can be naturally split into several independent
processes, making it a very appropriate problem to run on different machines at the
same time. Execution took about two days for the programs related to the Thomas—
Fermi equation, and about 6 hours for the ones involving the actual computation of F".
Executable files averaged 4Mb each.

7.2 General Purpose Package.

The basic variable types in this package are the following:
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typedef stru

typedef struct { double b;}
typedef struct { int deg;
INTERVL *p; }
typedef struct { POLY p;
BND center;
BND r;
BND g;
int k;
BND h;}
typedef struct { int n;
RSERIES *f;}
union convert{ reps r;
unsigned long int
double mtwo = (double) -2;
double mone = (double) -1;
double zero = (double) O0;
double half = (double) 0.5;
double one = (double) 1;
double two = (double) 2;
double eight = (double) 8;

BND bmo
BND bOe

ct { double dn;
double up;}

ne = {(double) —1.};
ro = {(double) 0};

BND bquarter =
BND bhalf = {(double) .5};
BND bone = {(double) 1};
BND btwo = {(double) 2};
BND bthree = {(double) 3};
ur = {(double) 4};

BND bfo
INTERVL
INTERVL
INTERVL
INTERVL
INTERVL
INTERVL
INTERVL
INTERVL
INTERVL
INTERVL
INTERVL
INTERVL

imfour
imthree

imtwo =

imone

izero
ihalf
imhalf

ione

itwo
ithree
ifour =

ifive =

{(double) .25};

= {(double) -4,(double) -4};

= {(double) -3, (double) -3};

{(double) -2, (double) -2};
{(double) -1,(double) -1};
{(double) 0, (double) O};

{(double) 0.5, (double) 0.5};

= {(double) -0.5,(double) -0.5};

{(double) 1,(double) 1};
{(double) 2,(double) 2};

= {(double) 3,(double) 3};
{(double) 4,(double) 4};
{(double) 5,(double) 5};
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INTERVL isixteen = {(double) 16,(double) 16};
INTERVL imsix = {(double) -6,(double) -6};
INTERVL ieight = {(double) 8,(double) 8};

INTERVL ifortyeight = {(double) 48, (double) 48};

int n;

double 1n2;

INTERVL iln2 = {0.69314718055994484, 0.69314718055994584} ;

The following are the function descriptions.
up(r). Returns a representable strictly larger than r.

dn(r). Returns a representable strictly smaller than r.

The functions to follow return variable of type BND. Variables a and b are of type BND,
x is of type INTERVL and m is of type int.

ucvtib(x). Returns an upper bound for x.

lcvtib(x). Returns a lower bound for x.

cvtdb(d). Converts d (a double) into BND.

cvtintb(m). Converts m into BND.

uplusb(a,b). Returns an upper bound for the sum of a and b.
lplusb(a,b). Returns a lower bound for the sum of a and b.
neg(a). Returns —a.

absb(a). Returns |a|.

minb(a,b). Returns the minimum of a and b.

maxb(a,b). Returns the maximum of a and b.

umultb(a,b). Returns an upper bound for the product of a and b.
lmultb(a,b). Returns a lower bound for the product of a and b.

uinvb(a). Returns an upper bound for the inverse of a.
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linvb(a). Returns a lower bound for the inverse of a.
udivb(a,b). Returns an upper bound for a/b.
1divb(a,b). Returns a lower bound for a/b.
usquareb(b). Returns an upper bound for b2.
1squareb(b). Returns a lower bound for b2.
upowerb(b,m). Returns an upper bound for b™.
lpowerb(b,m). Returns a lower bound for b™.

The functions to follow return a variable of type int.
egb(a,b). Returns 1 if a=b, 0 otherwise.
negb(a,b). Returns 0 if a=b, 1 otherwise.
1sb(a,b). Returns 1 if a < b, 0 otherwise.
lseqgb(a,b). Returns 1 if a < b, 0 otherwise.
grtb(a,b). Returns 1 if a > b, 0 otherwise.

grtegb(a,b). Returns 1 if a > b, 0 otherwise.

The functions to follow return variable of type INTERVL, unless stated otherwise. Vari-
ables x and y are of type INTERVL, d is double, m, i and j are of type int and b is of
type BND.

cvtbi(b). Converts b into INTERVL.

cvtdi(d). Converts d into INTERVL.

cvtinti(m). Converts m into INTERVL.

plus(x,y). Returns an interval containing the true set—theoretic sum of x and y.
neg(x). Returns —x.

iabs(x). Returns |x|.
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uabs (x). Returns an upper bound to |x|. The function returns a variable of type BND.
labsi(x). Returns a lower bound to |x|. Returns a variable of type BND.

iequ(x,y). Returns 1 if the arguments are exactly the same, 0 otherwise.
ienlarge(x,b). Returns an interval containing all points at distance at most b from x.
mult (x,y). Returns an interval containing the true set—theoretic product of x and y.

divi(x,y). Returns an interval containing the true set—theoretic division of x by y. If
0 € y, then we abort the program.

inv(x). Returns an interval containing the true set-theoretic inverse of y. If 0 € vy,

then we abort the program.

square(x). Returns an interval containing the true set-theoretic square of x.
power (x,m). Returns an interval containing the true set—-theoretic power x™.
intersect (x,y). Returns x Ny, which also belongs to 7.

iunion(x,y). Returns x Ury € Z, the smallest interval containing the union of both

arguments.
ration(i,j). Returns an interval containing i/j.

iexp(x). Returns an interval containing e®. This can be easily constructed using the

Taylor expansion for the exponential.

ilog(x). Returns an interval containing log(x). This can be easily constructed using
the Taylor expansion for the exponential, in the case x € [%,1), and the general case
follows trivially after we obtain upper and lower bounds for log2. These bounds can
be obtained heuristically, and then checked using the function iexp(). Alternatively,
bounds for log 2 are available in the literature, which are better than the ones we could
check with iexp(); we preferred our way since we simply don’t know whether those
bounds in the literature are rigorous. This is somewhat wasteful, since iexp() is rather

conservative (not much). But it did not affect our proof in any noticeable way.

The functions to follow return variables of type POLY, unless said otherwise. Arguments

starting with p are also of type POLY, m is of type int, x, y and a are of type INTERVL,
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and variables starting with b are BND.

make poly(m). Returns a POLY of degree m with zero coefficients.
polycopy(p). Returns a POLY identical to p.

coeff(p,m). Returns p.p[m], an INTERVL.

coeffmult(pl,p2,m). Returns the m’th coefficient in the algebraic product (in the

interval arithmetic sense) of p1 and p2.
polysca(p,a). Returns bounds for a-p.
evalpoly(p,a). Returns an INTERVL containing the algebraic evaluation of p at a.

polynorm(p). Returns a BND, which is an upper bound for the sum of the absolute

value of the coefficients of p.

polyplus(pl,p2). Returns bounds for the algebraic sum of the arguments.
polymult(pl,p2). Returns bounds for the algebraic product of the arguments.
polyscale(p,a). Returns bounds for the polynomial in x given by p(a - ).
polyder(p). Returns bounds for the algebraic derivative of p.

polyinteg(p). Returns bounds for the algebraic integral of p.
polycomp(pl,p2). Returns bounds for the algebraic composition p1(p2).

coeffcomp(pl,p2,m). Returns bounds for m’th coefficient in the algebraic composition
p1(p2).

polyinv(p). Returns bounds for the first p.deg+1 Taylor coefficients of the functional
inverse p~! such that po(p~!) = Id.

The following functions return variables of type RSERIES, with same radius, center,
order and type as the arguments, unless stated otherwise. Variable names continue

with the same type, except that those starting with s and r are now of type RSERIES.

rs(x,r,i). Returns a RSERIES, with .center=x, .r=r and .p.deg = i. Polynomial

coefficients are zero.
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rscopy(r). Returns a RSERIES identical to r.
ichcoo(a,r). Returns bounds for (r.center — a)/r.r.

geomrs (x,y,bl,m,b2). Returns a neighborhood for 1/(xt+y) with center at b1, radius
b2 and degree m.

rstrunc(s,m). Returns a RSERIES of degree m which contains s. It aborts ifm > s.p.deg.
rsplusc(r,a). Returns bounds for r+a.
rsca(r,a). Returns bounds for a-r.

rsplus(r,s). Returns bounds for the sum of the arguments. The order and type are
the smaller of those of the arguments. It is assumed without check that the center of

the arguments are identical.

rsminus(r,s). Returns bounds for r—s. The order and type are the smaller of those
of the arguments. It is assumed without check that the center of the arguments are

identical.

rsmult(r,s). Returns bounds for the product of the arguments. The order and type
are the smaller of those of the arguments. It is assumed without check that the center

of the arguments are identical.
rseval(r,a). Returns an INTERVL with bounds for r(a).

rsinteg(r). Returns a neighborhood for the functions frm f(t) dt where f € r, and

.center
|z — r.center| < r.r. The polynomial order and type of the output is one more than

those of the argument.
rsdint(r,a,b). Returns a INTERVL with bounds for [,* f(¢) dt where f € r.

rsoverx(s). Returns bounds for s(z)/(z —s.center). It is assumed here without check

that s(s.center)=0 exactly and the type of s is at least 1.

rslog(x,y,bl,m,b2). Returns a neighborhood for log(xt 4 y) with center at b1, radius
b2 and degree m.

ievders(s,x). Returns an INTERVL containing bounds for the derivative of s at x.
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ievnders(s,x,m). Returns an INTERVL containing bounds for the m’th derivative of s

at x.

blinrs(s). Returns a BND which contains an upper bound for |s|;.
rstimesx(s). Returns bounds for the functions z - s(z).

frac22(x,b). Returns a BND with an upper bound for Cs »(z,b), as in Section 2.
frak22(x,b). Returns a BND with an upper bound for Ks 2(x,b).

rsmatpower (s,*r). Returns the argument *r, a pointer to an array of RSERIES, con-

taining bounds for all powers of s, from 0 to s.p.deg.
rspower (r,x). Returns bounds for r*.

polypower(p,x). Returns a POLY containing bounds for the Taylor approximation of

degree p.deg of p*.

The functions to follow perform operations on variables of type GRS, represented by

arguments starting with gs.

Functions
grscopy (gs)
grsmult(gsl,gs2)
grseval (gs,x)
grsdereval (gs,x)
grstimesx(gs)

grspower (grs,x)

perform the corresponding operations as their RSERIES counterparts on each RSERIES

member of their structures.

grsdint(gs,x,y). Returns bounds for the integral from x to y of all global functions

in gs. Note here that the role the of x and y is reversed with respect to rsdint ().

grs(n). This function simply returns a GRS with .n member equal to n, and with space
allocated for n+1 variables of type RSERIES. Note that the further allocation needed in
the POLY member of RSERIES is not done here. This should be done using either rs()
or make_poly() above.
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grsintpt(gs,i). Returns a double, a heuristic choice for the “middle” point between
the centers of the i’th and i41’th members of gs. If we denote the centers by x; and x5,

and corresponding radii by r; and 79, this function returns approximately the number
T1-Xa+ T2 21
1+ T2 '

grsloc(gs,x). Another heuristic function. Returns an integer representing the member
of the structure gs which best captures the behavior of gs near x, i.e., the one that

minimizes (in a heuristic way), the output of ichcoo(x,...) above.

The functions with names equal to the above followed by an f perform the same op-
erations, plus: they destroy the arguments containing pointers by freeing the memory

they have allocated.

In addition to these functions, we also have the following, which are of an entirely
heuristic nature. They are designed to make the heuristic guesses of p in Algorithms 3.2
and similar. They manipulate polynomials, this time defined simply as arrays of SIZE+1
variables of type double (we took SIZE=50 in our programs); we will denote such
variables here with names starting with po. They also use the additional extern variable
DEGREE, smaller than SIZE at all times, intended to allow us to vary the effective degree
of these polynomials inside the programs. They do not return any variables a values,

only as arguments. All operations they perform are floating—point.

pzer (po). Initializes po to 0.

pcopy(pol,po2). Copies pol into po2.

pnorm(pol). Returns a double with a floating-point approximation to |po1];.
psub(pol,po2,po3). Puts in po3 the algebraic difference of pol and po2.

pprod(pol,po2,po3). Puts in po3 the algebraic product of pol and po2 truncated to
DEGREE.

pinte(p01,po2). Puts in po2 the algebraic integral of pol, truncated to DEGREE.
psca(pol,x,po2). Puts in po2 the product of pol by the double x.
pscale(pol,x,po2). Puts in po2 the scaled polynomial pol(x - ).

myprpower (pol,x,po2). Takes pol to the power x and puts the result in po2.
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Last, but not least, we also need functions that give the decimal expansion of rationals
bounds for representable numbers. This is required, for instance, to be able to state
Lemma 3.21 in the form we did, rather than in a form where the bounds claimed are
given in the harder to visualize hexadecimal form. The construction of such functions,

while not trivial, is not too hard and we omit the details.

7.3 Aperiodicity Programs. The following is a brief itemized explanation of the

computer programs included at the end of this paper.

Throughout the programs, we will use the external variables

extern GRS Y, YRS, U;

extern INTERVL Le, UL, De, UD, C1, W, RC, BC, ALPHA;

extern RSERIES HINF, HO;

The variable ALPHA will contain consist of bounds for %(\/7 — 7) computed once and
for all at the beginning of each program. The variables De and UD correspond to § and
u(9) of Section 4, and Le and UL correspond to variables L and u(L) also in Section 4,
and they are introduced in functions h_at_0() and hinf () respectively. The rest will

be explained below.

lipreg(). Implements Algorithm 3.1, returning the Lipschitz norm if we can show that

it is less than 1, and returning 1 otherwise.

vtffx (). Implements Algorithm 3.3. Algorithm 3.2, which is needed for the execution

of the former, is implemented explicitly inside the function.

supervtffx (). Implements Algorithm 3.5. Note that in this function, as well as in
vtffx (), the values and derivatives of the solution of the ODE are returned as ar-
guments, while the double that the function returns as value is an approximation to
|p — T'p|, which, as pointed out before, will be used in deciding how much to increase

or decrease the next choice of r;.

vtffxi(). Implements Algorithm 3.2. Gives neighborhoods of type 2. This function
(and vtf£fxi2() below) returns a neighborhood valid for all centers in the interval xin.

As a consequence, no .center of type BND can be naturally specified in the RSERIES it
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returns; we assigned the value 0 (a better choice would be NaN). This means that we
cannot manipulate the outcome of this particular function with any general-purpose
function which would attempt to make use of the structure member .center. All
such manipulations should be done explicitly taking into account that the centers are

contained in xin.!

tfypoly (). See below.

vtffxi2(). Implements Algorithm 3.2. Gives neighborhoods of type co. The power
matching scheme is done in tfypoly ()

1ip0(). Implements Algorithm 3.6, returning the Lipschitz norm if we can show that

it is less than 1, and returning 1 otherwise.
vtf£f0(). Implements Algorithm 3.8. Again, Algorithm 3.7 is built in.
y-at_0(). Implements Algorithm 3.7.

tfw(). Implements Algorithm 3.15. In our description of this Algorithm above, the x;
and r; are given. From the logical point of view, this is true, but from the computational

point of view, the z; and r; are produced within tfw().

The successive rigorous bounds we find for wq are printed in hexadecimal form as they
are obtained. The reason for this is that it takes a long time to run each iteration. In
this way, one has rigorous bounds for wy even if the function does not finish (due to

computer shut down, or impatience on our part).

tff (w). This function implements Algorithm 3.16, where the INTERVL w has as end-
points a rigorous upper and lower bound for wg. As in tfw(), the choice of the z; and
r; is done inside the function. The values y; and y, are returned as a single variable of
type GRS.

tfrs(y). Implements Algorithm 3.20. The argument y, which is of type GRS, is the
output of tff (w).

Omega(u). The argument u, a GRS variable, contains bounds for urp(z) = z - yrr(x).

One could attempt to define a new variable type in which centers are of type INTERVL. Since this is
the only place in which we use this special choice, we decided not to do it in this particular situation.
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The function then returns an interval [r® r9°] which is guaranteed to contain .. Recall
that 7. is uniquely defined by the identity u’(r.) = 0. Thus, we first look in a heuristic
manner for 4 and 7P, and conclude that they are valid bounds after checking that
o' (r4) > 0 and u/(r"P) < 0, which we can easily do using the general purpose interval

arithmetic package, namely, function grsdereval().

The heuristic construction of the interval is done via a bisection method, slightly modi-
fied so that the interval produced is optimal, in the sense that any representable r > 92

the bounds we obtain for u'(r) would not be strictly positive (similarly for r"P).

tfprint (). This is a bookeeping function. It prints the output of tfw(), bounds for wy
and —by, the output of t££() (Algorithm 3.16), tfrs() (Algorithm 3.18), together with
a GRS variable containing urr, the bounds for r. produced in Omega (), and bounds for
Q2. The bounds for utp, and Q2 are easily obtained via the general purpose functions

grstimesx() and grseval().

The print out is done in hexadecimal form, so that it can be printed on a file and read

rigorously for later use.
tfread(). This function simply reads the output of tfprint ().

rO(w). Given an INTERVL w, this function produces an interval [a,b] containing all
solutions 7 < r. to the equation u(r) = w?, for all values w contained in w. The bounds
are, first, obtained heuristically using bisection (as in Omega () ), and seen to be correct
by checking that an interval containing u(b) is entirely to the right of (i.e. larger than

or equal to) w?, and an interval containing u(a) is entirely to the left of w?.

r1(w). Same as before, except that the solutions we are looking for are u(r) = w? for
r > r.. Both functions produce optimal intervals, in the sense described in Omega().
This function only returns a true bound when w> 1072%. This is perfectly fine, since it
is only invoked for w> €., and we check that Q. > 1072° (if fact, Q. ~ 0.01).

vtfinf (). Implements Algorithm 3.13, for representable values of b=-a0 and R=t. As

usual, Algorithm 3.12 is implemented inside.

tfc1(). We use our bounds for wgy, which tff () transforms for bounds for yrr, and,
for a representable ctest we return 1 if we can guarantee that by < —ctest, —1 if

b1 > —ctest and 0 if we cannot guarantee any inequality.
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getc1(). Organizes tfcl1() to implement Algorithm 3.19. The bounds for —b; are
stored in the external variable C1. As in tfw(), instead of returning an interval value
for our bounds at the end, this function prints the successive rigorous bounds it obtains

in hexadecimal form.

refiney(). This function implements Algorithm 3.18, with the extra obvious feature
that instead of obtaining y; and y'; alone, it takes care of comparing them with the old
bounds we had, given by function tff() and stored in Y, and takes the intersection of

them. This requires the x; to be the same as before, which poses no problem, of course.

refine numbers(). Similar to tfprint (), except that, once bounds for b; are com-
puted, it takes care of using them to improve the bounds for yrr before printing them

out.

tfw2(w). According to Algorithm 3.19, once new bounds for b; are obtained, and the
corresponding bounds for ytr are obtained, one can attempt to improve the bounds
for wg. This function takes care of this, by returning 1 if, using the scheme in Algo-
rithm 3.19, we can show that wy > w, —1 if wy < w, and 0 if we cannot claim any

inequality.
mygetw(). This function simply organizes the previous one.

refineY (). This function implements Algorithm 3.16 again. The difference with tff ()
is only a programming one, since the bounds this function computes are assumed to be

refinements of previous ones. Thus, the z; need not be recomputed.

rstfu2(x,r,y). This function implements a trivial variant of Algorithm 3.2, in the type
oo case, except that instead of returning bounds for yry alone (which are returned in the
pointer variable y), it returns 7 - yp(r) also. As pointed out before, multiplication by
r, which is implemented as a general purpose routine rstimesx (), is not available here,
since vtffxi2() returns a RSERIES without a meaningful .center structure member,

needed in rstimesx().

yinf (t,m). This function implements Algorithm 3.12. The int variable m represents

the order of the expansion we want.

expandY (). Given the variable Y of type RSERIES containing bounds for yrr and y/ip
at certains points x;, this function returns another RSERIES with the same bounds at
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the same z;, plus the trivial bounds yrr € [0,1], yp € [—2,0] at other points z;,
chosen heuristically inside it. This is justified since if at the stage we use this function
we already know that wy < 2, which we do because by the time we use this function we
would have already run mygetw(). Obviously, this bound can be replaced by any other
we know to be true by the time we run this function, and it will probably have no effect
on the final answer, since the information expandY () produces will most probably never
be used until refineY() has already improved it to a quite sharp bound. After doing
this, it also destroys Y by freeing the memory allocated to it. Note that this function

has a purely administrative role.

The functions below refer to the algorithms presented in Section 4. In the explanation

to follow, we use the notation introduced there.

secder0(w,a). Computes I, in Section 4, for the thin interval w and a = a. If w < Q,,
it simply invokes secder0_sp() below. Note that Qs is implicitly defined by the first

if statement in this function.
secder1(w,a). Same as before, but for I3 this time.

dermatrix(). Computes the numbers ay ; and by ; involved in the computation of I

in Section 4. They are stored in the polynomial part of RSERIES variables.

secdermat(w,al,a2,derl,der2,i). Uses the numbers aj; and bg; (given in al, a2,
der1 and der2 respectively) to compute J;(w). The choice of the #; is made using

grsintpt ().

secderdir(). This function computes J; directly, i.e. computes bounds for the func-
tions f; in Section 4 involved in the computation of I, without use of the numbers ay, ;

and by ;. This function is intended to compute these f; for representable arguments.

super_secderdir (). This function does the same as the previous, but for interval values
of the argument. In other words, for the thin interval under consideration [zy,z2],
this function uses the previous one to compute the f;(z1) and f;(z2), and then sets
Ji = fi(z1) Ur fi(z2). Recall that this is justified due to the monotonicity of the f;.

secder_help(). This function uses the previous one to compute bounds for ;. It

selects the i7g and 21, computes the J;- either directly or using the aj ; and by ;, and adds
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them up together.

alim(). This function selects heuristically the number a (as a function of Q) involved
in the break up of I into the I; (i =1,2,3) in (4.1).

blim(). Same as before, but for b.

secder2(). This function organizes the previous ones to produce bounds for —F" in a

thin interval €.

supersecder2(). Given an interval €2, it runs the previous function to check whether
—F" is strictly positive. If we can check that it is, it reports a success and returns the
bounds. If it is not, it subdivides the interval and tries each half recursively. Note that
the fact that this function eventually finishes implies that —F" is strictly positive on

the original interval.

supersupersecderdn(w,vup,dup). (At this stage, the reader will probably notice our
lack of imagination in picking names for all the functions involved in this proof.) Given a
fat interval w, and numbers a9 ; (stored in vup), and bs ; (stored in dup), corresponding to
the upper endpoint of w, this function computes the missing a; ; and by ; corresponding
to the lower endpoint of w; then, it breaks w into thin subintervals using the heuristic
variable step, and then invokes the previous function to check that —F" is strictly
positive in each thin subinterval. Once this is done, we know that —F" is strictly
positive all over w. Before returning, this function replaces the arguments vup and dup
by the values of the a;; and by ; corresponding to the lower end of w. The reason for

this will be explained in the next function.

secderdn(r,step). Given representable r and step, this function computes the a; and
b; corresponding to 7, constructs the fat interval w; = [r — step,r|, and gives them to
the previous function (note that these are exactly the arguments it needs) to do its job.
When supersupersecderdn() is finished, it returns to us the a; and b; corresponding to
the lower end of wy; then, we construct the new fat interval wy = [r—2-step,r —step],
and we give it to supersupersecderdn() again. Note that the a; and b; that we need
now are exactly the ones returned to us by supersupersecderdn(). And so on. Note
that in the construction of the w; we used expressions of the type r — i - step; there
is no need to make these computations rigorous, as long we make sure that the lower

endpoint of each interval is exactly the upper endpoint of the next, which is trivial to
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arrange.

We do not include any stopping criterion for this function, rather, we instruct it to
print in exact hexadecimal form each fat interval on which we can guarantee that —F"
is strictly positive. The reason for this is that it takes a very long time to do each fat
interval; thus, we prefer to let several computers run (say six of them) on complementary

ranges, and stop them as they redundantly start to get into each other’s territory.

supersupersecderup(). Same as supersupersecderdn(), but designed to go up,

rather than down.
secderup(). “Up” version of secderdn().

hinf (). Implements Algorithm 4.7. All sub-algorithms are explicitly implemented

inside as needed. Le is chosen here.

h_at_0(). Implements Algorithm 4.3. Also, sub—algorithms are implemented inside. De

is chosen inside also.

printh(). Runs the two previous functions, and types the output in hexadecimal form

for later use.

tfint1(alpha,x). This function computes bounds for

14+ 1
/ (t—1)" 2t*dt
1

for x < 1. It does it by Taylor-expanding the integrand around 1.

tfint2(alpha,a,b). Computes rough bounds for

b
/ (t — 1)~ "¢ gt

_ 1/2

by bounding ¢* and integrating (¢ — 1)

tfint3(alpha,a,b). Computes rough bounds for

b
/ (t — 1)~ "¢ dt

by bounding (¢t — 1)~ and integrating .
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tfint4(alpha,a,b). Computes precise bounds for

b 1
/ (t—1)""2t>dt

by Taylor-expanding the integrand. This function is to be used when we require pre-
cision and are willing to give up speed. The two previous ones are intended for a fast,

rather inaccurate answer.

tfintfl(alpha,x). This function computes rough bounds for

14+ 1
/ (t—1)" 2t*dt
1

for all x. It does it by using tfint1() around 1, and using tfint2() (or tfint3()) in

several other small intervals away from 0.

tfintf2(alpha,x). As the previous function, but using tfint4() instead for precise,

slow bounds.

secder0_sp(w). Computes Iy when Q, < w < {2y, as explained in Section 4. It checks
that w? < u(d): otherwise, it aborts the program. Thus, if the program eventually ends

without abortions, we are guaranteed that Q2 < u(6).

secder1_sp(). Computes I3 when Q. < Q < Q3. The same comments as secder0_sp ()

apply.
secder0_speps (). Computes T1(f2), as in Section 4.

secderl_speps(). Computes T5(£2), as in Section 4. As before, it also checks that
w? < u(L): otherwise, it aborts the program. Thus, if the program eventually ends

without abortions, we are guaranteed that Q2 < u(L).

secder_eps (). Computes T3.

The next functions are related to Section 5. We also use the same notation used there.
rtpoly(). See below.

tfwz (t,x). Implements Algorithm 5.3. The neighborhood Uy is computed using vtf-
fxi2(), where R = x. The value t is T in the statement of the algorithm, which we

check it is less than or equal to T. The power-matching scheme is done in rtpoly().
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sdinv(w0,w). As in Algorithm 5.4, computes bounds for —F" in the interval w0, using
w, the output of tfwz ().

super_sdinv(a,ww). Given an interval a (which will be all of Zone II), and ww, the
output of tfwz (), this function subdivides a recursively until it checks, using the previ-
ous function, that —F" is strictly positive in each subinterval of a. When this function

exits, we know that —F" is strictly positive all over a.

In order to display how the previous functions can be used to prove Theorem 1.1, we
conclude the present discussion with a list of the final programs used in proving our
theorem. In doing this, we omit the trivial, but lengthy, statements such as those dealing

with variable declarations.

The following obtains —from scratch— bounds for wg, which are printed in exact hex-

adecimal form.

W.dn = (double) 1;
W.up = (double) 2;
tfw(W,0.0);

Note that it looks as if in the previous program we are assuming the apparently trivial
bounds [1,2] for wy before we start. In fact, we are not, since these initial bounds are
used only to make heuristic choices where to look. The only thing to bear in mind, is
that the choices we will be using will be in [1,2]. Therefore, once we exit the program,
we only have to check that there is at least one of those choices for which we were
able to conclude that it bounds wy from above, and that there is one of those choices
that bounds wg from below. Once we know this, the final bounds obtained will be true

bounds for wy.

Using the bounds for wy obtained before, we can now obtain bounds for yrr and use

these to obtain bounds for b;.

W=readivalio();
printivalio(W);
Y=tff(W);
Y=expandY () ;
printgrsio(Y);
fflush(stdout) ;
Cl.up = (double) 14;
Cl.dn = (double) 13;

getcl1();
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In the previous program, note that without the statement expandY(), the points at
which we have bounds for Y may not be very many, and when trying to solve the ODE
backwards, starting at the largest x; stored inside Y, we may run into trouble, since, as
pointed out in Section 3, we need large x; to be able to solve the ODE around oco. Note
also that the bounds stored in Y are printed out in exact hexadecimal form, since we

will be using them in all programs to follow.

Next, we organize the output of the previous program so that it contains, first, the
bounds for wg, next, the bounds for —b;, and then the bounds for yrr contained in Y,
all in exact hexadecimal form. Then, this output can be used as input for the following
program, which will use the new bounds for —b; to obtain improved bounds for yrr,
stored in Y. It will also compute the corresponding YRS and U.

W=readivalio();
Cl = readivalio();
Y=readgrsio();

refine_numbers() ;

The next program refines our bounds for wg, b; and yr, as described in Algorithm 3.19.

The output is printed out with same format as usual in exact hexadecimal form.

tfread();
mygetw() ;
refineY();
getcl1();

refine_numbers() ;

A comment concerning the previous program. Since the bounds that the previous
procedures yield are quite sharp, the computer may have to solve ODE’s with initial
values close to the critical ones that cause the solutions to vanish, but only very slowly.
As a result, when trying to check bounds for wy with mygetw(), some choices of wtest
may yield a failure of some of the ODE-solving algorithms, which will cause the previous
program to be aborted. The thing to do in this case is to take whatever bounds were
successfully obtained by mygetw(), use them to replace the old bounds for wy written
in some file, and restart the previous program without using mygetw(). To achieve
even greater accuracy, one may also rerun the previous program (after replacing the
bounds for wy with the new ones) with a different choice of the heuristic parameter t in
mygetw(). These comments extend also to b; and getc1(), although those occurrences

are very unlikely in this case.
Once we are happy with all the bounds for the Thomas-Fermi data, we run the following
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program, which will write in exact hexadecimal form the neighborhoods for h(t) in
Algorithm 4.7, for h(t) in Algorithm 4.3, and bounds for L, u(L), 6 and u(J).

tfread();

printh();

The program to follow will check that —F" is strictly positive for 2, < Q < Q..

tfread();

readh();

il = ratpower(BC,1,2);

il.dn = 0.6956; /*This amounts to setting Zone II—= [0.6956,96]*/
res = tfwz(0.0605,0.462);

super_sdinv(il,res);

/*At this point we know that —F" > 0 on Zone 11%/
secderdn(il.dn,1.e-4);

This program can be complemented with programs of the type

tfread();
readh();
secderup(x,t);

or

tfread();
readh();
secderdn(x,t);

for double values of x and t, which can run on separate computers.

Note that these three last programs will tell us in exact hexadecimal form which fat
intervals W are guaranteed to satisfy —F" > 0 on W, but will never stop trying to get
W closer and closer to 0. The thing to do is, as long as we see that we have checked
all intervals inside [~ 1072,Q,], halt the program, set Q. equal to the lower end of the
last interval checked, and run the following last program:

tfread();

readh();

il readivalio();
minb(uabs(UL) ,uabs(UD));
bl = 1divb(b1l,btwo);
printbd(bl);

if(lsb(bl,ucvtib(square(il)))){

printf ("error");
abort();

o
=S
i n

i3 = secderl _speps(il);

i4 = secder0_speps(il);
i2 = secder_eps();
i2 = plus(i2,neg(plus(i3,i4)));
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i3 = poweri(il,plus(imone,ALPHA));

i3 = mult(i3,divi(HINF.p.p[1],itwo));

i3 = mult(i3, poweri(divi(cvtbi(HINF.center),cvtinti(12)),ALPHA));
i2 = plus(i2,i3);

if(lsegb(levtib(i2) ,b0ero)){
printf ("error");
abort();

else printf("PROVED");

This program checks that T7(Q) + T>(2) + T3 > 0 for all @ € i1, after checking that

Q.

= i1.up satisfies (4.11c) and (4.22). As a result, any Q. € i1 would finish the proof.

In our case, i1.dn=i1.up=lower end of the last thin interval for which we successfully

run supersupersecderdn().
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#include <math.h>

#include <stdio.h>

#include "extern.inc"
INTERVL r0(), rl();

RSERIES yinf(), y at_0(), vtffxi();

INTERVL

secderQ(w,a)
INTERVL w, a;

{

INTERVL ywO0, ywl, x, ith;

INTERVL secder0_sp(), coo, cool2, sol;
BND b;

RSERIES y, u, y2;

int i;

coo = U.I[1].p.p[0];
if(Isb(ucvtib(square(w)),lcvtib(coo)))return(secder0_sp(w));

ith = divi(cvtinti(—3),cvtinti(2));
x = r0(w);

yw0 = grseval(YRS,x);

ywl = grsdereval(YRS,x);

y = viffxi( x, a, yw0, ywl);

u = rscopy(y);
for(i = y.p.deg; i>=1; ——i)
u.p.p[i] = plus(mult(y.p.p[i],x),mult(y.p.p[i—1], cvtbi(y.r)));
u.p.p[0] = mult(y.p.p[0] ,x);
u.g = umultb(y.g,uplusb(ucvtib(x),y.r));
u.h = umultb(y.h,uplusb(ucvtib(x),y.r));
u.h = uplusb(u.h,umultb(uabs(y.p.p[y.p.deg]),y.r));
u.p.p[l] = intersect(u.p.p[1],mult(grsdereval(U,x),cvtbi(u.r)));

y2 = rs(y.p.deg—1,y.center,y.r);
for(i=0; i <= y2.p.deg; ++i) y2.p.p[i] = u.p.p[i+1];
y2.g = u.g, y2.h = u.h;

18:84 Apr 17 1993
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secder(
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secderO0—secderl()

y2 = rspowerf(y2,divi(ith,itwo));
y2 = rsmultf(y2,y2);
y2 = rsmultf(y2,y);

sol = izero;
coo = divi(iabs(plus(a,neg(x))),cvtdi(y.r.b));
if(coo.up > 1) coo.up = (double) 1;
cool2 = iexp(divi(ilog(coo),imtwo));
if(cool2.dn < 1) cool2.dn = (double) 1;
for(i = y2.p.deg; i >= 0; i—— ){

sol = mult(sol,co0);

sol = plus(sol,divi(y2.p.p[i],plus(cvtinti(i),neg(ihalf))));

sol = mult(sol, cool2);

b = uplusb(umultb(y2.g,btwo),udivb(y2.h,
Iplusb(cvtintb(y2.p.deg+1),negb(bhalf))));

sol = mult(ienlarge(sol,b), cvtdi(y2.r.b));

freep(u.p), freep(y2.p);

return(sol);

INTERVL

secderl(w,a)
INTERVL w, a;

{

INTERVL ywO0, ywl, x, ith;

INTERVL secderl _sp(), coo, cool2, sol;
BND b:

RSERIES y, u, y2;

int i;

coo = U.f[U.n—1].p.p[0];
if(Isb(ucvtib(square(w)),lcvtib(coo)))return(secderl sp(w));

18:34 Apr 17 1993
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secderl()

ith = divi(cvtinti(—3),cvtinti(2));

x = rl{w); 80
yw0 = grseval(YRS,x);

ywl = grsdereval(YRS,x);

y = vtffxi( x, a, yw0, ywl);

u = rscopy(y);
for(i = y.p.deg; i>=1; ——i)
u.p.p[i] = plus(mult(y.p.p[i],x),mult(y.p.p[i—1], cvtbi(y.r)));
u.p.p[0] = mult(y.p.p[0] ,x);
u.g = umultb(y.g,uplusb(ucvtib(x),y.r));
u.h

umultb(y.h,uplusb(ucvtib(x),y.r)); 90
u.h = uplusb(u.h,umultb(uabs(y.p.p[y.p-deg]),y.r));
u.p.p[l] = intersect(u.p.p[1],mult(grsdereval(U,x),cvtbi(u.r)));

v2 = rs(y.p.deg—1,y.center,y.r);
for(i=0; i <= y2.p.deg; ++i) y2.p.p[i] = neg(u.p.p[i+1]);
y2.g = u.g, y2.h = u.h; 100

y2 = rspowerf(y2,divi(ith, itwo));
y2 = rsmultf(y2, y2);

y2 = rsmultf(y2,y);
sol = izero;
coo = divi(iabs(plus(a,neg(x))),cvtdi(y.r.b)); 110
if(coo.up > 1) coo.up = (double) 1;
co0l2 = iexp(divi(ilog(coo),imtwo));
if(cool2.dn < 1) cool2.dn = (double) 1;
for(i = y2.p.deg; i >= 0; i—— ){

sol = mult(sol,co0);

ifi % 2)

sol = plus(sol,divi(y2.p.p[i],plus(cvtinti(—i),ihalf)));

else
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secderl—dermatrix()

sol = plus(sol,divi(y2.p.p[i],plus(cvtinti(i),neg(ihalf))));

sol = mult(sol, cool2);

b = uplusb(umultb(y2.g,btwo),udivb(y2.h,
Iplusb(cvtintb(y2.p.deg+1),negb(bhalf))));

sol = mult(ienlarge(sol,b), cvtdi(y2.r.b));

freep(u.p), freep(y2.p);

return(sol);

dermatrix(w, sec, thi)

INTERVL w;

RSERIES *sec, *thi;

{
INTERVL mw2, ifh;
INTERVL t1, t2;
RSERIES rswl, rsw;

int i, i0, il;

ifth = divi(cvtinti(—5),cvtinti(2));

mw2 = neg(square(w));

i0 = grsloc(U,r0(w));
il = grsloc(U,rl(w));

i = i045;
t1 = cvtdi(grsintpt(U,i));
while(i <= i1—5){
++i;
if(i== 60 *(i/60 ))
printf("%d points done\n", i);
fHush(stdout);

rsw = rscopy(U.f[i]);

18:34 Apr 17 1993
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dermatrix—secdermat()

rsw.p.p[0] = plus(rsw.p.p[0],mw2);

t2 = cvtdi(grsintpt(U,i));

rswl = rspower(rsw,divi(ifth,ifour));

rswl = rsmultf(rswl,rswl);

rswl = rsmultf(rsmult(rswl,YRS.1[i]),rswl);
thi—>p.p[i] = mult(mult(ithree,w),rsdint(rswl,t2,t1));

rswl = rsmultf(rswl,rsw);
sec—>p.p[i] = rsdintf(rswl,t2,t1);
tl = t2;

INTERVL

secdermat(w, al, a2, derl, der2, i)
INTERVL w;

RSERIES al, a2;

RSERIES derl, der2;

int i

{

INTERVL i1, v1, v2, del, de2, sol;

vl = al.p.p[i];
v2 = a2.p.p[i];
del = derl.p.p[i];
de2 = der2.p.p[i];

il = plus(vl,neg(v2));
il = divi(il,plus(cvtbi(al.center),neg(cvtbi(a2.center))));
il = mult(il,plus(w,neg(cvtbi(al.center))));

il = plus(il,vl);

sol.up = il.up;
i1

il plus(il,v1);
sol.dn = il.dn;

mult(del,plus(w,neg(cvtbi(al.center))));

18:34 Apr 17 1993
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secdermat—secderdir()

i1 mult(de2,plus(w,neg(cvtbi(a2.center))));
il plus(il,v2);
sol.dn = maxm(sol.dn,il.dn); 200
if(sol.up < sol.dn){
printf("SECDERMAT: negative interval !!!\n");

printival(sol);
printf("w:"
printival(w);
printf("\ncenter1:");
printbd(al.center);
printf("vi:");
printival(v1);
printf("d1:"); 210
printival(del);
printf("\ncenter2:");
printbd(a2.center);
printf("v2:");

printival(v2);
printf("d2:");
printival(de2);
fHush(stdout);
abort();
} 220
return(sol);
INTERVL
secderdir(mw2, t1, t2, i) SeCderdII'
INTERVL mw2, t1, t2;
int i;
RSERIES rsw; 230

rsw = rscopy(U.1[i]);
rsw.p.p[0] = plus(rsw.p.p[0],mw2);
rsw = rspowerf(rsw,ration(—3,4));

rsw = rsmultf(rsw,rsw);
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rsw = rsmultf(rsw,rscopy(YRS.1[i]));
return(rsdintf(rsw,t2,t1));

INTERVL

super secderdir(mw?2, t1,t2,1)
INTERVL t1, t2;
INTERVL mw2;

int i;
return(iunion(secderdir(cvtdi(mw2.up),t1,t2,i),
secderdir(cvtdi(mw2.dn),t1,t2,i)));
INTERVL

secder_help(w, a, b, vl, v2, del, de2)
RSERIES v1, v2, del, de2;
INTERVL w, a, b;

INTERVL mw2;

INTERVL sol, t1, t2;

int i, i0, il;
mw2 = neg(square(w));

sol = izero;

i0 = grsloc(U,a);
if(U.1[i0].center.b < a.dn)++i0;
il = grsloc(U,b);
if(U.f[il].center.b > b.up)——il;

tl = a;
for(i= i0; i <= il—1; ++i){
t2 = cvtdi(grsintpt(U,i));

if(
i ==i0 ||
v1l.p.p[i].up == (double) 0 ||
v2.p.p[i].up == (double) 0
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secder help—alim()

)
sol = plus(sol, super_secderdir(mw2,t1, t2,i));
else sol = plus(sol,secdermat(w,vl, v2, del, de2,i));
tl = t2;
} 280

sol = plus(sol, super secderdir(mw2,t1, b,i));

return(sol);
}
double
alim(w) alim
INTERVL w;
{ 290
int j, i

double rat, diff;
RSERIES rsw;
INTERVL x, w2;

rat = 3.0;
if(w.dn > 0.136 && w.up < .140) rat = 2.0;
x = U.[1].p.p[0];
if(Isb(ucvtib(square(w)),levtib(x))){ 300
if(De.up == De.dn) return(De.up);
else printf("De error\n");
fHush(stdout);
abort();

w2 = square(w);

i=0;
while(U.f[i].p.p[0].dn < w2.up){ 310
++i;
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double
blim(w)

diff = 1.0;

—_—i:

)

while(diff > 0.0){
+-+i;
rsw = U.f[i];
diff = (w2.dn — rsw.p.p[0].dn)/rat;
for(j=1; j <= rsw.p.deg; ++j)
diff += fabs(rsw.p.p[j].up);

return(grsintpt(U,i));

INTERVL w;

{

int j, i

double rat, diff;
RSERIES rsw;
INTERVL w2;

w2 = U.f[U.n—1].p.p[0];
if(Isb(ucvtib(square(w)),levtib(w2))){
if(Le.up == Le.dn) return(Le.up);
else printf("Le error\n");
fAush(stdout);
abort();
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if(waup < .09){
w2 = rl(w);
return(w2.dn—16.0);

w2 = square(w);

i = U.n;
while(U.f[i].p.p[0].dn < w2.up)——1;

diff = 1.0;
++i;
rat = 2.1;

if(w.dn > 0.695) rat = 1.5;
if(woup < 0.2388 && w.dn > .1) rat = 1.8;
if(wup < 0.1668 && w.dn > .1) rat = 1.6;
/ *else if(w.dn > 0.136 &6 wup < .140) rat = 1.8;*/
while(diff > 0.0){
——i;
rsw = U.f[i];
diff = (w2.dn — rsw.p.p[0].dn) /rat;
for(j=1; j <= rsw.p.deg; ++j)
diff += fabs(rsw.p.p[j].up);

return(grsintpt(U,i));

INTERVL

secder2(w, vl, v2, del, de2)
RSERIES vi1, v2, del, de2;
INTERVL w;

{
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secder2—supersupersecderdn()

INTERVL sol3, soll, sol2;
double i1, i2;

il = alim(w);
i2 blim(w);

soll = secderl(w,cvtdi(i2));

sol2 = secder_help(w,cvtdi(il),cvtdi(i2), v1, v2, del, de2); 400
sol3 = secderO(w,cvtdi(il));
return(plus(plus(soll,sol2),sol3));

INTERVL
supersecder2(w, v1, v2, del, de2) SuperseCder2
RSERIES v1, v2, del, de2;
INTERVL w;
{
INTERVL sol, wl, w2; 410
sol = secder2(w, vl, v2, del, de2);
if(sol.dn <= (double) 0){
wl.up = w.up;
wl.dn = 0.5%(w.up+w.dn);
w2.up = wl.dn;
w2.dn = w.dn;
return(iunion(supersecder2(wl, vl, v2, del, de2),
supersecder2(w2, vl, v2, del, de2)));

}

return(sol); 420

INTERVL
supersupersecderdn(w, vup, dup) supersupersecderdn
INTERVL w;
RSERIES *vup, *dup;
{
INTERVL wl, sol;
RSERIES v2, de2;
double step = 5.e—5; 430
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supersupersecderdn—secderdn()

if(w.dn > 0.672)step 8.e—6;
if(w.dn > 0.688)step 3.e—6;
if(w.dn > 0.693)step = 1.5e—6;
if(w.dn > 0.694)step 4.e—T;
if(w.dn > 0.6956)step = 2.e—T;

v2 = rs(U.n,cvtdb(w.dn),bOero);
de2 = rs(U.n,cvtdb(w.dn),bOero);
dermatrix(cvtdi(w.dn),&v2, &de2);
wl.up = w.up;
wl.dn = wl.up — step;
sol = supersecder2(wl, *vup, v2, *dup, de2);
wl.up = wl.dn;
wl.dn —= step;
while(wl.dn > w.dn + step/5.0){
sol = iunion(sol,supersecder2(wl, *vup, v2, *dup, de2));
wl.up = wl.dn;
wl.dn —= step;
¥
wl.dn = w.dn;
sol = iunion(sol, supersecder2(wl, *vup, v2, *dup, de2));

freep(vup—>p), freep(dup—>p);

*vup = v2;
*dup = de2;
return(sol);

secderdn(r, step)

double r, step;

{

RSERIES v, de;
INTERVL w;

v = rs(U.n,cvtdb(r),b0ero);
de = rs(U.n,cvtdb(r),b0ero);
dermatrix(cvtdi(r),&v, &de);

w.dn = r;
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secderdn—supersupersecderup()

while(w.dn > 0){ 470
w.up = w.dn;
w.dn —= step;
printival(supersupersecderdn(w, &v, &de));
¥
}
INTERVL
supersupersecderup(w, vup, dup) Supersupersecderup
INTERVL w;
RSERIES *vup, *dup; 480
{

INTERVL wl, sol;
RSERIES v2, de2;
double step = 0.00005;

if(w.dn > 0.672)step = 8.e—6;
if(w.dn > 0.688)step = 3.e—6;
if(w.dn > 0.693)step = 1.5e—6;
if(w.dn > 0.694)step = 4.e—T;
if(w.dn > 0.6956)step = 2.e—7T; 490

v2 = rs(U.n,cvtdb(w.up),bOero);

de2 = rs(U.n,cvtdb(w.up),blero);

dermatrix(cvtdi(w.up),&v2, &de2);

wl.dn = w.dn;

wl.up = wl.dn + step;

sol = supersecder2(wl, *vup, v2, *dup, de2);

wl.dn = wl.up;

wl.up += step;

while(wl.up < w.up — step/5.0){ 500
sol = iunion(sol,supersecder2(wl, *vup, v2, *dup, de2));
wl.dn = wl.up;
wl.up += step;

¥

wl.up = w.up;

sol = iunion(sol, supersecder2(wl, *vup, v2, *dup, de2));

freep(vup—>p), freep(dup—>p);

*vup = v2;
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supersupersecderup—tfwz()

*dup = de2;
return(sol); 510
secderup(r, step) SeCdeI‘up
double r, step;
RSERIES v, de;
INTERVL w;
v = rs(U.n,cvtdb(r),b0ero);
de = rs(U.n,cvtdb(r),b0ero); 520
dermatrix(cvtdi(r),&v, &de);
w.up = r;
while(w.up > 0){
w.dn = w.up;
w.up += step;
printival(supersupersecderup(w, &v, &de));
POLY 530
rtpoly(u) I‘tpOly
POLY u;
POLY res, res2;
int i;
res = make poly(u.deg—2);
for(i=0; i <= res.deg; ++i) res.p[i] = neg(u.p[i+2]);
res = polypowerf(res,ihalf);
res2 = make poly(res.deg+1); 540
for(i=0; i <= res.deg; +-+i) res2.p[i+1] = res.p[i];
freep(res);
return(polyinv(res2));
RSERIES
tfwa(t, x) tfwz

18:34 Apr 17 1993 Page 14 of



double t, x;

{

INTERVL i2, a0l, a4, il, rmr, a0, al, a2, a3;
BND m, tt, h;

RSERIES u, y, rstfu2(), r, rp;

int oldeg;

[**** t = 0.0605, and x = 0.462 will do the job for w=0.6956 ****/

oldeg = DEGREE;
DEGREE = SIZE —1;

rk = rp.k = 0;
r.h = bOero;
r.g = bOero;
rp.h = bOero;
rp.g = bOero;

u = rstfu2(RC,x, &y);
rmr = plus(RC,cvtbi(negb(u.r)));

a0l = ienlarge(y.p.p[0],bllnrsf(rsplusc(y,neg(y.p-p[0]))));

a0
a2

al =

a3
ad
ad

a4
a4
a4
a4
a4
a4
a4

cvtbi(bllnrs(y));
divi(ratpower(a0,3,2),ratpower(rmr,1,2));
plus(divi(BC,square(RC)),mult(a2,cvtbi(u.r)));

mult(al,mult(ration(3,2),ratpower(a0,1,2)));
plus(a3,divi(ratpower(a0,3,2),mult(itwo,rmr)));

divi(a3,ratpower(rmr,1,2));

divi(ratpower(a0,3,2),rmr);

plus(a4, mult(mult(itwo,al),poweri(a0,ihalf)));
divi(ad,rmr);
plus(a4,divi(square(al),poweri(a0l,ihalf)));
divi(ad,poweri(rmr,ihalf));

plus(a4, mult(itwo,divi(square(a0),rmr)));
mult(a4, ration(3,4));
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tfwz()

m = uabs(plus(mult(ifour,ald),mult(a4,plus(RC,cvtbi(u.r)))));

r.p = rtpoly(polyscale(u.p,inv(cvtbi(u.r)))); 590
ror = cvtdb(t);

tt = labsi(u.p.p[2]);

il = neg(divi(u.p.p[2],square(cvtbi(u.r))));

i2 = u.p.p[2];

w.p.p[0] = wp.p[l] = u.p.p[2] = izero;

h = bllnrs(u);

tt = lplusb(tt,negb(h));

if(Iseqb(tt,b0ero) ){
printf("TFWZ: BAD !!!\n"); 500
fllush(stdout);
abort();

}

tt = levtib(ratpower(cvtbi(tt),1,2));

h = udivb(h,lmultb(u.r,u.r));

rp.h = ucvtib(poweri(cvtbi(uplusb(uabs(il),h)),ihalf));

i2 = plus(iabs(mult(i2,itwo)),neg(iabs(mult(ithree,u.p.p[3]))));

i2 = divi(i2,square(cvtbi(u.r)));

i2 = ienlarge(i2,umultb(udivb(m,cvtintb(6)),upowerb(u.r,2))); 610
rp.h = umultb(btwo,udivb(rp.h,lcvtib(i2)));

if(Iseqb(rp.h,b0ero)){
printf("TFWZ: radius in the expansion for U is too large !!!\n");
fAush(stdout);
abort();

r.h = udivb(cvtdb(t),tt);

if(Iseqb(bone,r.h)){ 620
printf("TFWZ: too large t !!!\n");
fush(stdout);
abort();

}

r.h = udivb(upowerb(r.h,r.p.deg),lplusb(bone,negb(r.h)));

rp.h = umultb(rp.h,r.h);
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r.h = udivb(rp.h,cvtintb(r.p.deg+1));
r.h = umultb(r.h, cvtdb(t));

rp.p = polyder(r.p);
rp.p = polyscalef(rp.p,cvtbi(r.r));

r.p = polyscalef(r.p,cvtbi(r.r));
r.p.p[0] = RC;

Ip.r = r.T}

r.center = bOero;

rp.center = bQero;

r

= rsmultf(rp,rspowerf(r,imone));

DEGREE = oldeg;

return(r);
INTERVL
sdinv(w0, w)
INTERVL wO;
RSERIES w;
int i;
INTERVL a[30], sol2, sol, g;
BND b;
double t;
int m;
t = w.r.b;
a[0] = ione;
a[l] = ihalf;

for(i=0; i <= 29; +-+i)

18:34 Apr

a[i] = divi(ichoose(cvtinti(2*i),i),power(cvtinti(2),2*i));

plus(BC,neg(square(w0)));
divi(g,square(cvtdi(t)));

17 1993

tfwz—sdinv()

630

640

sdinv

650

660

Page 17 of



sdinv—super sdinv()

if(grtegb(ucvtib(g),bone)){

printf("SDINV: Omega value tries to escape domain of convergence !!!. \n");
670
if(w.p.deg % 2) m = (w.p.deg—1)/2;

else m = (w.p.deg)/2;

sol = mult(w.p.p[2*m],a[m]);

for(i=m—1; i >= 0; ——i)
sol = plus(mult(sol,g),mult(w.p.p[2*i],
a[i]));

sol2 = mult(mult(cvtinti(m),w.p.p[2*m]),a[m]);
for(i=m—1; i >= 1; ——i) 680
sol2 = plus(mult(sol2,g),
mult(mult(cvtinti(i),w.p.p[2*]),a[i]));

sol = plus(sol,mult(sol2,neg(mult(itwo,square(divi(w0,cvtbi(w.r)))))));

b = uabs(inv(ilog(g)));

if(grtegb(cvtintb(m+1),b)){
b = umultb(cvtintb(2*(m+1)),ucvtib(divi(BC,square(cvtbi(w.r)))));
b = umultb(uplusb(uabs(g),b),

upowerb(uabs(g),m)); 690
else{
b = umultb(btwo,ucvtib(divi(BC,square(cvtbi(w.r)))));
b = udivb(b,labsi(mult(mult(iexp(ione),g),ilog(g))));
b = uplusb(upowerb(uabs(g),m+1),b);

b = umultb(w.h, umultb(uabs(a[m+1]), b));

return(ienlarge(sol,b));

} 700
super sdinv(a, ww) Super_SdinV
INTERVL a;

RSERIES ww;
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super sdinv—hinf()

INTERVL sol;
RSERIES w;

w = rstrunc(ww,53); 710
sol = sdinv(a, w);
if(sol.dn > (double) 0){

printf("SUCCESS for ");

printival(a);

printivalio(a);

fHush(stdout);

else {
printf("trying. . .\n"); 720
fAush(stdout);
sol.up = a.up;
sol.dn = .5*(a.dn+a.up);
super sdinv(sol,w);
a.up = sol.dn;

super_sdinv(a,w);

730

RSERIES

hinf()

{

hinf

RSERIES y, yp, ypp, uP, upp, r, rp, rpp, h, rm2, rma, *rpow;
RSERIES rw, rml;

INTERVL i1;

BND err, unr;

740
double t;
int m;
int i, j, k;

unsigned size;
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hinf()

t = U.[U.n—60].center.b;
m = 10;

Le = cvtdi(295.0);
UL = grseval(U,Le); 750

y = yinf(t, m);

y.center = cvtdb(t);

y.r = bOero;

ypp = rspower(y, ration(3,2));

yp = rs(y.p.deg, y.center, y.r);

uP = rs(y.p.deg, y.center, y.r);
upp = rs(y.p.deg, y.center, y.r);

for(i=1; i <= ypp.p-deg; ++i){ 760
yp.p.p[i] = mult(divi(ypp.p-p[i],plus(ifour,
mult(cvtinti(i),ALPHA))),ifour);
uP.p.p[i] = divi(plus(y.p.p[i],mult(imthree,yp.p.p[i])),
imtwo);

upp.p.p[i] = plus(mult(ypp.p.p[i],itwo),neg(yp-p-p[i]));

}

yp.g = umultb(ypp.g, udivb(bfour, lplusb(bfour,lcvtib(
mult(itwo,ALPHA)))));

yp.h = umultb(ypp.h, udivb(bfour, lplusb(bfour,lmultb(cvtintb(
ypp.p.deg+1),lcvtib(ALPHA))))); 770

uP.g = udivb(uplusb(y.g,umultb(yp.g,bthree)),btwo);
uP.h = udivb(uplusb(y.h,umultb(yp.h,bthree)),btwo);

upp.g = uplusb(yp.g,umultb(ypp.g,btwo));
upp.h = uplusb(yp.h,umultb(ypp.h,btwo));

if(grtb(blinrs(uP),bhalf)){

printf("HINF: Derivative is not bounded below by 1/2\n ");
abort(); 780

if(grtb(bl1nrs(upp),bone)){

printf("HINF: u is not convex\n");
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hinf()

abort();

r = rs(y.p.deg, y.center, y.r);

r.p.p[0] = ione; 790
r.p.p[1] = divi(y.p.p[1],itwo);
r.p.deg = 1;
while (r.p.deg < y.p.deg ){
rma = rspower(r,neg(ALPHA));
rpow = (RSERIES *)calloc(size=r.p.deg+1,sizeof(RSERIES));
rsmatpower(rma, rpow);
rw = rs(r.p.deg+1,r.center,r.r);
for(j=1; j <= r.p.deg+1; ++j){
err= bQero;
for(k=1; k <= j; ++k){ 800
if(k <= r.p.deg)
il = rpow[k].p.p[j—k];
else
il = ione;
rw.p.p[j] = plus(mult(il,y.p.p[k]),rw.p.p[j]);
if(k > 1) err = maxb(err, uabs(il));

rw.p.p[j] = ienlarge(rw.p.p[j],umultb(err,y.g));
810
rw.p.p[0] = ione;
r.p.deg++;
rm2 = rspower(r, imtwo);
for(j=0; j <= r.p.deg; ++j){
r.p.p[r.p.deg] = plus(r.p.p[r.p.deg],
mult(rm2.p.p[j], rw.p.p[r.p.deg—j]));
r.p.p[r.p.deg] = divi(r.p.p[r.p.deg], itwo);
820

for(j=0; j <= r.p.deg—1; ++j) freep(rpow][j].p);
freep(rm2.p), freep(rma.p), free((char *)rpow), rpow = NULL;
freep(rw.p);
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hinf()

rma = rspower(r,neg(ALPHA));

rm2 = rspower(r,imone);

rm2 = rsmultf(rm2,rm?2);

rpow = (RSERIES *)calloc(size=r.p.deg+1,sizeof(RSERIES));

rsmatpower(rma, rpow); 830

rw = rs(r.p.deg,r.center,r.r);

rw.p.p[0] = ione;
err = bOero;
for(j=1; j <= r.p.deg; ++i){
for(k=r.p.deg—j+1; k <= r.p.deg; ++k)
rpow[j].h = uplusb(rpow][j].h,uabs(rpow|j].p.p[k]));
err = maxb(err, rpow][j].h);
for(k = r.p.deg; k >= j; ——k)
rpowl[j].p.p[k] = rpowlj].p.p[k—j]; 840
for(k = 0; k < j; ++k)
rpow[j].p.p[k] = izero;
rw = rsplusf(rw, rsca(rpowljl,y.p-p[j]));

}

rw.h = uplusb(rw.h,umultb(err,y.g));

for(j=2; j <= rw.p.deg; ++j){

err = b0ero;
for(k=2; k <= j; ++k){
err = maxb(err,uabs(rpow[k].p.p[j])); 850

}

rw.p.p[j] = ienlarge(rw.p.p[j],umultb(y.g,err));

r.p.p[0] = izero;

unr = bllnrs(r);

if (unr.b >= (double) 1){
printf("HINF: error mno. 1\n"); 860
abort();

Iplusb(bone,negb(unr));

unr

unr = uabs(poweri(cvtbi(unr),mult(cvtinti(—r.p.deg—1),ALPHA)));
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rw.h = uplusb(rw.h, umultb(y.g, unr));
r.p.p[0] = ione;

rw = rsmult(rw,rm?2);
r.h = rw.h;
freep(rw.p); 870

freep(rm2.p), freep(rma.p);
for(j=0; j <= r.p.deg; ++j)freep(rpow[j].p);

rma = rspower(r,neg(ALPHA));
rm2 = rsmult(r,r);

rm2 = rsmultf(rm2,rscopy(r));
rsmatpower(rma, rpow);

rw = rs(r.p.deg,r.center,r.r);

rpp = rs(r.p.deg,r.center,r.r); 880

rw.p.p[0] = ione;
err = bQero;
for(j=1; j <= r.p.deg; ++j){
rpp-h = rpow(j].h;
for(k=r.p.deg—j+1; k <= r.p.deg; ++k){
rpp.-h = uplusb(rpp.h,uabs(rpow[j].p-p[k]));

err = maxb(err, rpp.h);

890
for(k = r.p.deg; k >= j; ——k)
rpp.p-plk] = rpow[j].p.p[k—jl;
for(k = 0; k < j; ++k)
rpp.p.plk] = izero;
rw = rsplusf(rw,
rsca(rpp,uP.p.p[j]));
}
rw.h = uplusb(rw.h,umultb(err,uP.g));
900

for(j=2; j <= rw.p.deg; ++j){
err = bOero;
for(k=2; k <= j; ++k){
err = maxb(err,uabs(rpow[k].p.p[j—k]));
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}

rw.p.p[j] = ienlarge(rw.p.p[j],umultb(uP.g,err));

r.p.p[0] = izero;
unr = bllnrs(r); 910
if (unr.b >= (double) 1){

printf("HINF: error mno. 3\n");

fHush(stdout);

abort();

unr = lplusb(bone,negb(unr));

err = labsi(divi(cvtinti(12),poweri(UL,ihalf)));
if(Isb(Imultb(err,unr),cvtdb(t))){ 920
printf("HINF: wrong choice of L\n");
printf("err = ");
printbd(err);
printf("unr = ");
printbd(unr);
printf(" UL = ");
printival(UL);
printf("M = %e",t);
printrs(r);
abort(); 930

unr = uabs(poweri(cvtbi(unr), mult(cvtinti(—r.p.deg—1),ALPHA)));
rw.h = uplusb(rw.h,umultb(unr,uplusb(uP.h, uP.g)));
rw.g = bOero;

r.p.p[0] = ione;

rp = rsmultf(rspowerf(rw,imone),rm?2);
rp.p-p[0] = ione; 940
freep(rpp.p), freep(rma.p);

rml = rspower(r, imone);

rm2 = rsmult(rml,rml);
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rm2 = rsmultf(rm2,rm?2);
rw = rs(r.p.deg, r.center, r.r);
rw.p.p[0] = ione;

err = bOero;
for(j=1; j <= r.p.deg; ++ij){ 950
for(k=r.p.deg—j+1; k <= r.p.deg; ++k)
rpow[j].h = uplusb(rpow][j].h,uabs(rpow|j].p.p[k]));
err = maxb(err,rpow[j].h);
for(k = r.p.deg; k >= j; ——k)
rpow[j].p.p[k] = rpow[j].p-p[k—j];
for(k = 0; k < j; ++k)
rpow[j].p-p[k] = izero;
rw = rsplusf(rw,
rsca(rpow(j],upp.p-p[j]));
} 960

rw.h = uplusb(rw.h,umultb(err,upp.g));

for(j=2; j <= rw.p.deg; ++j){
err = b0ero;
for(k=2; k <= j; ++k){
err = maxb(err,uabs(rpow[k].p.p[j]));
} 970
rw.p.p[j] = ienlarge(rw.p.p[j],umultb(upp.g,err));

rw.h = uplusb(rw.h,umultb(unr,uplusb(upp.h, upp.g)));

rw.g = bOero;
rpp = rsmultf(rm2,rw);

rpp = rsmultf(rsmult(rp,rp),rpp);
rpp = rsmultf(rpp, rscopy(rp)); 980

rpp-p-p[0] = ione;

rw = rsmult(rp,rm1);
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h = rsplusf(rsca(rw,itwo),

rsplusf(rscaf(rsmult(rpp,rm1),imthree) , rsmult(rw,rw)));

freep(y.p), freep(yp.p), freep(ypp.p);
freep(uP.p), freep(upp.p);

freep(r.p), freep(rp.p), freep(rpp.p);
freep(rml.p), freep(rw.p);

for(j=0; j <= r.p.deg; ++j) freep(rpow|j].p);
free((char *)rpow), rpow = NULL;

return(h);

RSERIES
h_at_0()
{
RSERIES y, yp, ypp, uP, upp, r, rp, rpp, h, rma, *rpow;
RSERIES rw, rml;
INTERVL sc, il;
BND err, unr;
int i, j, k;
unsigned size;
double t;

int m = 20;

De = cvtdi(0.0099);
UD = grseval(U,De);

i= 0
t = 0.012;

y = y_at_0(t, m);

ypp = rspower(y, ration(3,2));
yp = rs(y.p.deg+1, y.center, y.r);
uP = rs(y.p.deg, y.center, y.r);
yp.p-p[0] = neg(W);
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h at 0()
ypp-p-p[0] = ione;

sc = poweri(cvtdi(t),ihalf);
for(i=1; i <= yp.p.deg; ++i)
yp.p.p[i] = mult(divi(mult(ypp.p.p[i—1],itwo),cvtinti(i)),sc);
yp.g = umultb(ypp.g, btwo);
yp.g = umultb(yp.g, ucvtib(sc)); 1030
yp.-g = udivb(yp.g,bthree);
yp.h = udivb(ypp.h, ldivb(cvtintb(yp.p.deg+1),btwo));
yp.h = umultb(yp.h, ucvtib(sc));

for(i=2; i <= y.p.deg; ++i)
uP.p.p[i] = plus(y.p.p[i],mult(yp.p.p[i—2],cvtdi(t)));
uP.g = uplusb(y.g,umultb(yp.g,cvtdb(t)));
for(i=y.p.deg—1; i <= yp.p.deg; +-+i)
uP.h = uplusb(uabs(yp.p-p[i]),uP.h);
uP.h = uplusb(y.h,umultb(uplusb(yp.h,uP.h),cvtdb(t))); 1040

if(grtb(bllnrs(uP),bhalf)){
printf("H_AT_O: Derivative too small !!!\n");
abort();

}

uP.p.p[0] = ione;

upp = rsca(yp,itwo);
for(i=1; i <= upp.p.deg; ++i)
upp.p.p(i] = plus(upp.p.pli], mult(ypp.p.pli—1],5¢)); 1050
upp.g = uplusb(upp.g,umultb(ypp.g,ucvtib(sc)));
upp.h = uplusb(upp.h,umultb(ypp.h,ucvtib(sc)));

r = rs(y.p.deg, y.center, y.r);

r.p.p[0] = ione;

r.p.p[2] = neg(y.p-p[2]);

r.p.deg = 2;

while (r.p.deg < y.p.deg ){ 1060
rma = rspower(r,ihalf);
rpow = (RSERIES *)calloc(size=r.p.deg+1,sizeof(RSERIES));
for(j=0; j <= r.p.deg; ++j) rpow[j] = rs(r.p.deg,r.center,r.r);
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rsmatpower(rma, rpow);
rw = rs(r.p.deg+1,r.center,r.r);
for(j=1; j <= r.p.deg+1; —|-+j){
err= b0ero;
for(k=1; k <= j; ++k){

if(k <= r.p.deg)
i1 = rpow[k].p.p[j—k];
else

il = ione;

rw.p.p[j] = plus(mult(il,y.p.p[k]),rw.p.p[j]);
if(k > 1) err = maxb(err, uabs(il));
}

rw.p.p[j] = ienlarge(rw.p.p[j],umultb(err,y.g));

rw.p.p[0] = ione;
r.p.deg++;
for(j=0; j < r.p.deg; ++j){
r.p.p[r.p.deg] = plus(r.p.p[r.p.deg],
mult(r.p.p[j], rw.p.p[r.p.deg—j]));

}

r.p.p[r.p.deg] = neg(r.p.p[r.p.-deg]);

for(j=0; j <= r.p.deg—1; ++j) freep(rpow][j].p);
freep(rma.p), free((char *)rpow), rpow = NULL;
freep(rw.p);

rma = rspower(r,ihalf);
rpow = (RSERIES *)calloc(size=r.p.deg+1,sizeof(RSERIES));
for(j=0; j <= r.p.deg; ++j) rpow|j] = rs(r.p.deg,r.center,r.r);
rsmatpower(rma, rpow);

rw = rs(r.p.deg,r.center,r.r);

rw.p.p[0] = ione;
err = bOero;
for(j=1; j <= r.p.deg; -|-—|-j){
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for(k=r.p.deg—j+1; k <= r.p.deg; ++k)
rpow[j].h = uplusb(rpow][j].h,uabs(rpow|[j].p.p[k]));

err = maxb(err,rpow|[j].h);
for(k = r.p.deg; k >= j; ——k)
rpow[j].p-p[k] = rpowl[j].p-p[k—]j];
for(k = 0; k < j; ++k) 1110

rpow[j].p-p[k] = izero;
rw = rsplusf(rw,rsca(rpow[j],y-p-p[j]));
}
rw.h = uplusb(rw.h,umultb(err,y.g));
for(j=2; j <= rw.p.deg; -l—-}—j){
err = bQero;
for(k=2; k <= j; ++k){
err = maxb(err,uabs(rpow[k].p.p[j]));

}

rw.p.p[j] = ienlarge(rw.p.p[j],umultb(y.g,err)); 1120
unr = bllnrs(r);
unr = uabs(poweri(cvtbi(unr),divi(cvtinti(r.p.deg+1),itwo)));

rw.h = uplusb(rw.h, umultb(y.g, unr));
rw = rsmultf(rw,rscopy(r));

r.h = umultb(rw.h,btwo);
freep(rw.p); 1130

freep(rma.p), free((char *)rpow), rpow = NULL;

rma = rspower(r,ihalf);
rpow = (RSERIES *)calloc(size=r.p.deg+1,sizeof(RSERIES));
for(j=0; j <= r.p.deg; ++j) rpow|j] = rs(r.p.deg,r.center,r.r);
rsmatpower(rma, rpow);
rw = rs(r.p.deg,r.center,r.r);
rpp = rs(r.p.deg,r.center,r.r);
1140
rw.p.p[0] = ione;
err = bOero;
for(j=1; j <= r.p.deg; ++j){
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h at 0()

rpp-h = rpow(j].h;
for(k=r.p.deg—j+1; k <= r.p.deg; ++k)
rpp.-h = uplusb(rpp.h,uabs(rpow[j].p-p[k]));
err = maxb(err,rpp.h);
for(k = r.p.deg; k >= j; ——k)
rpp.p.plk] = rpow[j].p.p[k—jl;
for(k = 0; k < j; ++k) 1150
rpp.p-plk] = izero;
rw = rsplusf(rw,
rsca(rpp,uP.p.p[j]));

}

rw.h = uplusb(umultb(err, uP.g), rw.h);

for(j=2; j <= rw.p.deg; ++j){
err = bQero;
for(k=2; k <= j; ++k){ 1160
err = maxb(err,uabs(rpow[k].p.p[j—k]));

}

rw.p.p[j] = ienlarge(rw.p.p[j],umultb(uP.g,err));

unr = bllnrs(r);

err = umultb(ucvtib(UD),unr);

if(grtb(err,cvtdb(t))){
printf("H_at_0: wrong choice of D\n"); 1170
abort();

}

unr = uabs(poweri(cvtbi(unr), divi(cvtinti(r.p.deg+1),itwo)));
rw.h = uplusb(rw.h,umultb(unr,uplusb(uP.h, uP.g)));

rw.g = bOero;

rp = rspowerf(rw,imone);
rp.p-p[0] = ione;

freep(rpp.p), freep(rma.p); 1180

rml = rspower(r, imone);
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rw = rs(r.p.deg, r.center, r.r);
rw.p.p[0] = upp.p.p[0];
err = bQero;

for(j=1; j <= r.p.deg; —|-—|-j){

for(k=r.p.deg—j+1; k <= r.p.deg; ++k)
rpow[j].h = uplusb(rpow][j].h,uabs(rpow[j].p.p[k]));

err = maxb(err,rpow[j].h);

rpow[j].p.p[k] = rpow[j].p.p[k—jl;

for(k = 0; k < j; ++k)
rpow[j].p.p[k] = izero;

rw = rsplusf(rw,rsca(rpow[j],upp-p-plj]));

}

rw.h = uplusb(rw.h,umultb(err,upp.g));

for(j=3; j <= rw.p.deg; —l——}—j){
err = bOero;
for(k=3; k <= j; ++k){

err = maxb(err,uabs(rpow[k].p.p[j]));

}

rw.p.p[j] = ienlarge(rw.p.p[j],umultb(upp.g,err));

rw.h = uplusb(rw.h,umultb(unr,uplusb(upp.h,upp.g)));

rw.g = bOero;
rpp = rsmultf(rsmult(rp,rp),rw);

rpp = rsmultf(rpp, rsca(rp,imone));

rpp-p-p[0] = mult(itwo,W);

rw = rsmult(rp,rml);

h = rsminusf(rsmult(rw,rw), rw);

h.p.deg = h.p.deg — 2;

for(i=0; i <= h.p.deg; ++i)h.p.p[i] = divi(h.p.p[i+2],cvtdi(t));

h.h = udivb(h.h,cvtdb(t));
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h_at 0—tfint1()

h = rsminusf(rsmult(rpp,rml), h);

freep(y.p), freep(yp.p), freep(ypp.p);

freep(uP.p), freep(upp.p);

freep(r.p), freep(rp.p), freep(rpp.p);

freep(rml.p);

for(j=0; j <= r.p.deg; ++j) freep(rpow|j].p); 1230
free((char *)rpow), rpow = NULL;

return(rstruncf(h,9));

}
void
printh() prlnth
{

RSERIES h; 1240

printrsio(hinf());

h = h at 0();

printrsio(h);

printivalio(Le);

printivalio(UL);

printivalio(De);

printivalio(UD);
}
void 1250
readh() I'eadh
{

HINF = readrsio();

HO = readrsio();

Le = readivalio();

UL= readivalio();

De = readivalio();

UD = readivalio();
}

1260

INTERVL
tfint1(alpha,x) tﬁnt 1
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INTERVL alpha, x;

{

INTERVL sol;
int m, i;
BND err;

m = 100;

if( x.up >= one || x.dn < zero ){
printf("TFINT1: error\n");
fush(stdout);
abort();

sol = izero;
err = udivb(btwo,cvtintb(2¥m+3));
for(i=m; i >= 1; i——){
sol = mult(plus(sol,inv(plus(cvtinti(i),ihalf))),
divi(mult(x,plus(alpha,cvtinti(—i+1))),cvtinti(i)));
err = udivb(
umultb(umultb(uabs(x),err),uplusb(uabs(alpha),
cvtintb(i—1))),
cvtintb(i));

sol = mult(plus(sol, itwo), poweri(x,ihalf));

tfint1-tfint2()

1270

1280

err = umultb(err,udivb(umultb(uplusb(cvtintb(m),negb(levtib(alpha))),

uabs(ratpower(x,3,2))),cvtintb(m+1)));

return(ienlarge(sol, err));

INTERVL
tfint2(alpha, a, b)
INTERVL a, b, alpha;

{

INTERVL sol;

sol = poweri(iunion(a,b),alpha);
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sol = mult(sol, mult(itwo,plus(b,neg(a))));
sol = divi(sol,

plus(poweri(plus(b,imone),ihalf),poweri(plus(a,imone),ihalf)));

return(sol);
INTERVL
tfint3(alpha, a, b) tﬁnt3
INTERVL a, b, alpha; 1311

INTERVL sol;

sol = mult(poweri(plus(iunion(a,b),imone),ihalf),plus(alpha,ione));

sol = divi(plus(poweri(b,plus(alpha,ione)),

neg(poweri(a,plus(alpha,ione)))),sol);
return(sol);
1320

INTERVL
tfint4(alpha, a, b) tfint4
INTERVL a, alpha, b;

RSERIES rwl, rw2;

BND x, r;

x.b = (a.dn+b.up)/2.0;

r = maxb(uplusb(x,negb(lcvtib(a))),uplusb(negb(x),ucvtib(b)));

rwl = rslinpower(ione,imone,neg(ihalf),8,x,r); 1330

rw2 = rslinpower(ione,izero,alpha,8,x,r);

return(rsdintf(rsmultf(rwl,rw2),b,a));
INTERVL
tfintf1(alpha,x) tﬁntfl
INTERVL alpha, x;

INTERVL sol, a, b;

double step; 1340
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if(x.up < 1.8)return(tfintl(alpha,plus(x,imone)));

b.up = b.dn = 1.8;
sol = tfintl(alpha, plus(b,imone));

step = X.up/lO0.0;

while(b.up < x.dn){
a = b;
b.up = b.dn = b.dn + step;
a = tfint2(alpha,a,b);

sol = plus(sol,a);

return(plus(sol,tfint2(alpha,b,x)));

}

INTERVL
tfintf2(alpha,x)
INTERVL alpha, x;

{

INTERVL sol, a, b;
double step;

if(x.up < 1.8)return(tfintl(alpha,plus(x,imone)));

b.up = b.dn = 1.8;
sol = tfintl(alpha, plus(b,imone));

step = x.up/lO0.0;

while(b.up < x.dn){
a = b;
b.up = b.dn = b.dn + step;
a = tfint4(alpha,a,b);

sol = plus(sol,a);

return(plus(sol,tfint2(alpha,b,x)));
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1380
INTERVL
secder0_sp(w) secder( sp
INTERVL w;
{

INTERVL a, sol, uLwm2, m, upL, ta;

int i;

m = cvtbi(HO.r);
upL = grsdereval(U,De); 1390
uLwm?2 = divi(UD,square(w));
if(uLwm2.dn < one){
printf("SECDERO_sp: Omega is too large\n");

abort();
}
ta = poweri(m,neg(ihalf));
sol = izero;
a = divi(cvtinti(HO.p.deg+1),itwo); 1400
sol = izero;

sol = ienlarge(sol,umultb(uabs(mult(w,ta)),
umultb(HO0.h,uabs(tfintfl(a,uLwm?2)))));
for(i=HO0.p.deg; i >= 0; ——i){
a = divi(evtinti(i),itwo);
if(i > 1) a = tfintfl(a,uLwm?2);
else a = tfintf2(a,uLwm?2);

sol = mult(plus(mult(HO.p.p[i],a),mult(sol,ta)),w);
} 1410

sol = plus(divi(mult(imtwo,UD),mult(mult(De,upL),poweri(
plus(UD,neg(square(w))),ihalf))), mult(sol,itwo));

return(sol);

INTERVL
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secderl_sp(w) secderl sp
INTERVL w; 1420
{

INTERVL wa, a, sol, a2, uLwm2, m, upL, ta;

int i;

m = cvtbi(HINF.center);
upL. = grsdereval(U,Le);
uLwm?2 = divi(UL,square(w));
if(uLwm2.dn < one){
printf("SECDER1_sp: Omega is too large\n");
abort(); 1430
}
a2 = divi(ALPHA itwo);
wa = poweri(w,ALPHA);
ta = mult(wa, poweri(divi(m,cvtinti(12)),ALPHA));

a = plus(mult(cvtinti(HINF.p.deg+1),a2),imone);
sol = izero;
sol = ienlarge(sol,
umultb(uabs(ta),umultb(HINF .h,uabs(tfintfl (a,uLwm?2))))); 1440
for(i=HINF.p.deg; i >= 1; ——i){
a = plus(mult(cvtinti(i),a2),imone);
if( i > 1) a = tfintfl(a,uLwm2);
else a = tfintf2(a,uLwm?2);
sol = mult(plus(sol,mult(HINF.p.p[i],a)),ta);
}
sol = divi(divi(sol,itwo),w);
sol = plus(divi(mult(itwo,UL),mult(mult(Le,upL),poweri(
plus(UL,neg(square(w))),ihalf))), sol);

return(sol); 1450
}
INTERVL
secder0_speps(w) secder( speps
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INTERVL w;
INTERVL r, sol; 1460
int i;

r = poweri(divi{UD,cvtbi(HO0.r)),ihalf);
sol = cvtbi(HO.h);
for(i=HO.p.deg; i >= 0; ——i){

sol = mult(sol,r);

if(HO.p.p[i].dn < (double) 0)

sol = plus(sol,iabs(HO.p.p[i]));
} 1470
sol = mult(sol,poweri(UD,ihalf));
sol = mult(sol,cvtinti(4));
sol = plus(divi(mult(itwo,UD),mult(mult(De,grsdereval(U,De)),poweri(
plus(UD,neg(square(w))),ihalf))),sol);

return(sol);
}
INTERVL
secderl_speps(w) SeCdeI’ 1_SpepS
INTERVL w; 1480
{

INTERVL r, sol, il;

int i;

r = mult(poweri(UL,ihalf),divi(cvtbi(HINF.center),cvtinti(12)));
r = poweri(r,ALPHA);

sol = mult(cvtbi(HINF.h),r);
if(HINF.p.p[2].dn < (double) 0){

printf("SECDER1_SPEPS: second term negative.\n"); 1490
abort();
for(i=HINF.p.deg; i >= 2; ——i){

if(HINF.p.p[i].dn < (double) 0)
sol = plus(sol,iabs(HINF.p.pl[i]));

sol = mult(sol,r);
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sol = mult(sol,r);

sol = divi(sol, poweri(UL,ihalf));
1500

il = mult(Le,iabs(grsdereval(U,Le)));

i1 = mult(il,poweri(plus(UL,neg(square(w))),ihalf));

sol = plus(divi(mult(itwo,UL), i1), sol);

return(sol);
INTERVL 1510
secder_eps() SeCder_epS

GRS yw;

yw = grstimesx(grstimesx(grstimesx(YRS)));

yw = grspowerf(yw,neg(ihalf));

return(grsdintf(yw,De,Le));
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#include <math.h>
#include <stdio.h>

BND

lipreg(u0,ul,x0,r,a)
INTERVL u0, ul, x0;
BND r, a;

{

BND gl, sol, g0, cl, c2;

g0 = umultb(r,uabs(ul));

gl = udivb(g0,lcvtib(u0));

g0 = udivb(uplusb(g0,a),lcvtib(u0));

cl = umultb(frak22(neg(ihalf),udivb(r,lcvtib(x0))),ucvtib(ratpower(x0,
—1,2)));

¢2 = umultb(ucvtib(ratpower(u0,1,2)),
frac22(ration(3,2),g0));

¢l = udivb(umultb(usquareb(r),cl),btwo);

sol = umultb(cl,c2);

¢2 = umultb(ucvtib(ratpower(u0,3,2)),
frak22(ration(3,2),g1));

—

cl = umultb(cl, ¢2);

¢2 = lmultb(a,lplusb(bone,negb(sol)));
if (Isegb(cl,c2)) return(sol);
else{
return(bone);
}
}
BND
lipO(w,r,a)
INTERVL w;
BND r, a;
{

BND gl, sol, g0, cl, c2;
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lip0—vtffx()

40
gl = umultb(r,uabs(w));
g0 = uplusb(gl,a);
= frac22(ration(3,2),g0);
frak22(ration(3,2),g1);
udivb(umultb(bfour,ucvtib(ratpower(cvtbi(r),3,2))),cvtintb(3));

—

SO
c2
cl

sol = umultb(sol, c1);

cl umultb(cl,c2);
¢2 = lmultb(a,lplusb(bone,negb(sol))); 50

if (Isegb(cl,c2)) return(sol);
else{

return(bone);

60

double
vtffx(xin, xout, u0, ul,y0, y1) thfX
double xin, u0, ul;
INTERVL xout, *y0, *yl;
{

RSERIES y, yp, ypp, I'sw;

INTERVL ithreehalfs, r;

BND bn, eps;

int i;

double p[SIZE], pw[SIZE]; 70

pzer(p), pzer(pw);
p[0] = u0, p[1l] = ul*fabs(.5*(xout.dn+xout.up)—xin);

pw[0] = xin;

pw[l] = fabs(.5*(xout.up+xout.dn)—xin);
myprpower(pw, —0.5, pw);
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vitifx()

for(i=1; i <= DEGREE; ++i){
myprpower (p,1.5,p); 80
pprod(p,pw,p);
pinte(p,p);
pinte(p,p);
psca(p,(.5* (xout.up+xout.dn) —xin)*(.5%(xout.up+xout.dn) —xin),p);
p[0] = u0, p[1] = ul*fabs(.5*(xout.up+xout.dn)—xin);

r = iabs(plus(xout,cvtdi(—xin)));

y = rs(DEGREE,cvtdb(xin),cvtdb(r.up)); 90
for(i=2; i<= DEGREE; ++i) y.p.p[i] = cvtdi(p[i]);

eps = bllnrs(y);
bn = lipreg(cvtdi(u0), cvtdi(ul), cvtdi(xin), ucvtib(r), eps);
while(grteqb(bn,bone)){

eps = maxb(eps, cvtdb(eps.b * 1.1));

bn = lipreg(cvtdi(u0), cvtdi(ul), cvtdi(xin), ucvtib(r), eps);

y.p-p[0] = cvtdi(u0); 100
y-p.p[l] = mult(cvtdi(r.up),cvtdi(ul));

rsw = rs(DEGREE,cvtdb(xin),cvtdb(r.up));
rsw.p.p[0] = cvtdi(xin);
rsw.p.p[1l] = cvtdi(r.up);

rsw = rspowerf(rsw,neg(ihalf));

ithreehalfs = divi(ithree,itwo);
yp = rspower(y,ithreehalfs);
ypp = rsintegf(rsintegf(rsmultf(yp,rscopy(rsw)))); 110

yp = rscopy(y);

yp.p-p[0] = izero;

yp.p-p[1] = izero;

eps = bllnrsf(rsminusf(yp,ypp));

v.g = udivb(eps,lplusb(bone, negb(bn)));
vk = 2;
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vtffx—supervtffx()

rsw.k = 2;

*y0 = rseval(y,xout); 120

*yl = rsevalf(rsintegf(rsmultf(rspower(y,ithreehalfs),rsw)), xout);

*y1 = plus(*yl,cvtdi(ul));
freep(y-p);
return(eps.b);

130
double
supervtffx(xin, xout, u0, ul,y0, yl1) SupethffX
double xin;
INTERVL =xout, u0, ul;
INTERVL *y0, *y1;
{
INTERVL ywO0, ywl;
double eps;
if(xin <= xout.dn){ 140
eps = vtffx(xin, xout, u0.up, ul.up, &yw0, &ywl);
yO0—>up = ywO.up, yl—>up = ywl.up;
eps += vtffx(xin, xout, u0.dn, ul.dn, &yw0, &ywl);
yO0—>dn = yw0.dn, y1—>dn = ywl.dn;
return(eps);
¥
else if(xin >= xout.up){
eps = vtffx(xin, xout, u0.dn, ul.up, &yw0, &ywl);
y0—>dn = yw0.dn, yl1—>up = ywl.up;
eps += vtffx(xin, xout, ul.up, ul.dn, &yw0, &ywl); 150
y0—>up = ywO.up, yl—>dn = ywl.dn;
return(eps);
¥
else{
printf("SUPERVTFFX: case not considered\n\n\n");
fHush(stdout);
abort();
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RSERIES

vtffxi(xin, xout, u0, ul)

INTERVL xin, xout, u0, ul;

{
RSERIES y, yp, ypp, I'sw;
INTERVL ithreehalfs, r;
BND bn, eps;
int i;

double p[SIZE], pw[SIZE];

pzer(p), pzer(pw);

p[0] = .5*(u0.dn+u0.up);

p[l] = .5*(ul.up+ul.dn)*fabs(.5*(xout.up+xout.dn)
—0.5*(xin.up+xin.dn));

pw[0] = 0.5*(xin.up+xin.dn);
pw[l] = fabs(.5*(xout.up+xout.dn)—0.5%(xin.up+xin.dn));
myprpower(pw, —0.5, pw);

for(i=1; i <= DEGREE; ++i){

myprpower (p,1.5,p);

pprod(p,pw,p);

pinte(p,p);

pinte(p,p);

psca(p,(.5*(xout.up+xout.dn) —0.5%(xin.up+xin.dn))
*(.5*(xout.up+xout.dn)—0.5*(xin.up+xin.dn)),p)

p[0] = .5*(u0.dn+u0.up);

p[l] = .5*(ul.up+ul.dn)*fabs(.5*(xout.up+xout.dn)
—0.5*(xin.up+xin.dn));

r = iabs(plus(xout,neg(xin)));
y = rs(DEGREE,b0ero,cvtdb(r.up));

y-p-p[0] = u0;
y-p-p[1] = mult(cvtdi(r.up),ul);
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}

POLY

for(i=2; i<= DEGREE; ++i) y.p.pli] =

rsw = rs(DEGREE,b0ero,cvtdb(r.up));
rsw.p.p[0] = xin;
rsw.p.p[l] = cvtdi(r.up);

rsw = rspowerf(rsw,neg(ihalf));

ithreehalfs = divi(ithree,itwo);
yp = rspower(y,ithreehalfs);
ypp = rsintegf(rsintegf(rsmultf(yp,rsw)));

yp = rscopy(y);
yp.p-p[0] = izero;
yp.p-p[1] = izero;

eps = bllnrs(yp);
bn = lipreg(u0, ul, xin, ucvtib(r), eps);
while(grteqb(bn,bone)){

cvtdi(p[i]);

eps = maxb(eps,cvtdb(eps.b * 1.1));

bn = lipreg(u0, ul, xin, ucvtib(r), eps);

eps = bllunrsf(rsminusf(yp,ypp));
y.g = udivb(eps,lplusb(bone, negb(bn)));
vk = 2;

return(y);

tfypoly(u0, ul, r, i)
INTERVL u0, ul, r;

int i;

{

POLY poly, res;

POLY rsw;

int j, k;

poly = make poly(i);

poly.p[0] = u0, poly.p[1] = ul;

rsw = make poly(i);
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rsw.p[0] = 1;
rsw.p[1] = ione;

rsw = polypowerf(rsw,neg(ihalf));

for(k=2; k <= i; ++k){
res = make poly(k—1);
for(j=0; j<=k—2; ++j) res.p[j] = poly.p[i;
res = polypowerf(res, ration(3,2));
res.p[k—2] = coeffmult(res,rsw,k—2);
poly.plk] = divi(res.p[k—2], cvtinti(k*(k—1)));

freep(res);
freep(rsw);
return(poly);
RSERIES

vtfxi2(xin, xout, u0, ul)
INTERVL xin, xout, u0, ul;

{

RSERIES y, yp, ypp, Isw;
INTERVL ithreehalfs, r;
BND bn, eps;

int i;

POLY poly;

r = iabs(plus(xout,neg(xin)));

poly = polyscalef(tfypoly(u0, ul, xin, DEGREE), cvtdi(r.up));

y = rs(DEGREE,b0ero,cvtdb(r.up));
y-p-p[0] = u0;
y.p.p[l] = mult(cvtdi(r.up),ul);
for(i=2; i<= DEGREE; +-+i)
y.p-p[i] = cvtdi(.5*(poly.p[i].up+poly.p[i].dn));

rsw = rs(DEGREE,bOero,cvtdb(r.up));
rsw.p.p[0] = xin;
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void

rsw.p.p[1l] = cvtdi(r.up);

rsw = rspowerf(rsw,imhalf);

ithreehalfs = divi(ithree,itwo);
yp = rspower(y,ithreehalfs);
ypp = rsintegf(rsintegf(rsmultf(yp,rsw)));

yp = rscopy(y);
yp.p.p[0] = izero;
yp.p.p[1] = izero;

eps = bllnrs(yp);
bn = lipreg(u0, ul, xin, ucvtib(r), eps);
while(grtegb(bn,bone)){
eps = maxb(eps,cvtdb(eps.b * 1.1));
bn = lipreg(u0, ul, xin, ucvtib(r), eps);

eps = bllnrsf(rsminusf(yp,ypp));
y.h = udivb(eps,lplusb(bone, negb(bn)));
for(i=2; i<= DEGREE; ++i)

y-p-p[i] = iunion(y.p.p[i], poly.p[i]);

return(y);

vtff0(w,t,y0, y1)

double w;

BND t;

INTERVL *y0, *yl;

{

RSERIES y, yp, ypp;
INTERVL sc;
INTERVL ithreehalfs;
BND eps, b0;
double p[SIZE];

int i, j;
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vtffo()

pzer(p);
p[0] = 1.0, p[2] = —w;
for(i=0; i <= DEGREE; ++i){
myprpower (p,1.5,p);
for(j=DEGREE; j >= 3; ——j)
pli] = 4.0%p[i—3]/(*(i—2));
p[0] = 1.0, p[l]=zero, p[2]= —w; 320

}

pscale(p,sqrt(t.b),p);

y = rs(DEGREE,b0ero,t);

for(i=3; i<= DEGREE; ++i) y.p.p[i] = cvtdi(pl[i]);
b0 = bllnrs(y);

y.p.p[0] = ione;

yv.p-p[2] = mult(cvtdi(—w),cvtbi(t));

ithreehalfs = divi(ithree,itwo);

yp = rspower(y,ithreehalfs); 330

ypp = rs(DEGREE+3, blero, t);

for (i=0; i <= DEGREE; ++i) ypp.p.p[i+3]= divi(yp.p.-pli],
divi(cvtinti((i+1)*(i+3)),cvtinti(4)));

ypp-h = umultb(yp.h,
udivb(cvtintb(4),cvtintb((DEGREE+2)*(DEGREE+4))));

sc = iexp(mult(divi(cvtinti(3),cvtinti(2)),ilog(cvtbi(t))));

ypp = rscaf(ypp, sc);

ypp-p-p[0] = y.p.p[0];

ypp-p-p[1] = y.p.p[1];

ypp-p-p[2] = y.p.p[2]; 340
eps = btwo;

while(grteqgb(eps,bone)){
eps = lipO(cvtdi(w),t,b0);
b0 = maxb(b0,cvtdb(b0.b * 1.01));
}
b0 = eps;
eps = bllnrsf(rsminus(y,ypp));
y.g = umultb(eps, Iplusb(bone,negb(b0)));
*y0 = izero, *yl = izero; 350
for(i=0; i<=y.p.deg; ++i){
*y0 = plus(*y0,y.p-p[i]);
*yl = plus(*yl,divi(yp.p.pl[i],divi(cvtinti(i+1),itwo)));
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*y0 = ienlarge(*y0,uplusb(y.g,y.h));
ypp = rspower(y,ithreehalfs);
sc = iexp(mult(ihalf,ilog(cvtbi(t))));

ypp.g = udivb(ypp.g,btwo);

ypp-h = udivb(ypp.h,cvtintb(2*(ypp.p.deg+1)));
*y1 = mult(ienlarge(*y1,uplusb(ypp.g,ypp-h)), sc);
*y1l = plus(*yl,neg(cvtdi(w)));

freep(y.p), freep(yp.p), freep(ypp.p);

RSERIES
y at 0(tb,m)
double tb;

int m;

{

RSERIES vy, yp, ypp;
INTERVL sc;
INTERVL ithreehalfs;
BND ¢t, eps, b0;
double w, p[SIZE];
int olddeg, i, j;

t = cvtdb(tb);
sc = iexp(mult(divi(ithree,itwo ),ilog(cvtbi(t))));
olddeg = DEGREE;
DEGREE = m;
if (m >= SIZE){
printf("Y_AT_O: DEGREE %d is not possible\n",m);

abort();
fush(stdout);
pzer(p);
w = .5*(W.up+W.dn);
p[0] = 1.0, p[2] = —w*tb;

for(i=0; i <= DEGREE; ++i){
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y.at 0—tfw()

myprpower (p,1.5,p);
for(j=DEGREE; j >= 3; ——j)
pli] = 2.0%(sc.up+sc.dn)*p[j—3]/(*(—2));
p[0] = 1.0, p[l]=zero, p[2]= —w*tb;
}
y = rs(DEGREE,b0ero,t);
for(i=3; i<= DEGREE; ++i) y.p.p[i] = cvtdi(p[i]);
b0 = bllnrs(y);
y-.p.p[0] = ione;
yv-.p.p[2] = neg(mult(W,cvtbi(t)));

ithreehalfs = divi(ithree,itwo);

yp = rspower(y,ithreehalfs);

ypp = rs(DEGREE+3, blero, t);

for (i=0; i <= DEGREE; ++i) ypp.p.p[i+3]= divi(yp-p-pli],
divi(cvtinti((i+1)*(i+3)),ifour));

ypp.-h = umultb(yp.h,udivb(cvtintb(4),cvtintb((DEGREE+2)*(DEGREE+4))))

ypp = rscaf(ypp, sc);

yp = rscopy(y);

ypp-p-p[0] = y.p.p[0] = izero;
ypp-p-p[1l] = y.p.p[1]
ypp-p-p[2] = y.p.p[2] = izero;

izero;

eps = bllnrsf(rsminusf(y,ypp));

while(grteqb(lip0(W,t,b0),bone)) b0 = maxb(b0, cvtdb(b0.b*1.1));
yp-g = udivb(eps, dengeob(lip0(W,t,b0)));

DEGREE = olddeg;

return(yp);

INTERVL

tfw(w, tol)
INTERVL w;
double tol;

{

BND b;

18:35 Apr 17 1993

400

; 410

420

tfw

430

Page 11 of



INTERVL il, i2, i3, i4, r;

double eps, wtest, x;

b.b = 0.008;

while(w.up—w.dn>t01){
printf("\n\nBOUNDS FOR w:\n");
printival(w);
printivalio(w);
fush(stdout);

wtest = .5*(w.up+w.dn);
vtffO(wtest, b, &il, &i2);
r.up = b.b;
x = 0.0008;
while(i2.dn<= 0 && r.up < 250.0){
r.dn = r.up, r.up = r.dn+x;
if(r.dn < 2.104025275
&& r.up > 2.104025275)
r.up = 2.104025275;
eps = supervtiix(r.dn, cvtdi(r.up),
i1, 12, &il, &i2);

i3 = divi(cvtinti(5),cvtinti(2));

i3 = iexp(mult(i3,ilog(il)));

i3 = divi(i3,iexp(mult(ihalf,ilog(cvtdi(r.up)))));
i4 = square(i2);

i3 = mult(itwo,i3);

if(i3.up <= id.dn) i2.dn = 1.0;

ifleps > 5.e—17) x *= 0.7;
ifleps > 5.e—16) x *= 0.5;
ifleps < l.e—17) x *= 1.2;

x = minm(x,0.3);

if(r.up > 10.0) x = minm(x,0.5);

}

if(r.up >= 250.0){
return(w);

}

else if(i3.up <= i4.dn) w.up = wtest;
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else w.dn = wtest;

return(w);
GRS
tf(w)
INTERVL w;
GRS y;
BND b;

unsigned size;

INTERVL i1[1000], i2[1000], i3, i4 , i5[1000], i6[1000];
double eps, x, r[1000];

int count = O;

int count2 = 0;

b.b = 0.008;
vtff0(w.up, b, &il[0], &i2[0]);
vtff0(w.dn, b, &i5[0], &i6[0]);
r[count] = b.b;
x = 0.0008;
i3.up = 1.0, i4.dn = zero;
while(i3.up > i4.dn || i6[count].dn < 0){
if(i3.up <= i4.dn || i6[count].dn >= 0) ++count2;

r[count+1] = r[count]+x;

if(r[count] < 2.10402528 && r[count+1] > 2.10402528)

r[count+1]=maxm(r[count],2.10402528);
if(i3.up > i4.dn )
eps = supervtffx(r[count], cvtdi(r[count+1]),

il[count], i2[count], &il[count+1], &i2[count+1]);

if(i6[count].dn < 0)

eps += supervtffx(r[count], cvtdi(r[count+1]),
i5[count], i6[count], &i5[count+1], &i6[count+1]);

“+-count;
if(i3.up > i4.dn ){
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i3 = divi(evtinti(5),cvtinti(2));

i3 = iexp(mult(i3,ilog(il[count])));

i3 = divi(i3,iexp(mult(ihalf,ilog(cvtdi(r[count])))));
i4 = square(i2[count]);

i3 = mult(itwo,i3);

ifleps > l.e—16) x *= 0.7;
ifleps > l.e—15) x *= 0.5;
ifleps < 2.e—17) x *= 1.2;
x = minm(x,4.0);

if(r[count] > 200.0) x = minm(x,1.0);

if(r[count] < 10.0) x = minm(x,0.05);
if(r[count] > 250.0) x = minm(x,0.3);
count —= count2;

y.n = count+1;

y.f = (RSERIES *)calloc(size=count+2,sizeof(RSERIES));

v.f[0] = rs(1,b0ero,bone);

y-1[0].p.p[0] = ione;

yA[0].p-p[1] = w;

for(count=1; count <= y.n; ++count){
yf[count] = rs(1,cvtdb(r[count—1]),bone);
y-f[count].p.p[0].up = i5[count—1].up;
y-f[count].p.p[0].dn = il[count—1].dn;

[0] [ ]
y-flcount].p.p[1].up = i6[count—1].up;
[1]. [ ]

y-flcount].p.p[1].dn = i2[count—1].dn;
return(y);
GRS
tirs(y)
GRS y;
int i;
GRS sol;
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unsigned size;
/ *char *calloc(); */
INTERVL cvtdi(), x1, x2;

sol.f = (RSERIES *)calloc(size=y.n—1,sizeof(RSERIES));
soln = y.n—2;
for (i=0; i <= sol.n; ++i){

x1 = yf[i+1].p.p[0];

x2 = y[i+1].p.p[1];

sol.f]li] = vtfixi(cvtdi(y.f[i+1].center.b),

cvtdi(y.f[i+2].center.b),x1,x2);
sol.f[i].center = y.f[i+1].center;

return(sol);

INTERVL
Omega(u)
GRS u;

int d;
INTERVL ievders(), sol, derw;
double otest, otestl, otest2;

sol.dn = (double) 2;
sol.up = (double) 3;

for(;;){
otest = .5*(sol.up+sol.dn);
if(otest == sol.up || otest == sol.dn)
return(sol);

derw = grsdereval(u,cvtdi(otest));
if(derw.up <= zero) sol.up = otest;
else if(derw.dn >= zero) sol.dn = otest;
else
{

otestl = otest;

d = 1;

18:35 Apr 17 1993

tfrs—Omegal()

560

Omega

570

580

Page 15 of



Omega—tfprint()

while(d ){

otest =

d = 1;

otest2 = .5*(otest+sol.up);

if(otest2 == otest || otest2 == sol.up)d = 0;

derw = grsdereval(u,cvtdi(otest2));
if(derw.up <= zero ) sol.up = otest2;

else otest = otest2;

otestl;

while(d ){

otest2 = .5*(otest+sol.dn);

if(otest2 == otest || otest2 == sol.dn)d = 0;

derw = grsdereval(u,cvtdi(otest2));
if(derw.up >= zero ) sol.dn = otest2;

else otest = otest2;

return(sol);

void

tfprint()
GRS grstimesx();
INTERVL grseval();

printivalio(W);
printivalio(C1);
Y = tff(W);
printgrsio(Y);
fHush(stdout);

YRS = tfrs(Y);

printgrsio(YRS);
fHush(stdout);
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U = grstimesx(YRS);
printgrsio(U);
printivalio(RC
fHush(stdout);

printivalio(BC
fHush(stdout);

void
tfread()

{

int i;

W = readivalio();
C1 = readivalio();

Y = readgrsio();

YRS = readgrsio();
for(i=0; i <= YRS.n; ++i)YRS.f[i].k

U = readgrsio();

for(i=0; i <= U.n; ++i)U.fli].k
RC = readivalio();
BC = readivalio();

INTERVL
r0(w)
INTERVL w;

{

INTERVL r, i1, cvtdi(), grseval(), w2, square();
double rtest, rtestl, rtest2;
int d;

w2 = square(w);

r =
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i1 = rseval(U.f[0],r);

Omega(U));
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tfprint—r0()

630

tfread

640

650

r0

660

Page 17 of



r0()

if(il.up >= W2.dn){
r.dn = (double) 0;
d = —1; 670
while(il.dn < w2.up){
++d;
i1 = U.f[d].p.p[0];
}
d = maxm(d,0);
r.up = U.f[d].center.b;
return(r);

}

r.up = RC.up;

680
for(;;){
rtest = .5*(r.dn+r.up);
il = grseval(U,cvtdi(rtest));
if(il.dn >= w2.up ) r.up = rtest;
else if(il.up <= w2.dn ) r.dn = rtest;
else
{
rtestl = rtest;
d =1,
while(d ){ 690
rtest2 = .5*(rtest+r.up);
if(rtest2 == rtest || rtest2 == r.up)d = 0;
il = grseval(U,cvtdi(rtest2));
if(il.dn >= w2.up ) r.up = rtest2;
else rtest = rtest2;
}
rtest = rtestl;
d = 1;
while(d ){ 700
rtest2 = .5*(rtest+r.dn);
if(rtest2 == rtest || rtest2 == r.dn)d = 0;

i1 = grseval(U,cvtdi(rtest2));
if(ilup <= w2.dn ) r.dn = rtest2;

else rtest = rtest2;
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INTERVL

rl(w)

INTERVL w;

{

if(r.dn <= r.up)return(r);

else abort();

INTERVL r, i1, cvtdi(), grseval(), w2, square();
double rtest, rtestl, rtest2;

int d;

w2 = square(w);

r = cvtbi(lplusb(U.f[U.n].center,U.f[U.n].r));
il = rseval(U.f[U.n],r);

if(il.up >= w2.dn){

r.up = l.eld;
d = U.n+1;
while(il.dn < w2.up){
i1 = U.f[d].p.p[0];
}
d = minm(d,U.n);
r.dn = U.f[d].center.b;

return(r);
r.dn = RC.dn;
for(;;){

rtest = 0.5*(r.up+r.dn);
il = grseval(U,cvtdi(rtest));
if(il.dn >= w2.up ) r.dn = rtest;
else if(il.up <= w2.dn ) r.up = rtest;
else {

rtestl = rtest;

d =1,

while( d ){

rtest2 = .5*(rtest+r.up);
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rtest =
d =1;

if(rtest2 == rtest || rtest2 == r.up) d = 0;

il = grseval(U,cvtdi(rtest2));
if(il.up <= w2.dn ) r.up = rtest2;

else rtest = rtest2;

rtestl;

while(d ){

rtest2 = .5*(rtest+r.dn);

if(rtest2 == rtest || rtest2 == r.dn)d = 0

il = grseval(U,cvtdi(rtest2));
if(il.dn >= w2.up ) r.dn = rtest2;

else rtest = rtest2;

if(r.dn <= r.up)return(r);

else abort();

vtfinf(a0, t, y0, yl1)

double t, a0;

INTERVL *y0, *y1;

{
RSERIES vy, yp, ypp;
INTERVL il, ithreehalfs;
BND eps, b0;

double pnorm(), pw[SIZE], p[SIZE], alpha;

int i, j, olddeg;

alpha = (sqrt(73.0)—7)/2.0;

olddeg = DEGREE;
DEGREE = SIZE—1;

pzer(p);
p[0] = 1.0;
p[l] = —a0*exp(log(t)*(—
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vtfinf()

eps.b = 1.0;
while(eps.b > l.e—15){
pcopy (p, pw);
myprpower(p, 1.5, p); 790
for(jJ=DEGREE; j >= 2; ——j)
plj] = 12.0%p[j]/((3.0+j*alpha)*(4.0+j*alpha));
p[0] = 1.0;
p[l] = —a0%exp(log(t)*(—alpha));
psub(p, pw, pw);
eps.b = pnorm(pw);
¥
y = rs(DEGREE,b0ero,bone);
for(i=2; i<= DEGREE; ++i) y.p.p[i] = cvtdi(p[i]);
b0 = bllnrs(y); 800
yv.p.p[0] = ione;
y-p-p[1] = divi(cvtdi(—a0),iexp(mult(ilog(cvtdi(t)),ALPHA)));

if(grtb(b0,lcvtib(ration(3,10)))){
printf("VTINF: condition 1 is WRONG\n");

fush(stdout);
abort();
}
if(grtb(uabs(y.p.p[1]),lcvtib(ration(23,100)))){
printf("VTINF: condition 2 is WRONG\n"); 810
fHush(stdout);
abort();
}

ithreehalfs = divi(ithree,itwo);

yp = rspower(y,ithreehalfs);

ypp = rs(DEGREE, b0ero, bone);

for (i=2; i <= DEGREE; ++i){
il = plus(ithree,mult(cvtinti(i),ALPHA));
il = divi(mult(il,plus(il,ione)),cvtinti(12)); 820
ypp-p-pli]= divi(yp.p.pli],il);

}

ypp-p-p[0]= y-p-p[0};

ypp-p-p[l]= y.p.p[1];

j = DEGREE+1;

il = plus(ithree,mult(cvtinti(j),ALPHA));
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tfcl(c)

i1 = divi(cvtinti(12),mult(il,plus(il,ione)));
ypp-h = umultb(yp.h,ucvtib(il));

eps = bllnrsf(rsminus(y,ypp));
y.g = umultb(ucvtib(ration(75,10)),eps);
*y0 = izero, *yl = izero;
for(i=0; i<=y.p.deg; ++i){
*y0 = plus(*y0,y.p.p[i]);
il = plus(ifour,mult(cvtinti(i),ALPHA));
*y1 = plus(*yl,divi(yp.p.p[i],neg(il)));
}
il = mult(cvtinti(144),iexp(mult(ilog(cvtdi(t)),neg(ithree))));
*y0 = ienlarge(*y0,uplusb(y.g,y.h));
*y0 = mult(*y0,il);
ypp = rspower(y,ithreehalfs);

i1 = plus(ifour,mult(itwo,ALPHA));

*yl = ienlarge(*y1,uplusb(udivb(ypp.g,lcvtib(il)),
udivb(ypp.h,lplusb(bfour,lmultb(cvtintb(y.p.deg+1),
levtib(ALPHA))))));

il = mult(cvtinti(1728),iexp(mult(ilog(cvtdi(t)),neg(ifour))));

*y1l = mult(*yl,il);

DEGREE = olddeg;

freep(y.p), freep(yp.p), freep(ypp.p);

double c;

{

INTERVL il, i2, i3, i4, i6, ib;
double xin, eps;

int i, j;

i=Yn—1

vtfinf(c, Y.f[i].center.b, &ib, &i6);
il = 1i5;

i2 = i6;

for(j=i; j>=2; ——j){
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tfcl-refiney()

Xin

Y .f[j].center.b;
eps = supervtfx(xin, cvtdi(Y.f[j—1].center.b), il, i2, &il, &i2);

i3 = Y.fj—1].p.p[0];

i4 = Y.A[j—1].p.p[1]; 870
if(il.up <= i3.dn) return(—1);

if(i2.dn >= i4.up) return(—1);

if(il.dn >= i3.up) return(1);

if(i2.up <= i4.dn) return(l);

}
return(0);
}
getcl() getC].
{ 880
double ctest;
double t = 0.05;
int k = 1;
while(k ==1 || k == —1){
printf("BOUNDS for Ci\n");
printival(C1);
printivalio(C1);
fHush(stdout);
890
ctest = t*Cl.up+(1.0—t)*Cl.dn;
k = tfcl(ctest);
if(k == 1) Cl.dn = ctest;
if(k == —1) Cl.up = ctest;
}
}
refiney () I‘eﬁney
{
900

INTERVL i1, i2, i3, i4, i6, i5;
INTERVL cvtdi(), intersect();
double xin, eps;

int i, j;
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i = Y.
vtfinf(Cl.up, Y.f[i].center.b, &i5, &i6);
vtfinf(Cl.dn, Y.f[i].center.b, &i3, &i4);
il.up = i3.up;
il.dn = 1i5.dn;
i2.dn = i4.dn;
i2.up = i6.up;
i5 = Y .f[i].p.p[0];
i6 = Y.f[i].p.p[1];
Y {[i].p.p[0] = intersect(il,i5);
Y {[i].p.p[1l] = intersect(i2,i6);
for(j=i; j>=2; ——j){
xin = Y.ffj].center.b;

refiney—refine numbers()

910

eps = supervtffx(xin, cvtdi(Y.f[j—1].center.b), il, i2, &il, &i2);

i3 = Y.[j—1].p.p[0];
i4 = Y A[j—1].p.p[1];
Y.f[j—1].p.p[0] = intersect(il,i3);
Y.f[j—1].p.p[1] = intersect(i2,i4);
il = Y.{[j—1].p.p[0];
i2 = Y A[j—1].p.p[1];

}

refine numbers()

{
printivalio(W);
printivalio(C1);
refiney();
printgrsio(Y);
fHush(stdout);

YRS = tfrs(Y);
printgrsio(YRS);
fHush(stdout);

U = grstimesx(YRS);

printgrsio(U);
printivalio(RC = Omega(U));
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refine numbers—mygetw|()

fHush(stdout);
printivalio(BC = grseval(U,RC));
fHush(stdout);

tfw2(w) th2
double w; 950
INTERVL i1, i2, i3, i4, i6, i5;
INTERVL cvtdi();
double xin, xout, eps;

int j;

vtffo(w, Y.f[1].center, &ib, &i6);

i1 = i5;

i2 = i6;

for(j=1; j<=Y.n—1; ++j){ 960
xin = Y.ffj].center.b;
xout = Y.f[j+1].center.b;

eps = supervtffx(xin, cvtdi(xout), i1, i2, &il, &i2);

i3 = Y.f[j+1].p.p[0];
i4 = Y.f[j+1].p.p[1];
if(il.up <= i3.dn) return(—1);
if(i2.dn >= i4.up) return(l);
if(il.dn >= i3.up) return(l); 970
if(i2.up <= i4.dn) return(—1);
}

return(0);

mygetw() mygetw
{

double wtest;
double t = .05;
int k = 1; 980

while(k ==1 || k == —1){
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printf("BOUNDS for W\n");
printival(W);
printivalio(W);
fHush(stdout);

wtest = t*W.up + (1—t)*W.dn;
k = tfw2(wtest);

if(k == 1) W.dn = wtest;
if(k == —1) W.up = wtest;
}
}
refineY ()
{
INTERVL i1, i2, i3, i4, i5, i6;
int i;
vtffO(W.up, Y.f[1].center, &il, &i2);
vtffO(W.dn, Y.f[1].center, &i5, &i6);
Y .f[1].p.p[0] = iunion(il,ib);
Y f[1].p.p[1] = iunion(i2,i6);
for(i=1; i <= Y.n—1; ++i){
il = Y.1[i].p.p[0];
i2 = Y {[i].p.p[1];
supervtffx(Y 1[i].center.b, cvtbi(Y.f[i+1].center),
1,i2,&i3,&i4);
il = Y.fi+1].p.p[0];
i2 = Y.f[i+1].p.p[1];
Y. fli+1].p.p[0] = intersect(il,i3);
Y fli+1].p.p[1] = intersect(i2,i4);
}
}
RSERIES
rstfu2(x,r,y)
INTERVL x;
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rstfu2—yinfy()

double r;

RSERIES *y;
int j;
INTERVL u0, ul, a;
RSERIES u;

a = plus(x,cvtdi(r)); 1030
u0 = grseval(YRS,x);

ul = grsdereval(YRS x);

*y vtffxi2( x , a, u0, ul);

u = rs(y—>p.deg, blero, y—>r);
for(j = y—>p.deg; j>=1; ——j)
u.p-p[j] = plus(mult(y—>p.p[j],x),
mult(y—>p.p[j—1],cvtbi(y—>r1)));
u.p-p[0] = mult(y—>p.p[0] ,x);
u.h = umultb(y—>h,uplusb(uabs(x) ,y—>r)); 1040
u.h = uplusb(u.h,umultb(uabs(y—>p.p[y—>p.deg]),y—>r1));

return(u);

RSERIES
yinf(t, m) ylnf
double t; 1051
int m;
{

RSERIES vy, yp, ypp;

INTERVL i1, ithreehalfs;

BND eps, b0;

double pnorm(), pw[SIZE], p[SIZE], alpha;

int i, j, olddeg;

alpha = (sqrt(73.0)—7)/2.0;

1060
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yinf()

olddeg = DEGREE;
DEGREE = m;

pzer(p);

p[0] = 1.0;

p[l] = —(Cl.up+Cl.dn)*.5%exp(log(t)*(—alpha));
eps.b = 1.0;

while(eps.b > 1.e—15){

pcopy(p, Pw);
myprpower(p, 1.5, p);

for(j=DEGREE; j >= 2; ——j) 1070
pli] = 12.0*p[j]/((3.0+j*alpha)*(4.0+j*alpha));

p[0] = 1.0;

p[l] = —(Cl.up+Cl.dn)*.5%exp(log(t)*(—alpha));

psub(p, pw, pw);
eps.b = pnorm(pw);
}
y = rs(DEGREE,b0ero,bone);
for(i=2; i<= DEGREE; ++i) y.p.p[i] = cvtdi(p[i]);
b0 = bllnrs(y);
y.p.p[0] = ione; 1080
y-p-p[1l] = divi(neg(C1),iexp(mult(ilog(cvtdi(t)),ALPHA)));

if(grtb(b0,lcvtib(ration(3,10)))){
printf("YINF: condition 1 is WRONG\n");
fHush(stdout);
abort();
}
if(grtb(uabs(y.p.p[1]),lcvtib(ration(23,100)))){
printf("YINF: condition 2 is WRONG\n");
fHush(stdout); 1090
abort();

ithreehalfs = divi(ithree,itwo);
yp = rspower(y,ithreehalfs);
ypp = rs(DEGREE, b0ero, bone);
for (i=2; i <= DEGREE; ++i){
il = plus(ithree,mult(cvtinti(i), ALPHA));
i1 divi(mult(il,plus(il,ione)),cvtinti(12));
ypp-p-pli]= divi(yp.p.p[i],i1); 1100
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}

ypp-p-p[0]= y-p-p[0];

ypp-p-p[1]= y.p.p[l];

j = DEGREE+1;

i1 = plus(ithree,mult(cvtinti(j),ALPHA));
i1 divi(cvtinti(12),mult(il,plus(il,ione)));
ypp-h = umultb(yp.h,ucvtib(il));

eps = bllursf(rsminus(y,ypp));

v.g = umultb(ucvtib(ration(75,10)),eps);
vk = 2;

DEGREE = olddeg;

freep(yp.p), freep(ypp.p);

return(y);
GRS
expandY ()
GRS newy;
double step;
int i;
INTERVL i1;

step = Y.f[Y.n].center.b—Y.f[Y.n—1].center.b;
if(step > 0.5) step = 0.5;
i = (322.0—Y.f[Y.n].center.b) /step;

newy = grs(i+Y.n);

for(i=0; i <= Y.n; ++i){
newy.f[i] = rscopy(Y.1[i]);
freep(Y .f[n].p);

}

for(i=Y.n+1; i <= newy.n; ++i){

newy.f[i] = rs(1, cvtdb(newy.f[i—1].center.b+step),bone);

il.up = zero;
il.dn = (double) —2;
newy.f[i].p.p[1] = il;

il.dn = zero;
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expandY ()

il.up = one; 1140
newy.f[i].p.p[0] = il;

free((char *)Y.f), Y.f = NULL;

return(newy);
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