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1 Assignment 1

Question 1

Consider the second order nonlinear PDE appearing in the theory of minimal surfaces

1+ ui)um — Uty gy + (14 u)uy, =0 (1)

Assume that u is radially symmetric, i.e. u depends only on the radial coordinate r = \/x? + 2,
thus write u(z,y) = h(r).

(a) Show that the function h satisfies:
rh’ + W (1+(R)*) =0

(b) Solve equation (1) and write its general solution.

(a) We first find (via the Chain Rule) that:

l

= (W)(z/r)
= (W) (y/7)

Uge = (W")(2?/r?) + (W) (1/r — 2?/1?)
= (W) (?/r*) + ()1 /r = y? /1)
(W) (ya/r?) — (W) (wy/r?)

And therefore, plugging the above into Eq. (1) and multiplying things out, we get:

Eq(1) = h"r + 20 Jr — B Jr + 20" W D' 2?y? Jr* + B DB — 222y — 222y? /r* W 'R 4 222y? /roh BB
= B'r + B+ W
=rh" + K1+ (h)?)

(b) Let us set b’ = f, and hence our second order ODE becomes first order in the form of:

rf + f(1+f%) =0



For which has the solution:
1ect
f==

€2C1 —_ 7:2
And thus integrating:

_ _ - C1 -1 r
_/f—cQ:I:ze tan (m>

Question 2

Let u(x,t) in C?(R x [0,0)) solve the wave equation:

Ugt — Ugg = 0
with the initial condition:
u(z,0) = f(z), w(z,0)=g(z)
with compact support. (This means that f and g are identically 0 outside an interval (—R, R).)
Let k(t) = 1 [%_u}(x,t)dz and p(t) = 1 [*_u?(z,t)dz be the kinetic and potential energy.
(a) Prove that the total energy F(t) = k(t) + p(t) is conserved.

(b) Prove that in the limit of ¢ — oo, k() = p(t). This property is referred to as “Equipartition
of energy”.

(a) Proof. We recall that conservation of energy means that 9;E(t) = 0. Therefore, we investigate the
E’s derivative w.r.t. t as follows:

dE  1d >

_ 1 / gt (uf +uldz) because of * (below)

1

= 5 / (QUtUtt + QU;Eth) dx

oo
= / (ugugy + Uzt do

x: d/dt [ = [ 0; because u is identically zero for |z| large, and is C2.

We now modify the ffooo uzugrdr term by integrating by parts:

o] oo [e%e]
/ Ug Ut AT = Uplly - / Ugg U dX
— 0 —0 —00

o0
= —/ Uy U AT since u = 0 for |z| >> 0
—00
o0
= —/ Usptpdx since Uy = Ugy
— 00



And hence it is clear that:

(uguss + gty dx

/ ututt — ututt) de
0

dE
dt

88

(b) Proof. To solve this problem, we recall the following Lemma:

Lemma. 1.1: d’Alembert’s Formula

The one-dimensional Solution to the Wave Equation defined above is given by:

T+t

fa+t+fe=0l+; [ o

—t

u(z,t) =

N | =

From this, we calculate explicitly u; and u,:

w=g[fr o)~ fa—n]+ 5ot 0+ @]
Uy = % @+t + -]+ % 9/ @+8) =g 1)

And since [%_uidr = [T uidr < 0= [~ (u? — u})dz, we'll take a look at u? — u:
up —ui = (ug — up) (g + ue)
=(flz=t)=g'@=t)(f'(z+t)+ g (z+1))
=fla-f@+t)—g@-)f @+t)+ fla-t)g(@+1) —g'(x - t)g'(z + 1)
=0

Where the last equality is since (z +t) — (x — t) = 2¢, when ¢t > R = at least one of the following
(x—t) or (x+1t) will ¢ [-R, R], and since f, g are both identically zero outside the interval [—R, R],
we thus have every every expression in the above evaluating to zero since all terms are in the form
of hi(x — t)ha(x + t) where hy, he = f or g. O



Question 3

\

Prove the comparison principle for the diffusion equation:
U —Uge =0; x € (0,1),t >0

(a) If u and v are two solutions and if u < v, at t = 0 and for x = 0 and = = [, then u < v for
allt>0and 0 <z <.

(b) The purpose of this question is to prove a more general comparison principle. Assume that
U —Uge = f , 04—V =g, f <gand u <wv, at t =0 and for x = 0 and x = [. Consider
w =u —v. For € > 0, introduce the function:

W(z,t) = w(z,t) + ex?

Fix T > 0. Show that W has no interior maximum in the rectangle [0,1] x [0,7"). Show that
it cannot have a maximum a point (z,7T), with 0 < x < [. Prove that v < v for all t > 0
and 0 <z <.

To solve the above exercise, we introduce and give a quick proof for the following Maximum Principle:

Lemma. 1.2: The Maximum Principle for the Heat Equation

If u € C*(Ur) NC* (Ur) solves the linear heat equation, then:

max u) = max (u
(m,t)GﬁT( ) (mat)EFT( )

Where Uy := U(0,T], U C R", U open and bounded, and I'7- := U7\U.

Proof. O

(a) Let us define w := u — v. Since D*h = D% — D% V|| < 2, it must be that h satisfies hy = hy,
since w and v do. Now, since w < 0 ¥(z,t) € {(z,f) | t = 0or z = [ or t = 0}, by the Maximum
Principle, w < 0 V(z,t) € Ur = {(z,t) |0 < z < 1,0 < ¢t <T}. Now, since T was arbitrary, we may
let T — oo, and hence w < 0 V¢ > 0, and since w :=u —v = u < v V(z,t) cUrp.

(b) Let us introduce w and W as advised, and for the sake of contradiction, assume (zg,tg) =
argmax, 77, (W) and (zo,t0) € (0,1) x (0,T). The most immediate observation we can see
is that Wy = w; and W, = wy, + 2¢. Furthermore, since both u and v satisfy their respective heat
equations, we must have w; — w;, = f — ¢ < 0. And lastley, since argmax . .\ g, (W) = (xo,to)
= Wi(xo,to) = 0 and W, (zg,t9) < 0, and hence Wi(xo,tg) — Waw(zo,t0) > 0. We can now come
across the following contradiction:

Wi —Wew = w0 — Wee —2e = (f —g) — 26 < =26 <0

Which can not be so since we showed Wy(xo,t0) — Waa(zo,t0) > 0. Thus, W cannot have a
maximum in (0,1) x (0,T).

Let us now assume (again for contradiction) (zg,ty) = argmax(W) and (xq,to) € (0,1) x {T'}. For
this case, Wi(zo,T') will be it’s derivative as ¢ — T'~, and hence Wy(z¢,T) > 0, and like before



Wiz (20, T) < 0. Therefore, at (zg,T'), it must be that Wi(zo,T) — Wyz(2o,T) > 0. However since
Wi = wy and Wy = wae = f — g <0, we again have:

Wi —Wee =wp — Wee —26=(f —g) —2¢ < =2 <0
Which again is a contradiction and hence W cannot have a maximum on (0,1) x {T'}.

To conclude that w <= u < v Vt >, we make the following argument. Since T was arbitrary,
like in (a), we choose larger and larger T, and hence the above arguments actually hold for ¢ > 0.
Furthermore, since we showed that W has no maximums in (0,7) x (0,7] (and since max(z) = I),
we can say that W < el?, and since W := w + ex? = w < ¢(L? — 2?), and letting ¢ — 0 = w < 0,
and hence u <oVt >,0<z <.

Question 4

Consider the first order equation:

U +tuz =0
(a) Find the characteristic curves in the (z,t) plane.
(b) Write the general solution.

(c) Solve equation (1) with initial condition u(x,0) = sin(z). Explain why the solution is fully
determined by the initial condition.

(a) If we consider a function, w(X(t),t), then by the chain rule:
dw OJw drow

A ot didw
Which we quickly recognize to be in a form useful for this question. Thus, setting dw/dt = 0 and
dX/dt = t, we can ascertain the necessary characteristic curves will be X = %tz + xg.

(b) Naturally, du/dt = 0 along the characteristic curves dz/dt = t. Therefore, u will be constant along
the equation x = t2/2 + x¢, and hence our general solution will be that of the family of functions
which take the form:

u(z,t) = u(xo,0) = f(wo) = f(z — t/2)

(c) From (3), we know that u(xz,t) = f(z — $t*). Thus, if u(z,0) = sin(z) = the unique way to write
u(x,t) is sin(z — $t%) since this is the only equation which satisfies u(z, 0) = sin(x).



Question 5

The purpose is to derive the formula for the inhomogeneous wave equation

Upy — gy = f(z,t), zER (2)

with initial conditions:

u(z,0) =0; wu(x,0) =0 (3)

(a) Let:
V= Ut + ClUy

Show that v satisfies the equation:
v — vy = f

Write the corresponding initial conditions for u(x,0) and v(z,0).
Solve equation v = u; + cu, for u in terms of v.
Solve equation vy — cv, = f for v in terms of f.

Substitute part (d) into part (c) to find the solution w of (2)-(3). Play with the double
integral to identify your answer to:

u(w.t) = | /A £y, 5)dyds

where A is the characteristic triangle (make a picture).

(a) We compute:
VUt = Ut + Ugt, Vg = Uty + Clgg

Therefore:
Vg — CUp = Ut + CUgt — (Uty + ClUgy)
2
= (Ut — CUgg) + ClUcy — Cliygy

=f since uy — gy = f

(b) Since v is a classical first order PDE, we only need one initial condition for v, namely:
v(x,0) = ug(x,0) + cuy(2,0) =0+ ¢(0") =0
and u has the same conditions as before.

(¢) Solving this equation as we did in Question 4 involves introducing the equations dz/dt = ¢, and
du/dt = v. Thus, the characteristics satisfy = ct+xo, and u = [wvdt. Thus, u = hy(z—ct) = [vdt
(I.e., the bounds of integration will be in terms of (z — ct)).

d) Also solving this equation as we did in Question 4 involves introducing the equations dx/dt = ¢, and
g g
dv/dt = f. Thus, the characteristics satisfy x = ct—xg, and v = [ fdt. Thus, v = ho(z+ct) = [ fdt
(I.e., the bounds of integration will be in terms of (z + ct)).



(e) Firstly, we note that our “charactersitic traingles” will be defined by the triangle construed the

interor of the lines xg = = — ct, ©g = = + ct the z-axis, and hence the area of this triangle is i

Now, substituting (d) in (c), (and imposing our boundary conditions to find that there are no extra

terms) yields:
1 t x+ct
u(x,t) = —/ / f(ac',t')dx'dt’:// fy, s)dyds
2¢c 0 Jx—ct A

Question 6

Consider the PDE with boundary conditions:

utt—02um—|—w2u:0, O<ax< L,
(uy — auy)(0,t) =0,
(uz + Bug)(L, t) =0,

where @ > 0, 8 > 0 are constants. Prove that the energy E(t) defined as:

1 /L
E(t) = 5/ (u + Pu2 + wu?)dz
0
is a non-increasing function of t.
Proof. We first compute dE(t)/dt:
dE(t 1d
o §d—/ ut+cu +wu2)dx
1 2
:5 ut—i-cu +wu)d:z:
L

I
o\

(ututt + Pugptg + wQuut) dzx
From here, let us integrate by parts the c2uyta; = Uz, term:

L . L
/ gty = 2 (uxut|0) — 02/ Uy Updx
0 0

Thus, plugging this back into our most recent equation yields:

dE(t)
dt

L
u$ut|0) + / (U/t(_w2u) + qu'l//t) dx since Ut — Czua:a: = —wQu
0

(

=c <uzut 0) I /OL (ut(utt - CQUM) + w2uut) dx
(
(

= 62 (ux (L, t)ut (L, t) — Uy (07 t)uf (07 t))



And thus by recalling our boundary conditions of (u; — auy)(0,t) = 0 and (u, + Sus)(L,t) = 0:

dE(t) 2 2
@t C2<*5(Ut(Lat)) *a(ut(oat)) )
dE(t
é% <0 since ¢, (ug(L or 0,£))?> >0, and —a, -3 <0
Le., E(t) is a non-increasing function of ¢. O

Question 7

Let f(x) be any C%-function defined on R? that vanishes outside a disk centered at the origin.
Prove that

47‘1’]”(0)2/]R iAf(x)dx

s |x|

Proof. From the question, we know that f =0 Vx ¢ B(0, R) for some R € RT. Hence, let us set up the
domain U, := B(0,2R)\B(0,¢). We now invoke Green’s Theorem (we can do so since both f and 1/|x]
are C2 on U, Ve > 0) as follows:

/ iAf(x)dx = / <1Af(x) —A (1) f(x)) dx since A(1/]x]) =0 Vx € U,
v, 1| v, \[x] x|
:/ iaf(x) — f(x)E 1 ds by the Divergence Theorem
au. \|x| On on \ x|
:/ (laf(x) - f(x)é (1>) dS  since f and 9, f =0 for |x| > 2R
Ix|= \|X| On on \ x|
1
= —Af(x)dx
/|J;Ze |X| ( )
From here, we naturally let ¢ — 0. Doing so gives us the following;:
1 . 1 0f(x) 0 ( 1 >) i
—Af(x)dx = lim ( —fxX)=—|(—])dS since 0, = —0jx| on |x| =€
fomtson=tm [ (-5~ 5 (s = on b

I SO BT (CS IS .
o l*}() (6/,(_E 8|X| 45 €2 |x|=e¢ f( )dS>

2 < 2
= —lim (47‘:Avg|x|_€ (ag|§<|)) — ZLEL;AVgM:e (f(X)))




Question 8

(a) Write the Green’s function of the Laplace operator with Dirichlet boundary condition in the
half space

D = {(z,y,2) € R®,z > 0}
Explain your construction.

(b) Use the Green’s function to write the solution of the Laplace equation Au = 0 in D with
the boundary condition u(z,y,0) = h(x,y).

(a) If we define X := (1,22, —23), then we claim that for this example, Green’s function will be:

G(x,xo):_1< 1 1 )

ws \|x —xo| [|x— %o

We choose this construction since the fundamental solution of u is u(x,x) = and

-1
Sal—x0]’
lim ;|00 G(x,%0) = G(X,%0)|2=0 = 0.

(b) From Theorem 12 in the textbook, the solution will take on the form:
0G
u(z) = —/ h(a@y)ﬂds
oD on

And since 0,,G = -G, = ‘};27;03‘37 we can see that:

72-%3 h(iE,y)

— ——zdS
ws Jop X — ol

u(x) =

Question 9

Exercise. 1.9:

The bilaplacian operator A? is defined by A?u = A(Au). Consider the equation:

Ay =0
in R?2
(a) Prove that:
1

v(r) = grz In(r)

where r = |x] is the radial coordinate, satisfies A%v = 0 for all x # 0.
(Hint: Note that Av = (14 1nr)/(27))

(b) Let D be a bounded, open, connected domain of R?. Show that for all u € C*(D) N C(D)
satisfying A%u = 0, and xg € D, one has the representation formula:

1o} ov ou 0
u(xg) = 7/31) (vanAu — Au% + Av% — uanAv> ds




(a)

Since I didn’t read the question correctly before typing up my solution (argh), we see if (a) holds
for n > 2 dimensions, and see that it actually holds <= n = 2...

Our plan will be to convert the Laplacian, which is a function of x1, ..., x,’s 2nd derivatives, simply
into a function of r. If x = (x1,..., %), then in n-dimensional polar coordinates, we will need the
variables: r and 61, ...,6,_1 to make the “conversion” into polar. This would be quite the daunting
task; however, in this exercise, we can make the observation that since v is a function of only r,
Op,v = 0 Vi € {1,...,n — 1}. Therefore, Av will be very easy to calculate in finite dimensions.
Explicitly, the n-dimensional A takes the form:

n 2
Aw=Y"24_ 1 8<rn—1‘9“>

N — 87333 rn=1 or or
And hence:
C*u 19 [, _10(1+41n(r))/(2n)
BB =G0 = 1o < o )
_n—2
22

=0 <= n=2

Proof. To prove this identitiy, we make use of Green’s Second Identity, which states for ¥, ¢ €

C?(): 5 o
_ o oY
/Q(w&p — pAY)dx = /aQ ( n ‘Pan> ds

Thus, let us apply Green’s Second Idenity twice, both where @ = D C D, where one has (p, ) =
(Au,v) and the other where (p, %) = (Av,u):

(0,0) = (Au, v) /D (AuAw — vA(AW))dx = /8 ) (Augz _ U%An“> ds @)
(0,4) = (Av, u) /D (AvAu — uA(Av))dx = /a ) (Avg“ _ u6§”> is (5)

Now, let us subtract (5) from (4), which implies (after cancelling the AuAv terms) that:

Ov 0Au ou 0Av
2 2 _ ov _odu , ou
/[)(UA u)dx + /ﬁ(uA v)dx = /8[) (Auan v Avan +u o > ds

However, since A2y from the question, we actually have:

Ov 0Au ou 0Aw
2 _ _ — Av=—
/[)(uA v)dx = /aD (Au(?n L Avan +u o > ds

We now note that as long as D c D, the above is true. Also, our only assumption about v thus
far has been v € C2?(D). Thus, let us choose D = D\D,(xg), and make v depend on x¢ and r
in that A%v(x) = 0 ¥x ¢ B,(x0), and A%v(xe) = 1. From this construction, lim, ,o D = D, and
lim, o [p(uA?*v)dx = u(xo), and hence we have now shown:

0 ov ou 0
u(xo) = —/BD (vanAu — Au% + Av% - uanAv> ds

10



Question 10

Exercise. 1.10:

The Fourier Sine series of f(x) = x on the interval (0,1) is:

B = ni;An sin (?)

where A, = (—1)"+1 (2L).

nm

(a) Write the Parseval’s equality.
(b) Find the sum Y ;7 .

(a) We assume that for this question, we are to write the most applicable version of Parseval’s equality
for computing part (b). Thus, if f(z) =Y ", A, sin (#) for some A, then:

1 oo
t [ u@ra =3

(b) If we let I = 7, then:

And thus by Parseval’s Equality:

n=1

o0
1 2
= = =—
nzl n? 6

11
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