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1 Assignment 1
Question 1

Exercise. 1.1:

Consider the second order nonlinear PDE appearing in the theory of minimal surfaces

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy = 0 (1)

Assume that u is radially symmetric, i.e. u depends only on the radial coordinate r =
√
x2 + y2,

thus write u(x, y) = h(r).

(a) Show that the function h satisfies:

rh′′ + h′(1 + (h′)2) = 0

(b) Solve equation (1) and write its general solution.

(a) We first find (via the Chain Rule) that:

ux = (h′)(x/r)
uy = (h′)(y/r)
uxx = (h′′)(x2/r2) + (h′)(1/r − x2/r3)
uyy = (h′′)(y2/r2) + (h′)(1/r − y2/r3)
uxy = (h′′)(yx/r2)− (h′)(xy/r3)

And therefore, plugging the above into Eq. (1) and multiplying things out, we get:

Eq(1) = h′′r + 2h′/r − h′/r + 2h′h′h′′x2y2/r4 + rh′h′h′ − 2x2y2 − 2x2y2/r4h′h′h′′ + 2x2y2/r5h′h′h′

= h′′r + h′ + h′h′h′

= rh′′ + h′(1 + (h′)2)

(b) Let us set h′ = f , and hence our second order ODE becomes first order in the form of:

rf ′ + f(1 + f2) = 0
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For which has the solution:
f = ± iec1

√
e2c1 − r2

And thus integrating:

h(r) =
∫
f = c2 ± iec1 tan−1

(
r√

ec+1 − r2

)

Question 2

Exercise. 1.2:

Let u(x, t) in C2(R× [0,∞)) solve the wave equation:

utt − uxx = 0

with the initial condition:
u(x, 0) = f(x), ut(x, 0) = g(x)

with compact support. (This means that f and g are identically 0 outside an interval (−R,R).)
Let k(t) = 1

2
∫∞
−∞ u2

t (x, t)dx and p(t) = 1
2
∫∞
−∞ u2

x(x, t)dx be the kinetic and potential energy.

(a) Prove that the total energy E(t) = k(t) + p(t) is conserved.

(b) Prove that in the limit of t→∞, k(t) = p(t). This property is referred to as “Equipartition
of energy”.

(a) Proof. We recall that conservation of energy means that ∂tE(t) = 0. Therefore, we investigate the
E’s derivative w.r.t. t as follows:

dE

dt
= 1

2
d

dt

(∫ ∞
−∞

(
u2
t + u2

x

)
dx

)
= 1

2

∫ ∞
−∞

∂

∂t

(
u2
t + u2

xdx
)

because of ∗ (below)

= 1
2

∫ ∞
−∞

(2ututt + 2uxuxt) dx

=
∫ ∞
−∞

(ututt + uxuxt) dx

∗: d/dt
∫

=
∫
∂t because u is identically zero for |x| large, and is C2.

We now modify the
∫∞
−∞ uxuxtdx term by integrating by parts:∫ ∞

−∞
uxutxdx = utux

∣∣∣∣∞
−∞
−
∫ ∞
−∞

uxxutdx

= −
∫ ∞
−∞

uxxutdx since u ≡ 0 for |x| >> 0

= −
∫ ∞
−∞

uttutdx since utt = uxx
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And hence it is clear that:

dE

dt
=
∫ ∞
−∞

(ututt + uxuxt) dx

=
∫ ∞
−∞

(ututt − ututt) dx

= 0

(b) Proof. To solve this problem, we recall the following Lemma:

Lemma. 1.1: d’Alembert’s Formula

The one-dimensional Solution to the Wave Equation defined above is given by:

u(x, t) = 1
2 [f(x+ t) + f(x− t)] + 1

2

∫ x+t

x−t
g(ξ)dξ

From this, we calculate explicitly ut and ux:

ut = 1
2

[
f ′(x+ t)− f ′(x− t)

]
+ 1

2

[
g′(x+ t) + g′(x− t)

]
ux = 1

2

[
f ′(x+ t) + f ′(x− t)

]
+ 1

2

[
g′(x+ t)− g′(x− t)

]
And since

∫∞
−∞ u2

xdx =
∫∞
−∞ u2

tdx ⇐⇒ 0 =
∫∞
−∞(u2

x − u2
t )dx, we’ll take a look at u2

x − u2
t :

u2
x − u2

t = (ux − ut)(ux + ut)
= (f ′(x− t)− g′(x− t))(f ′(x+ t) + g′(x+ t))
= f ′(x− t)f ′(x+ t)− g′(x− t)f ′(x+ t) + f ′(x− t)g′(x+ t)− g′(x− t)g′(x+ t)
= 0

Where the last equality is since (x+ t)− (x− t) = 2t, when t > R ⇒ at least one of the following
(x− t) or (x+ t) will 6∈ [−R,R], and since f, g are both identically zero outside the interval [−R,R],
we thus have every every expression in the above evaluating to zero since all terms are in the form
of h1(x− t)h2(x+ t) where h1, h2 = f or g.
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Question 3

Exercise. 1.3:

Prove the comparison principle for the diffusion equation:

ut − uxx = 0; x ∈ (0, l), t > 0

(a) If u and v are two solutions and if u ≤ v, at t = 0 and for x = 0 and x = l, then u ≤ v for
all t ≥ 0 and 0 ≤ x ≤ l.

(b) The purpose of this question is to prove a more general comparison principle. Assume that
ut − uxx = f , vt − vxx = g , f ≤ g and u ≤ v, at t = 0 and for x = 0 and x = l. Consider
w = u− v. For ε > 0, introduce the function:

W (x, t) = w(x, t) + εx2

Fix T > 0. Show that W has no interior maximum in the rectangle [0, l]× [0, T ). Show that
it cannot have a maximum a point (x, T ), with 0 < x < l. Prove that u ≤ v for all t ≥ 0
and 0 ≤ x ≤ l.

To solve the above exercise, we introduce and give a quick proof for the following Maximum Principle:
Lemma. 1.2: The Maximum Principle for the Heat Equation

If u ∈ C2(UT ) ∩ C1 (UT ) solves the linear heat equation, then:

max
(x,t)∈UT

(u) = max
(x,t)∈ΓT

(u)

Where UT := U(0, T ], U ⊂ Rn, U open and bounded, and ΓT := UT \U .

Proof.

(a) Let us define w := u − v. Since Dαh = Dαu −Dαv ∀|α| ≤ 2, it must be that h satisfies ht = hxx
since u and v do. Now, since w ≤ 0 ∀(x, t) ∈ {(x, t) | x = 0 or x = l or t = 0}, by the Maximum
Principle, w ≤ 0 ∀(x, t) ∈ UT = {(x, t) |0 < x < l, 0 < t ≤ T}. Now, since T was arbitrary, we may
let T →∞, and hence w ≤ 0 ∀t ≥ 0, and since w := u− v ⇒ u ≤ v ∀(x, t) ∈ UT .

(b) Let us introduce w and W as advised, and for the sake of contradiction, assume (x0, t0) =
argmax(x,t)∈UT (W ) and (x0, t0) ∈ (0, l) × (0, T ). The most immediate observation we can see
is that Wt = wt and Wxx = wxx + 2ε. Furthermore, since both u and v satisfy their respective heat
equations, we must have wt − wxx = f − g ≤ 0. And lastley, since argmax(x,t)∈UT (W ) = (x0, t0)
⇒ Wt(x0, t0) = 0 and Wxx(x0, t0) ≤ 0, and hence Wt(x0, t0)−Wxx(x0, t0) ≥ 0. We can now come
across the following contradiction:

Wt −Wxx = wt − wxx − 2ε = (f − g)− 2ε ≤ −2ε < 0

Which can not be so since we showed Wt(x0, t0) − Wxx(x0, t0) ≥ 0. Thus, W cannot have a
maximum in (0, l)× (0, T ).

Let us now assume (again for contradiction) (x0, t0) = argmax(W ) and (x0, t0) ∈ (0, l)× {T}. For
this case, Wt(x0, T ) will be it’s derivative as t → T−, and hence Wt(x0, T ) ≥ 0, and like before
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Wxx(x0, T ) ≤ 0. Therefore, at (x0, T ), it must be that Wt(x0, T )−Wxx(x0, T ) ≥ 0. However since
Wt = wt and Wxx = wxx = f − g ≤ 0, we again have:

Wt −Wxx = wt − wxx − 2ε = (f − g)− 2ε ≤ −2ε < 0

Which again is a contradiction and hence W cannot have a maximum on (0, l)× {T}.

To conclude that w ≤⇒ u ≤ v ∀t ≥, we make the following argument. Since T was arbitrary,
like in (a), we choose larger and larger T , and hence the above arguments actually hold for t ≥ 0.
Furthermore, since we showed that W has no maximums in (0, l) × (0, T ] (and since max(x) = l),
we can say that W ≤ εl2, and since W := w + εx2 ⇒ w ≤ ε(L2 − x2), and letting ε→ 0 ⇒ w ≤ 0,
and hence u ≤ v ∀t ≥, 0 ≤ x ≤ l.

Question 4

Exercise. 1.4:

Consider the first order equation:
ut + tux = 0

(a) Find the characteristic curves in the (x, t) plane.

(b) Write the general solution.

(c) Solve equation (1) with initial condition u(x, 0) = sin(x). Explain why the solution is fully
determined by the initial condition.

(a) If we consider a function, w(X(t), t), then by the chain rule:

dw

dt
= ∂w

∂t
+ dx

dt

∂w

dx

Which we quickly recognize to be in a form useful for this question. Thus, setting dw/dt = 0 and
dX/dt = t, we can ascertain the necessary characteristic curves will be X = 1

2 t
2 + x0.

(b) Naturally, du/dt = 0 along the characteristic curves dx/dt = t. Therefore, u will be constant along
the equation x = t2/2 + x0, and hence our general solution will be that of the family of functions
which take the form:

u(x, t) = u(x0, 0) = f(x0) = f(x− t2/2)

(c) From (3), we know that u(x, t) = f(x− 1
2 t

2). Thus, if u(x, 0) = sin(x) ⇒ the unique way to write
u(x, t) is sin(x− 1

2 t
2) since this is the only equation which satisfies u(x, 0) = sin(x).

5



Question 5

Exercise. 1.5:

The purpose is to derive the formula for the inhomogeneous wave equation

utt − c2uxx = f(x, t), x ∈ R (2)

with initial conditions:
u(x, 0) = 0; ut(x, 0) = 0 (3)

(a) Let:
v = ut + cux

Show that v satisfies the equation:
vt − cvx = f

(b) Write the corresponding initial conditions for u(x, 0) and v(x, 0).

(c) Solve equation v = ut + cux for u in terms of v.

(d) Solve equation vt − cvx = f for v in terms of f .

(e) Substitute part (d) into part (c) to find the solution u of (2)-(3). Play with the double
integral to identify your answer to:

u(x, t) =
∫ ∫

∆
f(y, s)dyds

where ∆ is the characteristic triangle (make a picture).

(a) We compute:
vt = utt + uxt, vx = utx + cuxx

Therefore:

vt − cvx = utt + cuxt − c(utx + cuxx)
= (utt − c2uxx) + cuct − cutx
= f since utt − c2uxx = f

(b) Since v is a classical first order PDE, we only need one initial condition for v, namely:

v(x, 0) = ut(x, 0) + cux(x, 0) = 0 + c(0′) = 0

and u has the same conditions as before.

(c) Solving this equation as we did in Question 4 involves introducing the equations dx/dt = c, and
du/dt = v. Thus, the characteristics satisfy x = ct+x0, and u =

∫
vdt. Thus, u = h1(x−ct) =

∫
vdt

(I.e., the bounds of integration will be in terms of (x− ct)).

(d) Also solving this equation as we did in Question 4 involves introducing the equations dx/dt = c, and
dv/dt = f . Thus, the characteristics satisfy x = ct−x0, and v =

∫
fdt. Thus, v = h2(x+ct) =

∫
fdt

(I.e., the bounds of integration will be in terms of (x+ ct)).
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(e) Firstly, we note that our “charactersitic traingles” will be defined by the triangle construed the
interor of the lines x0 = x − ct, x0 = x + ct the x-axis, and hence the area of this triangle is 1

2c .
Now, substituting (d) in (c), (and imposing our boundary conditions to find that there are no extra
terms) yields:

u(x, t) = 1
2c

∫ t

0

∫ x+ct

x−ct
f(x′, t′)dx′dt′ =

∫ ∫
∆
f(y, s)dyds

Question 6

Exercise. 1.6:

Consider the PDE with boundary conditions:

utt − c2uxx + ω2u = 0, 0 < x < L,

(ux − αut)(0, t) = 0,
(ux + βut)(L, t) = 0,

where α > 0, β > 0 are constants. Prove that the energy E(t) defined as:

E(t) = 1
2

∫ L

0
(u2
t + c2u2

x + ω2u2)dx

is a non-increasing function of t.

Proof. We first compute dE(t)/dt:

dE(t)
dt

= 1
2
d

dt

∫ L

0

(
u2
t + c2u2

x + ω2u2) dx
= 1

2

∫ L

0

∂

∂t

(
u2
t + c2u2

x + ω2u2) dx
=
∫ L

0

(
ututt + c2uxuxt + ω2uut

)
dx

From here, let us integrate by parts the c2uxuxt = c2uxutx term:∫ L

0
c2uxuxt = c2

(
uxut

∣∣L
0

)
− c2

∫ L

0
uxxutdx

Thus, plugging this back into our most recent equation yields:

dE(t)
dt

= c2
(
uxut

∣∣L
0

)
+
∫ L

0

(
ututt − c2utuxx + ω2uut

)
dx

= c2
(
uxut

∣∣L
0

)
+
∫ L

0

(
ut(utt − c2uxx) + ω2uut

)
dx

= c2
(
uxut

∣∣L
0

)
+
∫ L

0

(
ut(−ω2u) + ω2uut

)
dx since utt − c2uxx = −ω2u

= c2
(
uxut

∣∣L
0

)
+ 0

= c2 (ux(L, t)ut(L, t)− ux(0, t)ut(0, t))
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And thus by recalling our boundary conditions of (ux − αut)(0, t) = 0 and (ux + βut)(L, t) = 0:

dE(t)
dt

= c2
(
− β

(
ut(L, t)

)2 − α(ut(0, t))2)
⇒dE(t)

dt
≤ 0 since c2, (ut(L or 0, t))2 ≥ 0, and − α,−β < 0

I.e., E(t) is a non-increasing function of t.

Question 7

Exercise. 1.7:

Let f(x) be any C2-function defined on R3 that vanishes outside a disk centered at the origin.
Prove that

4πf(0) =
∫
R3

1
|x|∆f(x)dx

Proof. From the question, we know that f ≡ 0 ∀x 6∈ B(0, R) for some R ∈ R+. Hence, let us set up the
domain Uε := B(0, 2R)\B(0, ε). We now invoke Green’s Theorem (we can do so since both f and 1/|x|
are C2 on Uε ∀ε > 0) as follows:∫

Uε

1
|x|∆f(x)dx =

∫
Uε

(
1
|x|∆f(x)−∆

(
1
|x|

)
f(x)

)
dx since ∆(1/|x|) = 0 ∀x ∈ Uε

=
∫
∂Uε

(
1
|x|

∂f(x)
∂n

− f(x) ∂
∂n

(
1
|x|

))
dS by the Divergence Theorem

=
∫
|x|=ε

(
1
|x|

∂f(x)
∂n

− f(x) ∂
∂n

(
1
|x|

))
dS since f and ∂nf ≡ 0 for |x| ≥ 2R

=
∫
|x|≥ε

1
|x|∆f(x)dx

From here, we naturally let ε→ 0. Doing so gives us the following:∫
R3

1
|x|∆f(x)dx = lim

ε→0

∫
|x|=ε

(
− 1
|x|

∂f(x)
∂|x| − f(x) ∂

∂|x|

(
1
|x|

))
dS since ∂n = −∂|x| on |x| = ε

= − lim
ε→0

(
1
ε

∫
|x|=ε

∂f(x)
∂|x| dS −

1
ε2

∫
|x|=ε

f(x)dS
)

= − lim
ε→0

(
4πε2

ε
Avg|x|=ε

(
∂f(x)
∂|x|

)
− 4πε2

ε2
Avg|x|=ε (f(x))

)
= 4πf(0)
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Question 8

Exercise. 1.8:

(a) Write the Green’s function of the Laplace operator with Dirichlet boundary condition in the
half space

D = {(x, y, z) ∈ R3, z > 0}

Explain your construction.

(b) Use the Green’s function to write the solution of the Laplace equation ∆u = 0 in D with
the boundary condition u(x, y, 0) = h(x, y).

(a) If we define x̃ := (x1, x2,−x3), then we claim that for this example, Green’s function will be:

G(x,x0) = −1
ω3

(
1

|x− x0|
− 1
|x− x̃0|

)
We choose this construction since the fundamental solution of u is u(x,x0) = −1

ω3|x−x0| , and
lim|x|→∞G(x,x0) = G(x,x0)|z=0 = 0.

(b) From Theorem 12 in the textbook, the solution will take on the form:

u(x) = −
∫
∂D

h(x, y)∂G(x, y)
∂n

dS

And since ∂nG = −Gx3 = −2x3
|x−x0|3 , we can see that:

u(x) = −2x3

ω3

∫
∂D

h(x, y)
|x− x0|3

dS

Question 9

Exercise. 1.9:

The bilaplacian operator ∆2 is defined by ∆2u = ∆(∆u). Consider the equation:

∆2u = 0

in R2

(a) Prove that:
v(r) = 1

8π r
2 ln(r)

where r = |x| is the radial coordinate, satisfies ∆2v = 0 for all x 6= 0.

(Hint: Note that ∆v = (1 + ln r)/(2π))

(b) Let D be a bounded, open, connected domain of R2. Show that for all u ∈ C4(D) ∩ C(D)
satisfying ∆2u = 0, and x0 ∈ D, one has the representation formula:

u(x0) = −
∫
∂D

(
v
∂

∂n
∆u−∆u∂v

∂n
+ ∆v ∂u

∂n
− u ∂

∂n
∆v
)
dS
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(a) Since I didn’t read the question correctly before typing up my solution (argh), we see if (a) holds
for n ≥ 2 dimensions, and see that it actually holds ⇐⇒ n = 2...

Our plan will be to convert the Laplacian, which is a function of x1, . . . , xn’s 2nd derivatives, simply
into a function of r. If x = (x1, . . . , xn), then in n-dimensional polar coordinates, we will need the
variables: r and θ1, . . . , θn−1 to make the “conversion” into polar. This would be quite the daunting
task; however, in this exercise, we can make the observation that since v is a function of only r,
∂θiv = 0 ∀i ∈ {1, . . . , n − 1}. Therefore, ∆v will be very easy to calculate in finite dimensions.
Explicitly, the n-dimensional ∆ takes the form:

∆(u) =
n∑
i=1

∂2u

∂x2
i

= 1
rn−1

∂

∂r

(
rn−1 ∂u

∂r

)
And hence:

∆(∆v) = ∂2u

∂x2
i

= 1
rn−1

∂

∂r

(
rn−1 ∂(1 + ln(r))/(2π)

∂r

)
= n− 2

2πr2

= 0 ⇐⇒ n = 2

(b) Proof. To prove this identitiy, we make use of Green’s Second Identity, which states for ψ,ϕ ∈
C2(Ω): ∫

Ω
(ψ∆ϕ− ϕ∆ψ)dx =

∫
∂Ω

(
ψ
∂ϕ

∂n
− ϕ∂ψ

∂n

)
dS

Thus, let us apply Green’s Second Idenity twice, both where Ω = D̂ ⊂ D, where one has (ϕ,ψ) =
(∆u, v) and the other where (ϕ,ψ) = (∆v, u):

(ϕ,ψ) = (∆u, v)
∫
D̂

(∆u∆v − v∆(∆u))dx =
∫
∂D̂

(
∆u∂v

∂n
− v ∂∆u

∂n

)
dS (4)

(ϕ,ψ) = (∆v, u)
∫
D̂

(∆v∆u− u∆(∆v))dx =
∫
∂D̂

(
∆v ∂u

∂n
− u∂∆v

∂n

)
dS (5)

Now, let us subtract (5) from (4), which implies (after cancelling the ∆u∆v terms) that:∫
D̂

(v∆2u)dx +
∫
D̂

(u∆2v)dx = −
∫
∂D̂

(
∆u∂v

∂n
− v ∂∆u

∂n
−∆v ∂u

∂n
+ u

∂∆v
∂n

)
dS

However, since ∆2u from the question, we actually have:∫
D̂

(u∆2v)dx = −
∫
∂D̂

(
∆u∂v

∂n
− v ∂∆u

∂n
−∆v ∂u

∂n
+ u

∂∆v
∂n

)
dS

We now note that as long as D̂ ⊂ D, the above is true. Also, our only assumption about v thus
far has been v ∈ C2(D). Thus, let us choose D̂ = D\Dr(x0), and make v depend on x0 and r
in that ∆2v(x) = 0 ∀x 6∈ Br(x0), and ∆2v(x0) = 1. From this construction, limr→0 D̂ = D, and
limr→0

∫
D̂

(u∆2v)dx = u(x0), and hence we have now shown:

u(x0) = −
∫
∂D

(
v
∂

∂n
∆u−∆u∂v

∂n
+ ∆v ∂u

∂n
− u ∂

∂n
∆v
)
dS
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Question 10

Exercise. 1.10:

The Fourier Sine series of f(x) = x on the interval (0, l) is:

x =
∞∑
n=1

An sin
(nπx

l

)
where An = (−1)n+1 ( 2l

nπ

)
.

(a) Write the Parseval’s equality.

(b) Find the sum
∑∞
n=1

1
n2 .

(a) We assume that for this question, we are to write the most applicable version of Parseval’s equality
for computing part (b). Thus, if f(x) =

∑∞
n=1An sin

(
nπx
l

)
for some An, then:

2
l

∫ l

0
(f(x))2dx =

∞∑
n=1

A2
n

(b) If we let l = π, then:

An = (−1)n+1
(

2l
nπ

)
= (−1)n+1

(
2
n

)
And thus by Parseval’s Equality:

∞∑
n=1

(
(−1)n+1

(
2
n

))2
= 2
π

∫ π

0
(x)2dx

⇐⇒
∞∑
n=1

(
(1)
(

4
n2

))
= 2
π

((
x3

3

) ∣∣∣∣π
0

)

⇐⇒
∞∑
n=1

1
n2 =

(
2

4π

)(
π3

3

)

⇐⇒
∞∑
n=1

1
n2 = π2

6
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