Partial Differential Equations: Assigned Problems

Jonathan Mostovoy - 1002142665 University of Toronto

September 29, 2017

1 Assignment 1

Question 1

Exercise. 1.1:

Consider the second order nonlinear PDE appearing in the theory of minimal surfaces

$$(1+u_y^2)u_{xx} - 2u_xu_yu_{xy} + (1+u_x^2)u_{yy} = 0 (1)$$

Assume that u is radially symmetric, i.e. u depends only on the radial coordinate $r = \sqrt{x^2 + y^2}$, thus write u(x, y) = h(r).

(a) Show that the function h satisfies:

$$rh'' + h'(1 + (h')^2) = 0$$

- (b) Solve equation (1) and write its general solution.
- (a) We first find (via the Chain Rule) that:

$$u_x = (h')(x/r)$$

$$u_y = (h')(y/r)$$

$$u_{xx} = (h'')(x^2/r^2) + (h')(1/r - x^2/r^3)$$

$$u_{yy} = (h'')(y^2/r^2) + (h')(1/r - y^2/r^3)$$

$$u_{xy} = (h'')(yx/r^2) - (h')(xy/r^3)$$

And therefore, plugging the above into Eq. (1) and multiplying things out, we get:

$$\begin{split} Eq(1) &= h''r + 2h'/r - h'/r + 2h'h'h''x^2y^2/r^4 + rh'h'h' - 2x^2y^2 - 2x^2y^2/r^4h'h'h'' + 2x^2y^2/r^5h'h'h' \\ &= h''r + h' + h'h'h' \\ &= rh'' + h'(1 + (h')^2) \end{split}$$

(b) Let us set h' = f, and hence our second order ODE becomes first order in the form of:

$$rf' + f(1+f^2) = 0$$

For which has the solution:

$$f = \pm \frac{ie^{c_1}}{\sqrt{e^{2c_1} - r^2}}$$

And thus integrating:

$$h(r) = \int f = c_2 \pm ie^{c_1} \tan^{-1} \left(\frac{r}{\sqrt{e^{c+1} - r^2}} \right)$$

Question 2

Exercise. 1.2:

Let u(x,t) in $C^2(\mathbb{R}\times[0,\infty))$ solve the wave equation:

$$u_{tt} - u_{xx} = 0$$

with the initial condition:

$$u(x,0) = f(x), \quad u_t(x,0) = g(x)$$

with compact support. (This means that f and g are identically 0 outside an interval (-R,R).) Let $k(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x,t) dx$ and $p(t) = \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x,t) dx$ be the kinetic and potential energy.

- (a) Prove that the total energy E(t) = k(t) + p(t) is conserved.
- (b) Prove that in the limit of $t \to \infty$, k(t) = p(t). This property is referred to as "Equipartition of energy".
- (a) *Proof.* We recall that conservation of energy means that $\partial_t E(t) = 0$. Therefore, we investigate the E's derivative w.r.t. t as follows:

$$\begin{split} \frac{dE}{dt} &= \frac{1}{2} \frac{d}{dt} \left(\int_{-\infty}^{\infty} \left(u_t^2 + u_x^2 \right) dx \right) \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \frac{\partial}{\partial t} \left(u_t^2 + u_x^2 dx \right) & \text{because of } * \text{ (below)} \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \left(2u_t u_{tt} + 2u_x u_{xt} \right) dx \\ &= \int_{-\infty}^{\infty} \left(u_t u_{tt} + u_x u_{xt} \right) dx \end{split}$$

*: $d/dt \int = \int \partial_t$ because u is identically zero for |x| large, and is C^2 .

We now modify the $\int_{-\infty}^{\infty} u_x u_{xt} dx$ term by integrating by parts:

$$\begin{split} \int_{-\infty}^{\infty} u_x u_{tx} dx &= u_t u_x \bigg|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u_{xx} u_t dx \\ &= - \int_{-\infty}^{\infty} u_{xx} u_t dx \qquad \qquad \text{since } u \equiv 0 \text{ for } |x| >> 0 \\ &= - \int_{-\infty}^{\infty} u_{tt} u_t dx \qquad \qquad \text{since } u_{tt} = u_{xx} \end{split}$$

And hence it is clear that:

$$\frac{dE}{dt} = \int_{-\infty}^{\infty} (u_t u_{tt} + u_x u_{xt}) dx$$
$$= \int_{-\infty}^{\infty} (u_t u_{tt} - u_t u_{tt}) dx$$
$$= 0$$

(b) Proof. To solve this problem, we recall the following Lemma:

Lemma. 1.1: d'Alembert's Formula

The one-dimensional Solution to the Wave Equation defined above is given by:

$$u(x,t) = \frac{1}{2} \left[f(x+t) + f(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} g(\xi) d\xi$$

From this, we calculate explicitly u_t and u_x :

$$u_t = \frac{1}{2} \Big[f'(x+t) - f'(x-t) \Big] + \frac{1}{2} \Big[g'(x+t) + g'(x-t) \Big]$$

$$u_x = \frac{1}{2} \Big[f'(x+t) + f'(x-t) \Big] + \frac{1}{2} \Big[g'(x+t) - g'(x-t) \Big]$$

And since $\int_{-\infty}^{\infty} u_x^2 dx = \int_{-\infty}^{\infty} u_t^2 dx \iff 0 = \int_{-\infty}^{\infty} (u_x^2 - u_t^2) dx$, we'll take a look at $u_x^2 - u_t^2$:

$$u_x^2 - u_t^2 = (u_x - u_t)(u_x + u_t)$$

$$= (f'(x - t) - g'(x - t))(f'(x + t) + g'(x + t))$$

$$= f'(x - t)f'(x + t) - g'(x - t)f'(x + t) + f'(x - t)g'(x + t) - g'(x - t)g'(x + t)$$

$$= 0$$

Where the last equality is since (x+t)-(x-t)=2t, when $t>R\Rightarrow$ at least one of the following (x-t) or (x+t) will $\notin [-R,R]$, and since f,g are both identically zero outside the interval [-R,R], we thus have every expression in the above evaluating to zero since all terms are in the form of $h_1(x-t)h_2(x+t)$ where $h_1,h_2=f$ or g.

Exercise. 1.3:

Prove the comparison principle for the diffusion equation:

$$u_t - u_{xx} = 0; \quad x \in (0, l), t > 0$$

- (a) If u and v are two solutions and if $u \le v$, at t = 0 and for x = 0 and x = l, then $u \le v$ for all $t \ge 0$ and $0 \le x \le l$.
- (b) The purpose of this question is to prove a more general comparison principle. Assume that $u_t u_{xx} = f$, $v_t v_{xx} = g$, $f \le g$ and $u \le v$, at t = 0 and for x = 0 and x = l. Consider w = u v. For $\varepsilon > 0$, introduce the function:

$$W(x,t) = w(x,t) + \varepsilon x^2$$

Fix T > 0. Show that W has no interior maximum in the rectangle $[0, l] \times [0, T)$. Show that it cannot have a maximum a point (x, T), with 0 < x < l. Prove that $u \le v$ for all $t \ge 0$ and $0 \le x \le l$.

To solve the above exercise, we introduce and give a quick proof for the following Maximum Principle:

Lemma. 1.2: The Maximum Principle for the Heat Equation

If $u \in C^2(U_T) \cap C^1(\overline{U}_T)$ solves the linear heat equation, then:

$$\max_{(x,t)\in\overline{U}_T}(u) = \max_{(x,t)\in\Gamma_T}(u)$$

Where $U_T := U(0,T], U \subset \mathbb{R}^n, U$ open and bounded, and $\Gamma_T := \overline{U}_T \setminus U$.

Proof.

- (a) Let us define w:=u-v. Since $D^{\alpha}h=D^{\alpha}u-D^{\alpha}v\ \forall |\alpha|\leq 2$, it must be that h satisfies $h_t=h_{xx}$ since u and v do. Now, since $w\leq 0\ \forall (x,t)\in \{(x,t)\mid x=0\ \text{or}\ x=l\ \text{or}\ t=0\}$, by the Maximum Principle, $w\leq 0\ \forall (x,t)\in U_T=\{(x,t)\mid 0< x< l,0< t\leq T\}$. Now, since T was arbitrary, we may let $T\to\infty$, and hence $w\leq 0\ \forall t\geq 0$, and since $w:=u-v\Rightarrow u\leq v\ \forall (x,t)\in \overline{U}_T$.
- (b) Let us introduce w and W as advised, and for the sake of contradiction, assume $(x_0, t_0) = \operatorname{argmax}_{(x,t) \in \overline{U}_T}(W)$ and $(x_0, t_0) \in (0, l) \times (0, T)$. The most immediate observation we can see is that $W_t = w_t$ and $W_{xx} = w_{xx} + 2\epsilon$. Furthermore, since both u and v satisfy their respective heat equations, we must have $w_t w_{xx} = f g \leq 0$. And lastley, since $\operatorname{argmax}_{(x,t) \in \overline{U}_T}(W) = (x_0, t_0) \Rightarrow W_t(x_0, t_0) = 0$ and $W_{xx}(x_0, t_0) \leq 0$, and hence $W_t(x_0, t_0) W_{xx}(x_0, t_0) \geq 0$. We can now come across the following contradiction:

$$W_t - W_{xx} = w_t - w_{xx} - 2\epsilon = (f - g) - 2\epsilon \le -2\epsilon < 0$$

Which can not be so since we showed $W_t(x_0, t_0) - W_{xx}(x_0, t_0) \ge 0$. Thus, W cannot have a maximum in $(0, l) \times (0, T)$.

Let us now assume (again for contradiction) $(x_0, t_0) = \operatorname{argmax}(W)$ and $(x_0, t_0) \in (0, l) \times \{T\}$. For this case, $W_t(x_0, T)$ will be it's derivative as $t \to T^-$, and hence $W_t(x_0, T) \ge 0$, and like before

 $W_{xx}(x_0,T) \leq 0$. Therefore, at (x_0,T) , it must be that $W_t(x_0,T) - W_{xx}(x_0,T) \geq 0$. However since $W_t = w_t$ and $W_{xx} = w_{xx} = f - g \leq 0$, we again have:

$$W_t - W_{xx} = w_t - w_{xx} - 2\epsilon = (f - g) - 2\epsilon \le -2\epsilon < 0$$

Which again is a contradiction and hence W cannot have a maximum on $(0, l) \times \{T\}$.

To conclude that $w \leq \Rightarrow u \leq v \ \forall t \geq$, we make the following argument. Since T was arbitrary, like in (a), we choose larger and larger T, and hence the above arguments actually hold for $t \geq 0$. Furthermore, since we showed that W has no maximums in $(0,l) \times (0,T]$ (and since $\max(x) = l$), we can say that $W \leq \epsilon l^2$, and since $W := w + \epsilon x^2 \Rightarrow w \leq \epsilon (L^2 - x^2)$, and letting $\epsilon \to 0 \Rightarrow w \leq 0$, and hence $u \leq v \ \forall t \geq 0 \leq x \leq l$.

Question 4

Exercise. 1.4:

Consider the first order equation:

$$u_t + tu_x = 0$$

- (a) Find the characteristic curves in the (x,t) plane.
- (b) Write the general solution.
- (c) Solve equation (1) with initial condition $u(x,0) = \sin(x)$. Explain why the solution is fully determined by the initial condition.
- (a) If we consider a function, w(X(t), t), then by the chain rule:

$$\frac{dw}{dt} = \frac{\partial w}{\partial t} + \frac{dx}{dt}\frac{\partial w}{dx}$$

Which we quickly recognize to be in a form useful for this question. Thus, setting dw/dt = 0 and dX/dt = t, we can ascertain the necessary characteristic curves will be $X = \frac{1}{2}t^2 + x_0$.

(b) Naturally, du/dt = 0 along the characteristic curves dx/dt = t. Therefore, u will be constant along the equation $x = t^2/2 + x_0$, and hence our general solution will be that of the family of functions which take the form:

$$u(x,t) = u(x_0,0) = f(x_0) = f(x - t^2/2)$$

(c) From (3), we know that $u(x,t) = f(x - \frac{1}{2}t^2)$. Thus, if $u(x,0) = \sin(x) \Rightarrow$ the unique way to write u(x,t) is $\sin(x - \frac{1}{2}t^2)$ since this is the only equation which satisfies $u(x,0) = \sin(x)$.

Exercise. 1.5:

The purpose is to derive the formula for the inhomogeneous wave equation

$$u_{tt} - c^2 u_{xx} = f(x, t), \quad x \in \mathbb{R}$$
 (2)

with initial conditions:

$$u(x,0) = 0; \quad u_t(x,0) = 0$$
 (3)

(a) Let:

$$v = u_t + cu_x$$

Show that v satisfies the equation:

$$v_t - cv_x = f$$

- (b) Write the corresponding initial conditions for u(x,0) and v(x,0).
- (c) Solve equation $v = u_t + cu_x$ for u in terms of v.
- (d) Solve equation $v_t cv_x = f$ for v in terms of f.
- (e) Substitute part (d) into part (c) to find the solution u of (2)-(3). Play with the double integral to identify your answer to:

$$u(x,t) = \int \int_{\Delta} f(y,s) dy ds$$

where Δ is the characteristic triangle (make a picture).

(a) We compute:

$$v_t = u_{tt} + u_{xt}, \quad v_x = u_{tx} + cu_{xx}$$

Therefore:

$$v_t - cv_x = u_{tt} + cu_{xt} - c(u_{tx} + cu_{xx})$$
$$= (u_{tt} - c^2 u_{xx}) + cu_{ct} - cu_{tx}$$
$$= f$$
 sin

since
$$u_{tt} - c^2 u_{xx} = f$$

(b) Since v is a classical first order PDE, we only need one initial condition for v, namely:

$$v(x,0) = u_t(x,0) + cu_x(x,0) = 0 + c(0') = 0$$

and u has the same conditions as before.

- (c) Solving this equation as we did in Question 4 involves introducing the equations dx/dt = c, and du/dt = v. Thus, the characteristics satisfy $x = ct + x_0$, and $u = \int v dt$. Thus, $u = h_1(x ct) = \int v dt$ (I.e., the bounds of integration will be in terms of (x ct)).
- (d) Also solving this equation as we did in Question 4 involves introducing the equations dx/dt = c, and dv/dt = f. Thus, the characteristics satisfy $x = ct x_0$, and $v = \int f dt$. Thus, $v = h_2(x+ct) = \int f dt$ (I.e., the bounds of integration will be in terms of (x + ct)).

(e) Firstly, we note that our "charactersitic traingles" will be defined by the triangle construed the interor of the lines $x_0 = x - ct$, $x_0 = x + ct$ the x-axis, and hence the area of this triangle is $\frac{1}{2c}$. Now, substituting (d) in (c), (and imposing our boundary conditions to find that there are no extra terms) yields:

$$u(x,t) = \frac{1}{2c} \int_0^t \int_{x-ct}^{x+ct} f(x',t') dx' dt' = \int \int_{\Delta} f(y,s) dy ds$$

Question 6

Exercise. 1.6:

Consider the PDE with boundary conditions:

$$u_{tt} - c^2 u_{xx} + \omega^2 u = 0,$$
 $0 < x < L,$
 $(u_x - \alpha u_t)(0, t) = 0,$
 $(u_x + \beta u_t)(L, t) = 0,$

where $\alpha > 0, \beta > 0$ are constants. Prove that the energy E(t) defined as:

$$E(t) = \frac{1}{2} \int_0^L (u_t^2 + c^2 u_x^2 + \omega^2 u^2) dx$$

is a non-increasing function of t.

Proof. We first compute dE(t)/dt:

$$\frac{dE(t)}{dt} = \frac{1}{2} \frac{d}{dt} \int_0^L \left(u_t^2 + c^2 u_x^2 + \omega^2 u^2 \right) dx$$
$$= \frac{1}{2} \int_0^L \frac{\partial}{\partial t} \left(u_t^2 + c^2 u_x^2 + \omega^2 u^2 \right) dx$$
$$= \int_0^L \left(u_t u_{tt} + c^2 u_x u_{xt} + \omega^2 u u_t \right) dx$$

From here, let us integrate by parts the $c^2u_xu_{xt} = c^2u_xu_{tx}$ term:

$$\int_{0}^{L} c^{2} u_{x} u_{xt} = c^{2} \left(u_{x} u_{t} \Big|_{0}^{L} \right) - c^{2} \int_{0}^{L} u_{xx} u_{t} dx$$

Thus, plugging this back into our most recent equation yields:

$$\frac{dE(t)}{dt} = c^{2} \left(u_{x} u_{t} \Big|_{0}^{L} \right) + \int_{0}^{L} \left(u_{t} u_{tt} - c^{2} u_{t} u_{xx} + \omega^{2} u u_{t} \right) dx$$

$$= c^{2} \left(u_{x} u_{t} \Big|_{0}^{L} \right) + \int_{0}^{L} \left(u_{t} (u_{tt} - c^{2} u_{xx}) + \omega^{2} u u_{t} \right) dx$$

$$= c^{2} \left(u_{x} u_{t} \Big|_{0}^{L} \right) + \int_{0}^{L} \left(u_{t} (-\omega^{2} u) + \omega^{2} u u_{t} \right) dx \qquad \text{since } u_{tt} - c^{2} u_{xx} = -\omega^{2} u$$

$$= c^{2} \left(u_{x} u_{t} \Big|_{0}^{L} \right) + 0$$

$$= c^{2} \left(u_{x} (L, t) u_{t} (L, t) - u_{x} (0, t) u_{t} (0, t) \right)$$

And thus by recalling our boundary conditions of $(u_x - \alpha u_t)(0, t) = 0$ and $(u_x + \beta u_t)(L, t) = 0$:

$$\frac{dE(t)}{dt} = c^2 \left(-\beta \left(u_t(L, t) \right)^2 - \alpha \left(u_t(0, t) \right)^2 \right)$$

$$\Rightarrow \frac{dE(t)}{dt} \le 0 \quad \text{since } c^2, (u_t(L \text{ or } 0, t))^2 \ge 0, \text{ and } -\alpha, -\beta < 0$$

I.e., E(t) is a non-increasing function of t.

Question 7

Exercise. 1.7:

Let f(x) be any C^2 -function defined on \mathbb{R}^3 that vanishes outside a disk centered at the origin. Prove that

$$4\pi f(0) = \int_{\mathbb{R}^3} \frac{1}{|\mathbf{x}|} \Delta f(\mathbf{x}) d\mathbf{x}$$

Proof. From the question, we know that $f \equiv 0 \ \forall x \notin B(0,R)$ for some $R \in \mathbb{R}^+$. Hence, let us set up the domain $U_{\epsilon} := B(0,2R) \backslash B(0,\epsilon)$. We now invoke Green's Theorem (we can do so since both f and $1/|\mathbf{x}|$ are C^2 on $U_{\epsilon} \ \forall \epsilon > 0$) as follows:

$$\begin{split} \int_{U_{\epsilon}} \frac{1}{|\mathbf{x}|} \Delta f(\mathbf{x}) d\mathbf{x} &= \int_{U_{\epsilon}} \left(\frac{1}{|\mathbf{x}|} \Delta f(\mathbf{x}) - \Delta \left(\frac{1}{|\mathbf{x}|} \right) f(\mathbf{x}) \right) d\mathbf{x} & \text{since } \Delta (1/|\mathbf{x}|) = 0 \ \forall x \in U_{\epsilon} \\ &= \int_{\partial U_{\epsilon}} \left(\frac{1}{|\mathbf{x}|} \frac{\partial f(\mathbf{x})}{\partial n} - f(\mathbf{x}) \frac{\partial}{\partial n} \left(\frac{1}{|\mathbf{x}|} \right) \right) dS & \text{by the Divergence Theorem} \\ &= \int_{|\mathbf{x}| = \epsilon} \left(\frac{1}{|\mathbf{x}|} \frac{\partial f(\mathbf{x})}{\partial n} - f(\mathbf{x}) \frac{\partial}{\partial n} \left(\frac{1}{|\mathbf{x}|} \right) \right) dS & \text{since } f \text{ and } \partial_n f \equiv 0 \text{ for } |\mathbf{x}| \geq 2R \\ &= \int_{|\mathbf{x}| > \epsilon} \frac{1}{|\mathbf{x}|} \Delta f(\mathbf{x}) d\mathbf{x} \end{split}$$

From here, we naturally let $\epsilon \to 0$. Doing so gives us the following:

$$\int_{\mathbb{R}^{3}} \frac{1}{|\mathbf{x}|} \Delta f(\mathbf{x}) d\mathbf{x} = \lim_{\epsilon \to 0} \int_{|\mathbf{x}| = \epsilon} \left(-\frac{1}{|\mathbf{x}|} \frac{\partial f(\mathbf{x})}{\partial |\mathbf{x}|} - f(\mathbf{x}) \frac{\partial}{\partial |\mathbf{x}|} \left(\frac{1}{|\mathbf{x}|} \right) \right) dS \qquad \text{since } \partial_{n} = -\partial_{|\mathbf{x}|} \text{ on } |\mathbf{x}| = \epsilon$$

$$= -\lim_{\epsilon \to 0} \left(\frac{1}{\epsilon} \int_{|\mathbf{x}| = \epsilon} \frac{\partial f(\mathbf{x})}{\partial |\mathbf{x}|} dS - \frac{1}{\epsilon^{2}} \int_{|\mathbf{x}| = \epsilon} f(\mathbf{x}) dS \right)$$

$$= -\lim_{\epsilon \to 0} \left(\frac{4\pi \epsilon^{2}}{\epsilon} \operatorname{Avg}_{|\mathbf{x}| = \epsilon} \left(\frac{\partial f(\mathbf{x})}{\partial |\mathbf{x}|} \right) - \frac{4\pi \epsilon^{2}}{\epsilon^{2}} \operatorname{Avg}_{|\mathbf{x}| = \epsilon} (f(\mathbf{x})) \right)$$

$$= 4\pi f(0)$$

Exercise. 1.8:

(a) Write the Green's function of the Laplace operator with Dirichlet boundary condition in the half space

$$D = \{(x, y, z) \in \mathbb{R}^3, z > 0\}$$

Explain your construction.

- (b) Use the Green's function to write the solution of the Laplace equation $\Delta u = 0$ in D with the boundary condition u(x, y, 0) = h(x, y).
- (a) If we define $\tilde{\mathbf{x}} := (x_1, x_2, -x_3)$, then we claim that for this example, Green's function will be:

$$G(\mathbf{x}, \mathbf{x}_0) = \frac{-1}{\omega_3} \left(\frac{1}{|\mathbf{x} - \mathbf{x}_0|} - \frac{1}{|\mathbf{x} - \tilde{\mathbf{x}}_0|} \right)$$

We choose this construction since the fundamental solution of u is $u(\mathbf{x}, \mathbf{x}_0) = \frac{-1}{\omega_3 |\mathbf{x} - \mathbf{x}_0|}$, and $\lim_{|x| \to \infty} G(\mathbf{x}, \mathbf{x}_0) = G(\mathbf{x}, \mathbf{x}_0)|_{z=0} = 0$.

(b) From Theorem 12 in the textbook, the solution will take on the form:

$$u(x) = -\int_{\partial D} h(x, y) \frac{\partial G(x, y)}{\partial n} dS$$

And since $\partial_n G = -G_{x_3} = \frac{-2x_3}{|\mathbf{x} - \mathbf{x}_0|^3}$, we can see that:

$$u(x) = -\frac{2x_3}{\omega_3} \int_{\partial D} \frac{h(x,y)}{|\mathbf{x} - \mathbf{x}_0|^3} dS$$

Question 9

Exercise. 1.9:

The bilaplacian operator Δ^2 is defined by $\Delta^2 u = \Delta(\Delta u)$. Consider the equation:

$$\Delta^2 u = 0$$

in \mathbb{R}^2

(a) Prove that:

$$v(r) = \frac{1}{8\pi}r^2 \ln(r)$$

where $r = |\mathbf{x}|$ is the radial coordinate, satisfies $\Delta^2 v = 0$ for all $\mathbf{x} \neq 0$.

(Hint: Note that $\Delta v = (1 + \ln r)/(2\pi)$)

(b) Let D be a bounded, open, connected domain of \mathbb{R}^2 . Show that for all $u \in C^4(D) \cap C(\overline{D})$ satisfying $\Delta^2 u = 0$, and $\mathbf{x_0} \in D$, one has the representation formula:

$$u(\mathbf{x_0}) = -\int_{\partial D} \left(v \frac{\partial}{\partial n} \Delta u - \Delta u \frac{\partial v}{\partial n} + \Delta v \frac{\partial u}{\partial n} - u \frac{\partial}{\partial n} \Delta v \right) dS$$

(a) Since I didn't read the question correctly before typing up my solution (argh), we see if (a) holds for $n \ge 2$ dimensions, and see that it actually holds $\iff n = 2...$

Our plan will be to convert the Laplacian, which is a function of x_1, \ldots, x_n 's 2nd derivatives, simply into a function of r. If $\mathbf{x} = (x_1, \ldots, x_n)$, then in n-dimensional polar coordinates, we will need the variables: r and $\theta_1, \ldots, \theta_{n-1}$ to make the "conversion" into polar. This would be quite the daunting task; however, in this exercise, we can make the observation that since v is a function of only r, $\partial_{\theta_i} v = 0 \ \forall i \in \{1, \ldots, n-1\}$. Therefore, Δv will be very easy to calculate in finite dimensions. Explicitly, the n-dimensional Δ takes the form:

$$\Delta(u) = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} = \frac{1}{r^{n-1}} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial u}{\partial r} \right)$$

And hence:

$$\Delta(\Delta v) = \frac{\partial^2 u}{\partial x_i^2} = \frac{1}{r^{n-1}} \frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial (1 + \ln(r))/(2\pi)}{\partial r} \right)$$
$$= \frac{n-2}{2\pi r^2}$$
$$= 0 \iff n = 2$$

(b) *Proof.* To prove this identity, we make use of Green's Second Identity, which states for $\psi, \varphi \in C^2(\Omega)$:

$$\int_{\Omega} (\psi \Delta \varphi - \varphi \Delta \psi) d\mathbf{x} = \int_{\partial \Omega} \left(\psi \frac{\partial \varphi}{\partial n} - \varphi \frac{\partial \psi}{\partial n} \right) dS$$

Thus, let us apply Green's Second Idenity twice, both where $\Omega = \hat{D} \subset D$, where one has $(\varphi, \psi) = (\Delta u, v)$ and the other where $(\varphi, \psi) = (\Delta v, u)$:

$$(\varphi, \psi) = (\Delta u, v) \qquad \int_{\hat{D}} (\Delta u \Delta v - v \Delta(\Delta u)) d\mathbf{x} = \int_{\partial \hat{D}} \left(\Delta u \frac{\partial v}{\partial n} - v \frac{\partial \Delta u}{\partial n} \right) dS \tag{4}$$

$$(\varphi, \psi) = (\Delta v, u) \qquad \int_{\hat{D}} (\Delta v \Delta u - u \Delta (\Delta v)) d\mathbf{x} = \int_{\partial \hat{D}} \left(\Delta v \frac{\partial u}{\partial n} - u \frac{\partial \Delta v}{\partial n} \right) dS \tag{5}$$

Now, let us subtract (5) from (4), which implies (after cancelling the $\Delta u \Delta v$ terms) that:

$$\int_{\hat{D}} (v\Delta^2 u) d\mathbf{x} + \int_{\hat{D}} (u\Delta^2 v) d\mathbf{x} = -\int_{\partial \hat{D}} \left(\Delta u \frac{\partial v}{\partial n} - v \frac{\partial \Delta u}{\partial n} - \Delta v \frac{\partial u}{\partial n} + u \frac{\partial \Delta v}{\partial n} \right) dS$$

However, since $\Delta^2 u$ from the question, we actually have:

$$\int_{\hat{D}} (u\Delta^2 v) d\mathbf{x} = -\int_{\partial \hat{D}} \left(\Delta u \frac{\partial v}{\partial n} - v \frac{\partial \Delta u}{\partial n} - \Delta v \frac{\partial u}{\partial n} + u \frac{\partial \Delta v}{\partial n} \right) dS$$

We now note that as long as $\hat{D} \subset D$, the above is true. Also, our only assumption about v thus far has been $v \in C^2(D)$. Thus, let us choose $\hat{D} = D \setminus D_r(\mathbf{x_0})$, and make v depend on $\mathbf{x_0}$ and r in that $\Delta^2 v(\mathbf{x}) = 0 \ \forall \mathbf{x} \notin B_r(\mathbf{x_0})$, and $\Delta^2 v(\mathbf{x_0}) = 1$. From this construction, $\lim_{r\to 0} \hat{D} = D$, and $\lim_{r\to 0} \int_{\hat{D}} (u\Delta^2 v) d\mathbf{x} = u(\mathbf{x_0})$, and hence we have now shown:

$$u(\mathbf{x_0}) = -\int_{\partial D} \left(v \frac{\partial}{\partial n} \Delta u - \Delta u \frac{\partial v}{\partial n} + \Delta v \frac{\partial u}{\partial n} - u \frac{\partial}{\partial n} \Delta v \right) dS$$

Exercise. 1.10:

The Fourier Sine series of f(x) = x on the interval (0, l) is:

$$x = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l}\right)$$

- where $A_n = (-1)^{n+1} \left(\frac{2l}{n\pi}\right)$. (a) Write the Parseval's equality.
 - (b) Find the sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- (a) We assume that for this question, we are to write the most applicable version of Parseval's equality for computing part (b). Thus, if $f(x) = \sum_{n=1}^{\infty} A_n \sin\left(\frac{n\pi x}{l}\right)$ for some A_n , then:

$$\frac{2}{l} \int_0^l (f(x))^2 dx = \sum_{n=1}^{\infty} A_n^2$$

(b) If we let $l = \pi$, then:

$$A_n = (-1)^{n+1} \left(\frac{2l}{n\pi}\right) = (-1)^{n+1} \left(\frac{2}{n}\right)$$

And thus by Parseval's Equality:

$$\sum_{n=1}^{\infty} \left((-1)^{n+1} \left(\frac{2}{n} \right) \right)^2 = \frac{2}{\pi} \int_0^{\pi} (x)^2 dx$$

$$\iff \sum_{n=1}^{\infty} \left((1) \left(\frac{4}{n^2} \right) \right) = \frac{2}{\pi} \left(\left(\frac{x^3}{3} \right) \Big|_0^{\pi} \right)$$

$$\iff \sum_{n=1}^{\infty} \frac{1}{n^2} = \left(\frac{2}{4\pi} \right) \left(\frac{\pi^3}{3} \right)$$

$$\iff \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$