Nonlinear Optimization: Interesting Problems

Jonathan Mostovoy - 1002142665 University of Toronto

January 23, 2017

Contents

1	Def	inition to Be Used in The Proceeding Problems	2
2	App	olications of Real Analysis, Multivariate Calculus & Linear Algebra	3
	2.1	The Existence of a Solution for a Minimization Problem	3
	2.2	Intersection of Closed Sets is Closed	4
	2.3	The Maximum of a Set of Convex Functions' is Convex	5
	2.4	Approximating an Arbitrary Function	5
	2.5	An Explicit Minimization Problem	6
3	App	plications of Matrix Calculus	9
	3.1	Minimization of the Modulus of a Linear Equations	9
		3.1.1 Part 1	9
		3.1.2 Part 2	11
		3.1.3 Part 3	11
		3.1.4 Part 4	12
	3.2	Newton's Method Applied to the Minimization of the Modulus' Cubic	12
		3.2.1 Part 1	12
		3.2.2 Part 2	13
	3.3	Steepest Decent	14
4	Corollaries and Examples of Common Algorithms		14
	4.1	Steepest Descent	14
	4.2	The Rosenbrock Banana Function	15
	4.3	Quadratic Inequalities	16
	4.4	Conjugate Gradient Algorithm Example	17
	4.5	Steepest Descent Example	18
	4.6		20

1 Definition to Be Used in The Proceeding Problems

Definition. 1.1: Metric Space

A metric space is an ordered pair (M,d) where M is a set and d is a function $d: M \times M \to \mathbb{R}$ such that the following three conditions hold:

- 1. $d(x,y) = 0 \iff x = y$
- 2. d(x,y) = d(y,x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

Definition. 1.2: Open Ball

The open ball inside the metric space (M,d) denoted $B_r(x)$ is the set:

$$B_r(x) := \{ y \in (M, d) : d(y, x) < r \}$$

Definition. 1.3: Open

A set $U \subset (M, d)$ is called open if $\forall x \in U, \exists r > 0, r \in \mathbb{R}$ such that:

$$B_r(x) \subset U$$

Definition. 1.4: Closed

A set $U \subset (M,d)$ is called closed if $U^c = \{y \in (M,d) : y \notin U\}$ (the compliment of U) is open.

Definition. 1.5: Bounded

A set $U \subset (M, d)$ is called bounded if $\exists r < \infty, r \in \mathbb{R}$ s.t. $U \subset B_r(0)$.

Definition. 1.6: Convex Function

We say that a function, $f: \mathbb{R}^n \to \mathbb{R}$, is *Convex* if and only if $\operatorname{epi}(f)$ is a convex set, where

$$\operatorname{epi}(f) := \left\{ (x, \mu) \mid x \in \mathbb{R}^n, \, \mu \in \mathbb{R}, \, \mu \ge f(x) \right\} \subseteq \mathbb{R}^{n+1}$$

2 Applications of Real Analysis, Multivariate Calculus & Linear Algebra

2.1 The Existence of a Solution for a Minimization Problem

Show that if f(x) is continuous on \mathbb{R}^n and $\lim_{||x||\to\infty} f(x) = \infty$ then there exists \hat{x} with $f(\hat{x}) \leq f(x)$ for all $x \in \mathbb{R}^n$ (i.e. the unconstrained minimization problem for f(x) has a solution).

Proof. Let us define our metric as the standard Euclidean metric in \mathbb{R}^n $\left(d(x,y) := \sqrt{\sum_{i=1}^n (x_i - y_i)^2}\right)$ (and hence $d(x,0) = ||x|| = \sqrt{\sum_{i=1}^n (x_i)^2}$) so that we are working in a the metric space: (\mathbb{R}^n,d) . Let us now choose an $r \in \mathbb{R}$ which satisfies the following:

If
$$m = \inf_{||\mathbf{x}||=r} f(\mathbf{x})$$
, then $\forall ||y|| \ge r, f(y) \ge m$

And we know by the continuity and the fact that $\lim_{||x||\to\infty} f(x) = \infty$, there must exist (many) rs. We can show this explicitly from the definition of a limit. We say $\lim_{||x||\to\infty} f(x) = \infty$ if $\forall \epsilon > 0 \ \exists \delta$ s.t. if $|||x|| - \infty| < \delta \implies ||f(||x||) - \infty|| < \epsilon$. This is intuitively equivalent to saying: $\forall M >> 0$, $\exists r$ s.t. if $||x - 0|| \ge r \implies ||f(||x||)|| > M$. Next, we recall the following theorem:

Theorem. 2.1: The Extreme Value Theorem

If f is continuous on a compact set Ω , then f attains an absolute maximum and an absolute minimum in Ω .

Let us now recall that $S \subset \mathbb{R}^n$ is compact \iff S is closed and bounded (this is not true in general for any (M,d), but is for \mathbb{R}^n). As such, $\overline{B_r(0)}$ is trivially bounded (by \underline{r}), and is closed by the definition of closure. Therefore, by Theorem 2.1, we know $\exists \hat{x}$ s.t. $\forall x \in \overline{B_r(0)}$, $f(\hat{x}) \leq f(x)$, and since we have the property that $\forall y \in [B_r(0)]^c$, $f(y) \geq m \implies f(y) \geq f(\hat{x})$. Thus, we have now proven what we wanted to show $(\exists \hat{x} \text{ which is a global minimum})$.

2.2 Intersection of Closed Sets is Closed

Show that the intersection of any number of closed sets is a closed set.

Let us recall a fundamental Theorem of Set Theory:

Theorem. 2.2: De Morgan's Law

If $A_i \subset S$ is a set $\forall i \in I$, where I is an indexing set which may be finite or infinite, then:

$$\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} (A_i)^c.$$

Proof. We prove De Morgan's Law by induction (for the case that $|I| \leq \aleph_0$):

For |I|=1 the result is trivial. When |I|=2, we have $(A_1\cap A_2)^c=A_1^c\cup A_2^c$. Assume $x\in (A_1\cap A_2)^c\iff x\not\in (A_1\cap A_2)^c\iff x\not\in A_1$ or $\not\in A_2\iff x\in A_1^c$ or $x\in A_2^c\iff x\in A_1^c\cup A_2^c$, which $\Longrightarrow (A_1\cap A_2)^c\subseteq A_1^c\cup A_2^c$ and by assuming the last step of our process $(x\in A_1^c\cup A_2^c)$, we find $(A_1\cap A_2)^c\supseteq A_1^c\cup A_2^c$ which $\Longrightarrow (A_1\cap A_2)^c=A_1^c\cup A_2^c$.

We now assume De Morgan's Law holds for |I| = n - 1, then for |I| = n,

$$\left(\bigcap_{i=1}^n A_i\right)^c = \left[\left(\bigcap_{i=1}^{n-1} A_i\right) \bigcap A_n\right]^c \stackrel{*}{=} \left(\bigcap_{i=1}^{n-1} A_i\right)^c \bigcup A_n^c \stackrel{**}{=} \left(\bigcup_{i=1}^{n-1} A_i^c\right) \bigcup A_n^c = \bigcup_{i=1}^n A_i^c$$

Where the $\stackrel{*}{=}$ step uses De Morgan's Law for |I|=2, and $\stackrel{**}{=}$ uses our inductive hypothesis.

We next consider another Theorem to be used to answer this problem:

Theorem. 2.3: Union of Open Sets is Open

If $A_i \subseteq (M, d)$ is open $\forall i \in I$, (I an indexing set), then $\bigcup_{i \in I} A_i$ is open.

Proof. If $x \in \bigcup_{i \in I}$, then $\exists j \text{ s.t. } x \in A_j$, since A_j is open, $\exists r > 0 \text{ s.t. } B_r(x) \subset A_j$ and therefore $\forall x \in \bigcup_{i \in I} A_i, B_r(x) \subset A_j \subset \bigcup_{i \in I} A_i$ which is our definition of openness.

Now, our question may be considered a Corollary of De Morgan's Law (and Theorem 2.3):

Corollary. 2.1: Intersection of Closed Sets is Closed (I.e. the Question)

The intersection of any number of closed sets is a closed set.

Proof. Let A_i be a closed set for all $i \in I$, where like before I is an indexing set. Then, by De Morgran's Law:

$$\left(\bigcap_{i\in I} A_i\right)^c = \bigcup_{i\in I} (A_i)^c.$$

We now recall that a set, S, is open if and only if its compliment, S^c , is closed. Since $\forall i, A_i$ is closed $\implies A_i^c$ is open $\forall i \stackrel{*}{\Longrightarrow} \bigcup_{i \in I} A_i$ is open ($\stackrel{*}{\Longrightarrow}$ by Theorem 2.3). We now know $(\bigcup_{i \in I} A_i)^c$ is open $\implies \bigcup_{i \in I} A_i$ is closed.

2.3 The Maximum of a Set of Convex Functions' is Convex

Show that if $f_1, f_2, ..., f_m$ are convex functions on \mathbb{R}^n , then the function $g(x) = \max (f_1(x), ..., f_m(x))$ is also convex.

Proof. Let us recall the following definition of a Convex function:

Definition. 2.1: Convex Function

We say that a function, $f: \mathbb{R}^n \to \mathbb{R}$, is *Convex* if and only if $\operatorname{epi}(f)$ is a convex set, where

$$\mathrm{epi}(f) := \left\{ (x, \mu) \,\middle|\, x \in \mathbb{R}^n, \, \mu \in \mathbb{R}, \, \mu \geq f(x) \right\} \subseteq \mathbb{R}^{n+1}$$

And hence, if we let $I = \{1, \dots, m\}$;

$$\operatorname{epi}\left(\max\left(f_{1}(x),\ldots,f_{m}(x)\right)\right) = \left\{(x,\mu)\Big|x\in\mathbb{R}^{n},\mu\in\mathbb{R},\mu\geq\max_{i\in I}(f_{i})\right\}$$
$$=\bigcap_{i\in I}\left\{(x,\mu)\Big|x\in\mathbb{R}^{n},\mu\in\mathbb{R},\mu\geq f_{i}\right\}$$
$$=\bigcap_{i\in I}\operatorname{epi}\left(f_{i}(x)\right)$$

And since the intersection of convex sets is convex, we can conclude that g(x) is convex.

We quickly prove that the intersection of convex sets is convex: For |I|=2, we have that if $x_1, x_2 \in S_1 \cap S_2 \implies x_1, x_2 \in S_1$ and S_2 , then $\forall y \in S_1$ and S_2 , we have $y=\alpha x_1+(1-\alpha)x_2, \alpha \in [0,1], \implies y \in S_1 \cap S_2$. Since this is true $\forall x_1, x_2 \in S_1 \cap S_2$ and $\alpha \in [0,1]$, we can conclude that $S_1 \cap S_2$ is convex. Naturally, the proof here extends very easily by inductions for all $\mathbb N$ (for |I|=n-1, we know that $S=\bigcap_{i=1}^{n-1}S_i$ is convex, and hence $S\cap S_n$ is convex). Hence $\forall |I| \in \mathbb N$, we have that if S_i is convex $\forall i \in |I|$, then $\cap_{i \in I} S_i$ is convex.

2.4 Approximating an Arbitrary Function

To approximate the function g over the interval [0,1] by a polynomial p of degree $\leq n$, we minimize the following criterion:

$$f(\mathbf{a}) = \int_0^1 \left(g(x) - p(x) \right)^2 dx$$

where $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. Find the equations satisfied by the optimal conditions $\mathbf{a} = (a_0, \dots, a_n)$.

Proof. We recall that if **a** is optimal $\implies \nabla f(\mathbf{a}) = 0$ (or does not exist). We thus compute:

$$\frac{\partial f}{\partial a_i} = \frac{\partial}{\partial a_i} \left(\int_0^1 (g - p)^2 dx \right)$$
$$= \int_0^1 \frac{\partial}{\partial a_i} (g - p)^2 dx$$
$$= -2 \int_0^1 x^i (g - p) dx$$

And hence by requiring $\nabla f(\mathbf{a}) = 0 \equiv \frac{\partial f}{\partial a_i} = 0 \ \forall i$:

$$\int_0^1 x^i g dx = \int_0^1 x^i p dx$$

$$= \int_0^1 \left(a_n x^{n+i} + a_{n-1} x^{n+i-1} + \dots + a_1 x^{i+1} + a_0 x^i \right) dx$$

$$= \sum_{j=0}^n a_j \left(\int_0^1 x^{j+i} dx \right)$$

$$= \frac{1}{1+i+j} \sum_{j=0}^n a_j$$

We can thus write the set of our equations in the form of $H\mathbf{a}^T=B$:

$$\begin{pmatrix} 1 & 1/2 & \dots & 1/(n+1) \\ 1/2 & 1/3 & \dots & 1/(n+2) \\ \vdots & \vdots & \ddots & \vdots \\ 1/(n+1) & 1/(n+2) & \dots & 1/(2n+1) \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \int_0^1 g dx \\ \int_0^1 x g dx \\ \vdots \\ \int_0^1 x^n g dx \end{pmatrix}$$

Now, by noticing that H is what is referred to as a Hilbert Matrix, and by referencing the literature, we can write down H^{-1} as:

$$(H^{-1})_{i,j} = (-1)^{i+j} (i+j-1) \binom{n+i}{n-j+1} \binom{n+j}{n-i+1} \binom{i+j-2}{i-1}^2$$

Therefore, $\mathbf{a} = (H^{-1}B)^T$.

2.5 An Explicit Minimization Problem

A) Using the first-order necessary conditions, find a minimum point of the function:

$$f(x, y, z) = 2x^{2} + xy + y^{2} + yz + z^{2} - 6x - 7y - 8z + 9$$

- B) Verify that the point is a relative minimum point by verifying that the second-order sufficiency conditions hold.
- C) Prove that the point is a global minimum point.
- A) Proof. Let us start by simplifying our function a little:

$$f(x,y,z) = 2x^{2} + xy + y^{2} + yz + z^{2} - 6x - 7y - 8z + 9$$

$$= x^{2} - xy + (x+y)^{2} - y^{2} + (y+z)^{2} - yz - 6x - 7y - 8z + 9$$

$$= (x-3)^{2} + (x+y)^{2} + (y+z)^{2} - y(y+z+x+7) - 8z$$

We now take the partial derivatives of each variable:

$$\begin{split} \frac{\partial f}{\partial x} &= 2(x-3) + 2(x+y) - y = 4x + y - 6\\ \frac{\partial f}{\partial y} &= 2(x+y) + 2(y+z) - (y+z+x+7) - y = x + 2y + z - 7\\ \frac{\partial f}{\partial z} &= 2(y+z) - y - 8 = y + 2z - 8 \end{split}$$

As such, we want to solve when the above partial derivatives are equal to 0. As such, we manipulate the following matrix:

$$\begin{bmatrix} 4 & 1 & 0 & | & 6 \\ 1 & 2 & 1 & | & 7 \\ 0 & 1 & 2 & | & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 1/4 & 0 & | & 3/2 \\ 0 & 7/4 & 1 & | & 11/2 \\ 0 & 1 & 2 & | & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 1/4 & 0 & | & 3/2 \\ 0 & 1 & 4/7 & | & 22/7 \\ 0 & 0 & 10/7 & | & 34/7 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1/4 & 0 & | & 3/2 \\ 0 & 1 & 4/7 & | & 22/7 \\ 0 & 0 & 1 & | & 17/5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1/4 & 0 & | & 3/2 \\ 0 & 1 & 0 & | & 6/5 \\ 0 & 0 & 1 & | & 17/5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 6/5 \\ 0 & 1 & 0 & | & 6/5 \\ 0 & 0 & 1 & | & 17/5 \end{bmatrix}$$

Which means we have a local minimum at:

$$(x,y,z) = \left(\frac{6}{5}, \frac{6}{5}, \frac{17}{5}\right)$$

B) Proof. We begin by finding all the second order derivatives:

$$\begin{split} \frac{\partial^2 f}{\partial x^2} &= \frac{\partial f}{\partial x} \left(4x + y - 6 \right) = 4 \\ \frac{\partial^2 f}{\partial y^2} &= \frac{\partial f}{\partial y} \left(x + 2y + z - 7 \right) = 2 \\ \frac{\partial^2 f}{\partial z^2} &= \frac{\partial f}{\partial z} \left(y + 2z - 8 \right) = 2 \\ \frac{\partial^2 f}{\partial y \partial x} &= \frac{\partial f}{\partial y} \left(4x + y - 6 \right) = 1 \\ \frac{\partial^2 f}{\partial z \partial x} &= \frac{\partial f}{\partial z} \left(4x + y - 6 \right) = 0 \\ \frac{\partial^2 f}{\partial z \partial y} &= \frac{\partial f}{\partial z} \left(x + 2y + z - 7 \right) = 1 \end{split}$$

And by recalling the following theorem:

Theorem. 2.4: Clairuit's Theorem

If $f:U\subseteq R^n\to R$ is of type C^k then: $-\frac{\partial^m}{\partial x^n}$

$$\frac{\partial^m f}{\partial x_1^{m_1} \cdots \partial x_n^{m_n}} = \frac{\partial^m f}{\partial x_i^{m_i} \cdots \partial x_j^{m_j}}$$

Where $\sum_{k=1}^{n} m_k = m$ and (m_i, \dots, m_k) is a rearrangement of (m_1, \dots, m_n) .

As such, we compute the Hessian of our function:

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y \partial z} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z^2} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial z \partial x} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial z \partial y} \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z^2} \end{pmatrix} = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Next, we recall the following theorem which classifies critical point as local maximums, minimums, saddles points, or inconclusive to be classified as follows:

Theorem. 2.5: Critical Point Classifications

Let **a** be a critical point $(\nabla f(\mathbf{a}) = \mathbf{0})$, or $\nabla f(\mathbf{a})$ does not exist, then:

- (a) If $H(f(\mathbf{a}))$ is positive definite, then f attains a local minimum at \mathbf{a} .
- (b) If $H(f(\mathbf{a}))$ is negative definite, then f attains a local maximum at \mathbf{a} .
- (c) If $H(f(\mathbf{a}))$ has both positive and negative eigenvalues, then \mathbf{a} is a saddle point for \mathbf{f} .

And if none of these conditions hold, our test is inconclusive.

We next need a way to check for positive definitiveness, we use the following theorem:

Theorem. 2.6: Sylvester's criterion

If $A \in \mathbb{C}^{n \times n} (\supset \mathbb{R}^{n \times n})$ is a Hermitian matrix, it is positive-definite if and only if all upper-left sub matrices $\in \mathbb{C}^{k \times k} \ \forall k$ where $k \leq n$ have positive determinants.

As such, we compute:

(a)

$$\det\begin{pmatrix} 4 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = 4 \det\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} - \det\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} = 10 > 0$$

(b)

$$\det\begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix} = 7 > 0$$

(c)

$$\det(4) = 4 > 0$$

And hence now, we are finally able to conclude by the Critical Point Classifications and Sylvester's criterion, we may conclude that $\mathbf{a} = \left(\frac{6}{5}, \frac{6}{5}, \frac{17}{5}\right)$ is a relative minimum point.

C) Proof. To answer this question, we prove the following theorem:

Theorem. 2.7: One Global Min for Strictly Convex Functions

A strictly convex function will have at most one global minimum.

Proof. Suppose that $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ has a local minimum at \mathbf{a}_1 and \mathbf{a}_2 , where: $f(\mathbf{a}_1) \leq f(\mathbf{a}_2)$, $\mathbf{a}_1 \neq \mathbf{a}_2$. Since f is a convex function, we have $\forall \mathbf{b}_i \in U$

$$f(\beta \mathbf{b}_1 + (1 - \beta)\mathbf{a}_2) < \beta f(\mathbf{b}_1) + (1 - \beta)f(\mathbf{b}_2), \qquad 0 < \beta < 1$$

Now, let $\alpha \in (0,1)$, then:

$$f(\mathbf{a}_1) \le f(\mathbf{a}_2) \implies \alpha f(\mathbf{a}_1) \le \alpha f(\mathbf{a}_2)$$

which implies:

$$\alpha f(\mathbf{a}_1) + (1 - \alpha)f(\mathbf{a}_2) \le \alpha f(\mathbf{a}_2) + (1 - \alpha)f(\mathbf{a}_2) = f(\mathbf{a}_2)$$

And due to our function being strictly convex, we have:

$$f(\alpha \mathbf{a}_1 + (1 - \alpha)\mathbf{a}_2) < f(\mathbf{a}_2) \tag{1}$$

Since \mathbf{a}_2 is local minimum, $\exists r > 0, r \in \mathbb{R}$ s.t. $\forall \mathbf{x} \in B_r(\mathbf{a}_2) \setminus \{\mathbf{a}_2\}$, we have must have $f(\mathbf{a}_2) \leq f(\mathbf{x})$. We can now choose α small enough s.t. $\alpha \mathbf{a}_1 + (1 - \alpha)\mathbf{a}_2 \in B_r(\mathbf{a}_2)$. Which implies

$$f(\alpha \mathbf{a}_1 + (1 - \alpha)\mathbf{a}_2) > f(\mathbf{a}_2) \tag{2}$$

And hence we have arrived at a contradiction since it is impossible to satisfy the following equations simultaneously:

$$f(\alpha \mathbf{a}_1 + (1 - \alpha)\mathbf{a}_2) \le f(\mathbf{a}_2) \quad \forall \alpha \in (0, 1)$$
 (1)

$$f(\alpha \mathbf{a}_1 + (1 - \alpha)\mathbf{a}_2) > f(\mathbf{a}_2)$$
 $\alpha \in (0, 1)$ and small enough (2)

And hence it must be that $\mathbf{a}_1 = \mathbf{a}_2$, and hence if f is strictly convex and has a local minimum, that local minimum is unique and actually f's global minimum.

And since the positive definiteness of the Hessian is a sufficient condition for strict convexity, which we showed to be so in Part B, we may conclude that $\mathbf{a} = \left(\frac{6}{5}, \frac{6}{5}, \frac{17}{5}\right)$ is a global minimum.

3 Applications of Matrix Calculus

3.1 Minimization of the Modulus of a Linear Equations

Consider the problem $\min_x (f(x))$ for $f(x) = |Ax - b|^2$, where A is an $m \times n$ matrix with zero null space, b is an m dimensional vector, and the solution x is an n dimensional vector.

- 1. What is the first order necessary condition for optimality?
- 2. Compute the Hessian of f and show that it is positive definite.
- 3. Conclude from (a) and (b) that f has a unique global minimum. Indicate what theorems you are using. Then, give a closed form expression for the global minimizer \hat{x} .
- 4. Give explicit answers to the questions above when:

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \quad and \quad b = \begin{pmatrix} 2 \\ 6 \\ 2 \\ 0 \end{pmatrix}$$

3.1.1 Part 1

Answer:

Lemma. 3.1: Matrix Calculus Lemmas

If **x** is an $(n \times 1)$ variable vector, and A an $(m \times n)$ and b an $(m \times 1)$ constant matrix and vector respectively. Then we have the following general results:

$$\frac{\partial b^T A \mathbf{x}}{\partial \mathbf{x}} = A^T b$$

2.

$$\frac{\partial \mathbf{x}^T A^T b}{\partial \mathbf{x}} = A^T b$$

3.

$$\frac{\partial \mathbf{x}^T A \mathbf{x}}{\partial \mathbf{x}} = (A + A^T) \mathbf{x}$$

Note: we use the "Denominator layout", for both this and Question #2 i.e. by \mathbf{y}^T and \mathbf{x} .

We omit the proofs for the above as their are pretty standard in most 2nd year calculus classes.

Second, we have the following lemma:

Lemma. 3.2: Matrix Modulus Lemma

If **x** is an $(n \times 1)$ variable vector, and A an $(m \times n)$ and b an $(m \times 1)$ constant matrix and vector respectively. Then we have the following general results:

$$|A\mathbf{x} - b|^2 = (A\mathbf{x} - b)^T (A\mathbf{x} - b)$$

Proof. Computing directly, we have:

$$|A\mathbf{x} - b|^2 = \sum_{j=1}^m \left(\sum_{i=1}^n a_{ji}x_j - b_j\right)^2$$

Furthermore,

$$(Ax - b) = \begin{pmatrix} \sum_{i=1}^{n} a_{1i}x_i - b_1 \\ \vdots \\ \sum_{i=1}^{n} a_{mi}x_i - b_m \end{pmatrix}$$

And hence:

$$(Ax - b)^{T} (Ax - b) = \left(\sum_{i=1}^{n} a_{1i}x_{i} - b_{1}, \dots, \sum_{i=1}^{n} a_{mi}x_{i} - b_{m} \right) \begin{pmatrix} \sum_{i=1}^{n} a_{1i}x_{i} - b_{1} \\ \vdots \\ \sum_{i=1}^{n} a_{mi}x_{i} - b_{m} \end{pmatrix}$$

$$= \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ji}x_{j} - b_{j} \right)^{2}$$

$$= |A\mathbf{x} - b|^{2}$$

Now, back to the question at hand:

From Lemma 1.2 we know $|A\mathbf{x} - b|^2 = (A\mathbf{x} - b)^T (A\mathbf{x} - b)$, thus, we first multiply out:

$$|A\mathbf{x} - b|^2 = (A\mathbf{x} - b)^T (A\mathbf{x} - b)$$

$$= \mathbf{x}^T A^T A\mathbf{x} - b^T A\mathbf{x} - \mathbf{x}^T A^T b + b^T b$$
since $(AB)^T = B^T A^T$ and $(A + B)^T = A^T + B^T$

Therefore, we can now compute the gradient:

$$\nabla |A\mathbf{x} - b|^2 = \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}^T A^T A \mathbf{x} - b^T A \mathbf{x} - \mathbf{x}^T A^T b + b^T b \right)$$
$$= (2A^T A) \mathbf{x} - A^T b - A^T b + \mathbf{0}$$
$$= 2A^T A \mathbf{x} - 2A^T b$$

Next, for optimality, we recall that if we are considering a domain $\Omega \subseteq \mathbb{R}^n$, we must have $\nabla f \cdot \mathbf{d} \geq 0 \ \forall \mathbf{d}$, where \mathbf{d} is a feasible direction vector which stays in Ω given \mathbf{x} . Thus, for optimality, we must have:

$$2(A^T A \mathbf{x} - A^T b) \cdot \mathbf{d} \ge 0$$

and for the interior of Ω , $\nabla f \cdot \mathbf{d} \geq 0 \iff \nabla f = 0$, we have (and since A has a zero null space we know $AA^T = A^TA$ must have an inverse:

$$\hat{\mathbf{x}} = (A^T A)^{-1} (A^T b)$$

$$\mathcal{H}(f) = 2 \cdot \begin{pmatrix} \sum_{j=1}^{m} a_{j1} a_{j1} & \dots & \sum_{j=1}^{m} a_{j1} a_{jn} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{m} a_{jn} a_{j1} & \dots & \sum_{j=1}^{m} a_{jn} a_{jn} \end{pmatrix}$$

3.1.2 Part 2

To compute the Hessian, we recall $\mathcal{H}(f) = \nabla^2 f$, and hence:

$$\mathcal{H}(f) = \nabla^2 f = \nabla(\nabla f) = \nabla(2A^T A \mathbf{x} - 2A^T b) = 2(A^T A)^T = 2A^T A$$

Furthermore, we know this is positive-semi-definite since it is the Gram matrix of linearly independent vectors., i.e., $\frac{1}{2}\mathcal{H}(f) = \langle a_{jk_1}, a_{jk_2} \rangle$.

3.1.3 Part 3

Firstly, we recall that $\mathcal{H}(f)$ is positive definite, which by Prop 5, Ch 7.4 in the textbook implies that f is convex. Next, we recall that since we are considering $\Omega = \mathbb{R}^n$, which is a convex set, we have that f is a convex function on a convex set and hence we can set $\nabla f = 0$ (as we showed how to do explicitly above) to find the global minimum.

3.1.4 Part 4

To give explicit answers to the equations above, we need A^TA , A^Tb , and $(A^TA)^{-1}$. We thus compute:

$$A^{T}A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 0 & 2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ -2 & 6 \end{pmatrix}$$
$$A^{T}b = \begin{pmatrix} 2 & 0 & 0 & 1 \\ -1 & 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 6 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 12 \end{pmatrix}$$
$$(A^{T}A)^{-1} = \frac{1}{\det(A^{T}A)} \begin{pmatrix} 6 & 2 \\ 2 & 5 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 3 & 1 \\ 1 & 5/2 \end{pmatrix}$$

Therefore, we see that for optimality (d defined as above), we must have:

$$\nabla f = 2 \left[\begin{pmatrix} 5 & -2 \\ -2 & 6 \end{pmatrix} \mathbf{x} - \begin{pmatrix} 4 \\ 12 \end{pmatrix} \right]$$

For optimality we have:

$$\nabla f = 2 \left[\begin{pmatrix} 5 & -2 \\ -2 & 6 \end{pmatrix} \mathbf{x} - \begin{pmatrix} 4 \\ 12 \end{pmatrix} \right] \cdot \mathbf{d} \ge 0$$

And in the interior (which in this case is all of our domain, \mathbb{R}^n) we have:

$$\hat{\mathbf{x}} = \frac{1}{13} \begin{pmatrix} 3 & 1\\ 1 & 5/2 \end{pmatrix} \begin{pmatrix} 4\\ 12 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 24\\ 34 \end{pmatrix}$$

And for the Hessian, we have:

$$\mathcal{H}(f) = \begin{pmatrix} 10 & -4 \\ -4 & 12 \end{pmatrix}$$

3.2 Newton's Method Applied to the Minimization of the Modulus' Cubic

Consider Newton's method applied to the minimization of the function $f(x) = |x|^3$, where $x \in \mathbb{R}^n$.

- 1. Compute the gradient and the Hessian of f.
- 2. Use the formula $(I + uu^T)^{-1} = I \frac{1}{2}uu^T$, where I is the $n \times n$ identity matrix, and $u \in \mathbb{R}^n$ is a unit vector to compute the inverse of the Hessian of f. Use this to give the explicit formula for the iteration step in Newton's method for this function.

Answer:

3.2.1 Part 1

$$|x|^3 = \left(\sum_{i=1}^n (x_i)^2\right)^{3/2}$$

And hence:

$$\frac{\partial}{\partial x_j} |x|^3 = 3x_j \left(\sum_{i=1}^n (x_i)^2\right)^{1/2}$$

$$\implies \nabla |x|^3 = \left(3x_1 \left(\sum_{i=1}^n (x_i)^2\right)^{1/2}, \dots, 3x_n \left(\sum_{i=1}^n (x_i)^2\right)^{1/2}\right) = 3\mathbf{x}^T |\mathbf{x}|$$

And as such,

$$\mathcal{H}(f) = \nabla (3\mathbf{x}^T | \mathbf{x} |) = 3 \left(\frac{\partial |\mathbf{x}|}{\partial \mathbf{x}} \cdot \mathbf{x}^T + \frac{\partial \mathbf{x}^T}{\partial \mathbf{x}} \cdot |\mathbf{x}| \right)$$
By the Matrix Chain Rule
$$= 3 \left(\frac{\mathbf{x}}{|\mathbf{x}|} \cdot \mathbf{x}^T + \mathbb{1}_{n \times n} \cdot |\mathbf{x}| \right)$$
Since $\frac{\partial |\mathbf{x}|}{\partial \mathbf{x}} = \frac{\mathbf{x}}{|\mathbf{x}|}$ and $\frac{\partial \mathbf{x}^T}{\partial \mathbf{x}} = \mathbb{1}_{n \times n}$

$$= 3 |\mathbf{x}| \left(\frac{\mathbf{x}}{|\mathbf{x}|} \cdot \frac{\mathbf{x}^T}{|\mathbf{x}|} + \mathbb{1}_{n \times n} \right)$$

We can check that our above computations are indeed correct directly, since:

$$\frac{\partial^2}{\partial x_k x_j} |x|^3 = 3x_j \sum_{i=1}^n (x_i)^2 = \begin{cases} 6(x_j)^2 + 3\sum_{i=1}^n (x_i)^2 & \text{if } k = j\\ 6x_k x_j & \text{if } k \neq j \end{cases}$$

Therefore,

$$\mathcal{H}(f) = \begin{pmatrix} 6(x_1)^2 + 3\sum_{i=1}^n (x_i)^2 & 6x_2x_1 & \dots & 6x_{n-1}x_1 & 6x_nx_1 \\ 6x_1x_2 & 6(x_2)^2 + 3\sum_{i=1}^n (x_i)^2 & \dots & 6x_{n-1}x_2 & 6x_nx_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 6x_1x_{n-1} & 6x_2x_{n-1} & \dots & 6(x_{n-1})^2 + 3\sum_{i=1}^n (x_i)^2 & 6x_nx_{n-1} \\ 6x_1x_n & 6x_2x_n & \dots & 6x_{n-1}x_n & 6(x_n)^2 + 3\sum_{i=1}^n (x_i)^2 \end{pmatrix}$$

$$= 3\left(\frac{\mathbf{x}}{|\mathbf{x}|} \cdot \mathbf{x}^T + \mathbb{1}_{n \times n} \cdot |\mathbf{x}|\right)$$

3.2.2 Part 2

From the identity of $(\mathbb{1}_{n\times n} + uu^T)^{-1} = \mathbb{1}_{n\times n} - \frac{1}{2}uu^T$, we can see that:

$$(\mathcal{H}(f))^{-1} = \left(3|\mathbf{x}| \left(\frac{\mathbf{x}}{|\mathbf{x}|} \cdot \frac{\mathbf{x}^T}{|\mathbf{x}|} + \mathbb{1}_{n \times n}\right)\right)^{-1}$$
$$= \left(\frac{\mathbf{x}}{|\mathbf{x}|} \cdot \frac{\mathbf{x}^T}{|\mathbf{x}|} + \mathbb{1}_{n \times n}\right)^{-1} (3|\mathbf{x}|)^{-1}$$
$$= \left(\mathbb{1}_{n \times n} - \frac{1}{2} \frac{\mathbf{x}}{|\mathbf{x}|} \cdot \frac{\mathbf{x}^T}{|\mathbf{x}|}\right) \left(\frac{1}{3|\mathbf{x}|}\right)$$

Therefore, since in Newton's Method, have that $\mathbf{x}_{k+1} = \mathbf{x}_k - (\mathcal{H}(f))^{-1}(\nabla f)^T$, and hence:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \left(\mathbb{1}_{n \times n} - \frac{1}{2} \frac{\mathbf{x}_k}{|\mathbf{x}_k|} \cdot \frac{\mathbf{x}_k^T}{|\mathbf{x}_k|}\right) \left(\frac{1}{3|\mathbf{x}_k|}\right) \left(3\mathbf{x}_k^T |\mathbf{x}_k|\right)^T$$

$$= \mathbf{x}_k - \left(\mathbb{1}_{n \times n} - \frac{1}{2} \frac{\mathbf{x}_k}{|\mathbf{x}_k|} \cdot \frac{\mathbf{x}^T}{|\mathbf{x}_k|}\right) \cdot \mathbf{x}_k$$

$$= \mathbb{1}_{n \times n} \mathbf{x}_k - \left(\mathbb{1}_{n \times n} - \frac{1}{2} \frac{\mathbf{x}_k}{|\mathbf{x}_k|} \cdot \frac{\mathbf{x}_k^T}{|\mathbf{x}_k|}\right) \cdot \mathbf{x}_k$$

$$= \frac{1}{2} \left(\frac{\mathbf{x}_k}{|\mathbf{x}_k|} \cdot \frac{\mathbf{x}_k^T}{|\mathbf{x}_k|}\right) \cdot \mathbf{x}_k$$

3.3 Steepest Decent

Let $f(\mathbf{x}) = \frac{1}{2}((x_1)^2 + c(x_2)^2)$ where $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and c > 1. Consider applying the method of of steepest descent to this function, starting at $\mathbf{x}^0 = \begin{pmatrix} c \\ 1 \end{pmatrix}$. Find a formula for \mathbf{x}^k .

Answer:

If we assume $\alpha_k = \cdots = \alpha_0$, we can compute that:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} x_1 \\ cx_2 \end{pmatrix}$$

$$\implies \mathbf{x}^{m+1} = \mathbf{x}^m - \alpha \nabla f(\mathbf{x}^m) = \begin{pmatrix} x_1^m \\ x_2^m \end{pmatrix} - \alpha \begin{pmatrix} x_1^m \\ cx_2^m \end{pmatrix} = \begin{pmatrix} (1-\alpha)x_1^m \\ (1-c\alpha)x_2^m \end{pmatrix}$$

Next, since we see that this holds $\forall m > 0$, and hence we naturally will have:

$$\mathbf{x}^k = \begin{pmatrix} (1-\alpha)^k x_1^0 \\ (1-c\alpha)^k x_2^0 \end{pmatrix}$$

And therefore if $\mathbf{x}^0 = (c, 1)^T$, then:

$$\mathbf{x}^k = \begin{pmatrix} c(1-\alpha)^k \\ (1-c\alpha)^k \end{pmatrix}$$

Now, we need to prove that $\alpha_k = \cdots = \alpha_0$. To do this, we note that the Wolfe Conditions imply that $\alpha_k = \frac{2}{1+c}$.

4 Corollaries and Examples of Common Algorithms

4.1 Steepest Descent

Let $x^1, x^2, \ldots, x^k, \ldots$ be the sequence obtained by applying the method of steepest descent to a continuously differentiable function f, starting at x^0 . Show that for any $k \geq 0$, the vector $(x^{k+2} - x^{k+1})$ is perpendicular to $(x^{k+1} - x^k)$. (This explains the "orthogonal zig-zag pattern" for steepest descent mentioned in class).

Hint: recall that α_k is chosen to minimize the function: $\alpha \to f(x^k - \alpha(\nabla f(x^k))^T)$; use calculus!

Proof. We recall that two vectors, u, v in \mathbb{R}^n are orthogonal $\iff \langle u, v \rangle_{\mathbb{R}^n} := u^T v = 0$. Thus, let us first alter the expressions $(x^{k+2} - x^{k+1})$ and $(x^{k+1} - x^k)$ by noting that since we are working within the context of steepest decent, we have that $x^{k+1} = x^k - \alpha_k (\nabla f(x^k))^T \implies$

$$x^{k+2} - x^{k+1} = x^{k+1} - \alpha_{k+1} (\nabla f(x^{k+1}))^T - x^k + \alpha_k (\nabla f(x^k))^T$$

$$= \left(x^k - \alpha_k (\nabla f(x^k))^T \right) - \alpha_{k+1} (\nabla f(x^k - \alpha_k (\nabla f(x^k))^T))^T - \left(x^k - \alpha_k (\nabla f(x^k))^T \right)$$

$$= -\alpha_{k+1} (\nabla f(x^k - \alpha_k (\nabla f(x^k))^T))^T$$

and similarly for $x^{k+1} - x^k$:

$$x^{k+1} - x^k = x^k - \alpha_k (\nabla f(x^k))^T - x^k$$
$$= -\alpha_k (\nabla f(x^k))^T$$

And therefore we see that:

$$\langle (x^{k+2} - x^{k+1}), (x^{k+1} - x^k) \rangle_{\mathbb{R}^n} = 0$$

$$\iff \left(-\alpha_{k+1} (\nabla f(x^k - \alpha_k (\nabla f(x^k))^T)) \right) \cdot \left(-\alpha_k (\nabla f(x^k))^T \right) = 0$$

$$\iff \left(\nabla f(x^k - \alpha_k (\nabla f(x^k))^T) \right) \cdot \left(\nabla f(x^k) \right)^T \right) = 0$$

Furthermore, we recall that α_k is chosen s.t. $\alpha_k = \arg\min \left(f\left(x^k - \alpha_k(\nabla f(x^k))^T\right)\right)$, and this condition is satisfied $\iff \frac{\partial}{\partial \alpha_k} \left(f\left(x^k - \alpha_k(\nabla f(x^k))^T\right)\right) = 0$, and since:

$$\frac{\partial}{\partial \alpha_k} \left(f \left(x^k - \alpha_k (\nabla f(x^k))^T \right) \right) = \left(\nabla f(x^k - \alpha_k (\nabla f(x^k))^T) \right) \cdot \left(- \nabla f(x^k) \right)^T \right)$$

It follows that the condition of $\alpha_k = \arg\min \left(f(x^k - \alpha_k (\nabla f(x^k))^T) \right)$ is equivalent to the condition of $\langle (x^{k+2} - x^{k+1}), (x^{k+1} - x^k) \rangle_{\mathbb{R}^n} = 0.$

4.2 The Rosenbrock Banana Function

Let f be the function defined for all $x = (x_1, x_2)^T$ in \mathbb{R}^2 by: $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$. Find the global minimum point \hat{x} of this function, and compute the condition number of the Hessian of f at \hat{x} . (This function is known as the Rosenbrock banana function, for which methods such as steepest descent converge very slowly).

Answer: We first compute all first and second partial derivatives:

$$\frac{\partial f}{\partial x_1} = -400x_1(x_2 - x_1) - 2(1 - x_1) = 400x_1^2 + 2x_1 - 400x_2 - 2, \qquad \frac{\partial f}{\partial x_2} = 200(x_2 - x_1^2)$$

$$\frac{\partial^2 f}{\partial x_1^2} = 800x_1 + 2, \qquad \frac{\partial^2 f}{\partial x_1 \partial x_2} = -400x_1, \qquad \frac{\partial^2 f}{\partial x_2^2} = 200$$

As such, we would like to set $\nabla f((x_1, x_2)^T) = 0$ to find the minimum, doing so will result in a system of linear equations as is evident if we do this explicitly:

$$\nabla f((x_1, x_2)^T) = 0$$
 $\iff 400x_1^2 + 2x_1 - 400x_2 - 2 = 0 \text{ and } 200(x_2 - x_1^2) = 0$
 $\iff 400x_2 = 400x_1^2 + 2x_1 - 2 \text{ and } x_2 = x_1^2$
 $\iff x_1 = 1 \text{ and } x_2 = x_1^2 = 1^2$

Therefore, we see that $\nabla(f(x_1, x_2)^T) = 0 \iff (x_1, x_2) = (1, 1)$. We next compute $\mathcal{H}(f(1, 1))$.

$$\mathcal{H}(f(1,1)) = \begin{pmatrix} 800x_1 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix} \bigg|_{(x_1, x_2) = (1, 1)} = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix}$$

And since $\det(\mathcal{H}(f(1,1))) = 400 > 0$ and $\left. \frac{\partial^2 f}{\partial x_1^2} \right|_{(x_1,x_2)=(1,1)} = 802 > 0$, by Sylvester's criterion, we now know that $\det(\mathcal{H}(f(1,1)))$ is positive-definite. Therefore, $\hat{x}=(1,1)$ is the global minimum of this function (global because f(1,1)=0, and $f(x)=a(x_2-x_1^2)^2+b(1-x_1)^2 \geq 0 \forall x \in \mathbb{R}^2$ since a,b>0ghgggy.

Furthermore, we recall that any $\mathcal{H}(f(\hat{x}))$ will be trivially normal, and therefore the condition number of $\mathcal{H}(f(\hat{x}))$, $\kappa(\mathcal{H}(f(\hat{x}))) = \frac{\lambda_{min}}{\lambda_{\min}}$. We thus compute $\mathcal{H}(f(\hat{x}))$'s eigenvalues:

$$\begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = 0$$

$$\iff \lambda^2 - 1002\lambda + 400 = 0$$

$$\iff (\lambda - (501 - \sqrt{250601})(\lambda - (501 + \sqrt{250601}) = 0$$

$$\iff \lambda = 501 \pm \sqrt{250601}$$

And therefore:

$$\kappa(\mathcal{H}(f(\hat{x}))) = \frac{501 + \sqrt{250601}}{501 - \sqrt{250601}} = \frac{\left(501 + \sqrt{250601}\right)^2}{501602} \approx 2$$

4.3 Quadratic Inequalities

Let f be the function defined on \mathbb{R}^n as $f(x) = \frac{1}{2}x^TQx - b^Tx$, with Q a positive definite symmetric $n \times n$ matrix and b a vector in \mathbb{R}^n . Let \hat{x} be the point of global minimum of f. Let E(x) denote the quantity $E(x) = \frac{1}{2}(x-\hat{x})^TQ(x-\hat{x})$. (You can think of it as the Q-norm of $(x-\hat{x})$).

Show that $E(x) = f(x) - f(\hat{x})$. Use this to write the inequality (8.42) from your textbook in terms of values of f. Compare with the weaker inequality (8.47), valid for a more general class of functions.

Proof. We can show the identity of $E(x) = f(x) - f(\hat{x})$ directly. First, we note that $\nabla f(x) = 0 \iff$

 $Qx - b = 0 \iff x = Q^{-1}b$. The rest is just algebra:

$$\begin{split} E(x) &= \frac{1}{2}(x-\hat{x})^T Q(x-\hat{x}) \\ &= \frac{1}{2}(x^T - b^T (Q^{-1})^T) Q(x - Q^{-1}b) \\ &= \frac{1}{2} \left(x^T Q x - b^T (Q^{-1})^T Q x - x^T Q Q^{-1}b + b^T (Q^{-1})^T Q Q^{-1}b \right) \\ &= \frac{1}{2} \left(x^T Q x - b^T Q^{-1} Q x - x^T Q Q^{-1}b + b^T Q^{-1}Q Q^{-1}b \right) \\ &= \frac{1}{2} \left(x^T Q x - b^T x - x^T b + b^T Q^{-1}b \right) \\ &= \left(\frac{1}{2} \left(x^T Q x \right) - b^T x \right) - \left(-\frac{1}{2} \left(b^T Q^{-1}b \right) \right) \\ &= f(x) - \left(\frac{1}{2} \left(b^T Q^{-1}b \right) - b^T Q^{-1}b \right) \right) \\ &= f(x) - \left(\frac{1}{2} \left(\left(Q^{-1}b \right)^T Q \left(Q^{-1}b \right) \right) - b^T \left(Q^{-1}b \right) \right) \\ &= f(x) - \left(\frac{1}{2} \left(\hat{x}^T Q \hat{x} \right) - b^T \hat{x} \right) \\ &= f(x) - f(\hat{x}) \end{split}$$

Thus, inequality (8.42) may be written as:

$$E(X_{k+1}) \le \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^2 E(x_k) \quad \equiv \quad f(x_{k+1}) - f(\hat{x}) \le \left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^2 \left(f(x_{k+1}) - f(\hat{x})\right)$$

And inequality (8.47) we recall is:

$$f(x_{k+1}) - f(\hat{x}) \le \left(1 - \frac{\lambda_{\max}}{\lambda_{\min}}\right) \left(f(x_{k+1}) - f(\hat{x})\right)$$

Thus, since λ_{\max} , $\lambda_{\min} > 0$ and $\lambda_{\max} \ge \lambda_{\min}$, then we know that: $0 \le \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} < 1$ and $0 \le 1 - \frac{\lambda_{\min}}{\lambda_{\max}} < 1$. Therefore also, $\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} \le \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max}} = 1 - \frac{\lambda_{\min}}{\lambda_{\max}}$. And as such, we also have:

$$\left(\frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}\right)^2 \le \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}} \le \frac{\lambda_{\max} - \lambda_{\min}}{\lambda_{\max}} = 1 - \frac{\lambda_{\min}}{\lambda_{\max}}$$

And hence the Quadratic Case will likely converge faster than a non-Quadratic Case given the same eigenvalues for each. \Box

4.4 Conjugate Gradient Algorithm Example

Apply the Conjugate Gradient Algorithm to the quadratic function defined for all $x = (x_1, x_2)^T$ in \mathbb{R}^n as $f(x) = (2x_1 - x_2)^2 + x_2^2 + 2x_2$ starting at $x^0 = (5/2, 2)^T$.

Answer:

since degree(f) = 2, we may write:

$$f(x,y) = g(x,y) := \frac{1}{2} ((x,y)\mathcal{H}(f)(x,y)^T) - (-K(\nabla f(x,y)))^T(x,y) + c$$

Where $K: \operatorname{Im}(\nabla) \to \mathbb{R}^{1 \times 2}$ such that K removes all non-constant terms in $\nabla f(x)$. Here, we have:

$$c = 0,$$
 $b = (-K(\nabla(f(x))))^T = \begin{pmatrix} 0 \\ -2 \end{pmatrix},$ and $\mathcal{H}(f(x,y)) = \begin{pmatrix} 8 & -4 \\ -4 & 4 \end{pmatrix} := \mathcal{H}(f)$

We now show the tremendously laborious calculations below:

(1)
$$r_0 = p_0 = b - \mathcal{H}(f)x_0 = \begin{pmatrix} 0 \\ -2 \end{pmatrix} - \begin{pmatrix} 8 & -4 \\ -4 & 4 \end{pmatrix} \begin{pmatrix} 5/2 \\ 2 \end{pmatrix} = \begin{pmatrix} -12 \\ 0 \end{pmatrix}$$

(2)
$$\alpha_0 = \frac{r_0^T r_0}{p_0^T \mathcal{H}(f) p_0} = \frac{(-12, 0) \begin{pmatrix} -12 \\ 0 \end{pmatrix}}{(-12, 0) \begin{pmatrix} 8 & -4 \\ -4 & 4 \end{pmatrix} \begin{pmatrix} -12 \\ 0 \end{pmatrix}} = \frac{12^2}{12^2 \cdot 8} = \frac{1}{8}$$

(3)
$$x_1 = x_0 + \alpha_0 p_0 = {5/2 \choose 2} + \frac{1}{8} {-12 \choose 0} = {1 \choose 2}$$

$$(4) r_1 = r_0 - \alpha_0 \mathcal{H}(f) p_0 = \begin{pmatrix} -12 \\ 0 \end{pmatrix} - \frac{1}{8} \begin{pmatrix} 8 & -4 \\ -4 & 4 \end{pmatrix} \begin{pmatrix} -12 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix}$$

(5)
$$\beta_0 = \frac{r_1^T r_1}{r_0^T r_0} = \frac{(0, -6) \begin{pmatrix} 0 \\ -6 \end{pmatrix}}{(-12, 0) \begin{pmatrix} -12 \\ 0 \end{pmatrix}} = \frac{6^2}{12^2} = \frac{1}{4}$$

(6)
$$p_1 = r_1 + \beta_0 p_0 = \begin{pmatrix} 0 \\ -6 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} -12 \\ 0 \end{pmatrix} = \begin{pmatrix} -3 \\ -6 \end{pmatrix}$$

(7)
$$\alpha_1 = \frac{r_1^T r_1}{p_1^T \mathcal{H}(f) p_1} = \frac{(0, -6) \begin{pmatrix} 0 \\ -6 \end{pmatrix}}{(-3, -6) \begin{pmatrix} 8 & -4 \\ -4 & 4 \end{pmatrix} \begin{pmatrix} -3 \\ -6 \end{pmatrix}} = \frac{6^2}{2 \cdot 6^2} = \frac{1}{2}$$

(8)
$$x_2 = x_1 + \alpha_1 p_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} -3 \\ -6 \end{pmatrix} = \begin{pmatrix} -1/2 \\ -1 \end{pmatrix}$$

And hence we see that $x_2 = \begin{pmatrix} -1/2 \\ -1 \end{pmatrix}$ is our final solution to the Conjugate Gradient Algorithm (and is indeed a global minimum).

4.5 Steepest Descent Example

Consider the problem:

minimize
$$5x^2 + 5y^2 - xy - 11x + 11y + 11$$

- (a) Find a point satisfying the first-order necessary conditions for a solution.
- (b) Show that this point is a global minimum.
- (c) What would be the rate of convergence of steepest descent for this problem?
- (d) Starting at x = y = 0, how many steepest descent iterations would it take (at most) to reduce the function value to 10^{-11} ?

Let us first compute all the 1st and 2nd order partial derivatives $(f(x,y) = 5x^2 + 5y^2 - xy - 11x + 11y + 11)$:

$$\frac{\partial g}{\partial x} = 10x - y - 11 \qquad \frac{\partial f}{\partial y} = 10y - x + 11$$

$$\frac{\partial^2 f}{\partial x^2} = 10 \quad \frac{\partial^2 f}{\partial x \partial y} = -1 \quad \frac{\partial^2 f}{\partial y^2} = 10$$

Furthermore, since degree(f) = 2, we may write:

$$f(x,y) = g(x,y) := \frac{1}{2} ((x,y)\mathcal{H}(f)(x,y)^T) - (-K(\nabla f(x,y)))^T(x,y) + c$$

Where $K: \operatorname{Im}(\nabla) \to \mathbb{R}^{1 \times 2}$ such that K removes all non-constant terms in $\nabla f(x)$, i.e., here $K(\nabla f(x,y)) = (-11,11)$. (Note: This is also why we are easily able to apply the method of steepest descent).

(a) **Answer:** We see that the first-order conditions will be satisfied $\iff \nabla f(x,y) = 0 \iff (10x - y - 11, 10y - x + 11) = (0,0)$. We can solve this system of linear equations through the following row reductions:

$$\left(\begin{array}{cc|c} 10 & -1 & 11 \\ -1 & -10 & 11 \end{array}\right) \sim \left(\begin{array}{cc|c} 1 & -1/10 & 11/10 \\ 0 & 99/10 & -99/10 \end{array}\right) \sim \left(\begin{array}{cc|c} 1 & 0 & 1 \\ 0 & 1 & -1 \end{array}\right)$$

And therefore we see that $(\hat{x}, \hat{y}) = (1, -1)$ satisfies our first order conditions.

(b) Answer: We can easily see that the hessian is defined as:

$$\mathcal{H}(f) = \begin{pmatrix} 10 & -1 \\ -1 & 10 \end{pmatrix}$$

And since $\det(\mathcal{H}(f)) = 99 > 0$ and $\frac{\partial^2 f}{\partial x^2} = 10 > 0$, by Sylvester's criterion, we now know that $\det(\mathcal{H}(f(1,1)))$ is positive-definite. Therefore, $(\hat{x},\hat{y}) = (1,-1)$ is the global minimum of this function.

- (c) **Answer:** We can quickly see that the two eigenvalues of the Hessian are $\lambda_1=9, \lambda_2=11$ since: $\det\left(\mathcal{H}(f(1,1)-\lambda I_{n\times n}\right)=0\iff (10-\lambda)^2-1=0\iff (\lambda-9)(\lambda-11)=0\iff \lambda=9,11.$ Therefore, we have the condition number, $\kappa(f)=\frac{\lambda_2}{\lambda_1}=\frac{11}{9},$ and hence we have that the rate of convergence here will be: $\rho=\left(\frac{11/9-1}{11/9+1}\right)^2=\frac{1}{10^2}.$
- (d) **Answer:** We first recall that $E(x) := \frac{1}{2}(x-\hat{x})^T \mathcal{H}(f)(x-\hat{x}) = f(x) f(\hat{x})$. However, $f(\hat{x}) = 0$, therefore, $E(x_k) = f(x_k)$. We also recall that $E(x_k) \le \rho^k E(x_0)$, and $f(x_0) = 11$. Therefore:

$$E(x_k) \le \rho^k E(x_0)$$

$$= \rho^k f(x_0)$$

$$= \left(\frac{1}{10^2}\right)^k (11) = 11 \cdot (10)^{-2k}$$

And hence we see that $11 \cdot (10)^{-2k} \le 10^{-11} \iff \log_{10}(11) \le 2k - 11 \iff k \ge \frac{11 + \log_{10}(11)}{2}$ and since this value is ≈ 6.02 , we see it will take at most 7 iterations for us to reduce the function value down to 10^{-11} .

4.6 Symmetric Matrices' Eigenvalues are Q-conjugate

Let Q be a symmetric matrix. Show that any two eigenvectors of Q, corresponding to distinct eigenvalues, are Q-conjugate.

Proof. Suppose v_1, v_2 are eigenvectors of Q corresponding to eigenvalues λ_1, λ_2 where $\lambda_1 \neq \lambda_2$ and $Q = Q^T$ (I.e, $Qv_i = \lambda_i v_i$, i = 1, 2). We can thus prove this fact quite easily by noticing:

$$\lambda_1 \langle v_1, v_2 \rangle_Q = \lambda_1 v_1^T Q v_2 = (\lambda_1 v_1)^T Q v_2 = (Q v_1)^T Q v_2 = v_1^T Q^T Q v_2$$

= $v_1^T Q (Q v_2) = v_1^T Q \lambda_2 v_2 = \lambda_2 v_1^T Q v_2 = \lambda_2 \langle v_1, v_2 \rangle_Q$

And since
$$\lambda_1 \neq \lambda_2 \implies \lambda_1 \langle v_1, v_2 \rangle_Q = \lambda_2 \langle v_1, v_2 \rangle_Q \iff \langle v_1, v_2 \rangle_Q = 0.$$