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1 Definition to Be Used in The Proceeding Problems

Definition. 1.1: Metric Space

A metric space is an ordered pair (M,d) where M is a set and d is a function d : M ×M → R
such that the following three conditions hold:

1. d(x, y) = 0 ⇐⇒ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z)

Definition. 1.2: Open Ball

The open ball inside the metric space (M,d) denoted Br(x) is the set:

Br(x) := {y ∈ (M,d) : d(y, x) < r}

Definition. 1.3: Open

A set U ⊂ (M,d) is called open if ∀x ∈ U , ∃r > 0, r ∈ R such that:

Br(x) ⊂ U

Definition. 1.4: Closed

A set U ⊂ (M,d) is called closed if U c = {y ∈ (M,d) : y 6∈ U} (the compliment of U) is open.

Definition. 1.5: Bounded

A set U ⊂ (M,d) is called bounded if ∃ r <∞, r ∈ R s.t. U ⊂ Br(0).

Definition. 1.6: Convex Function

We say that a function, f : Rn → R, is Convex if and only if epi(f) is a convex set, where

epi(f) :=
{

(x, µ)
∣∣∣x ∈ Rn, µ ∈ R, µ ≥ f(x)

}
⊆ Rn+1

2



2 Applications of Real Analysis, Multivariate Calculus &
Linear Algebra

2.1 The Existence of a Solution for a Minimization Problem
Show that if f(x) is continuous on Rn and lim||x||→∞ f(x) =∞ then there exists x̂ with f(x̂) ≤ f(x)
for all x ∈ Rn (i.e. the unconstrained minimization problem for f(x) has a solution).

Proof. Let us define our metric as the standard Euclidean metric in Rn
(
d(x, y) :=

√∑n
i=1(xi − yi)2

)
(and hence d(x, 0) = ||x|| =

√∑n
i=1(xi)2

)
so that we are working in a the metric space: (Rn, d).

Let us now choose an r ∈ R which satisfies the following:

If m = inf
||x||=r

f(x), then ∀ ||y|| ≥ r, f(y) ≥ m

And we know by the continuity and the fact that lim||x||→∞ f(x) =∞, there must exist (many) rs.
We can show this explicitly from the definition of a limit. We say lim||x||→∞ f(x) =∞ if ∀ε > 0 ∃δ
s.t. if |||x|| − ∞| < δ =⇒ ||f(||x||) −∞|| < ε. This is intuitively equivalent to saying: ∀M >> 0,
∃r s.t. if ||x− 0|| ≥ r =⇒ ||f(||x||)|| > M . Next, we recall the following theorem:

Theorem. 2.1: The Extreme Value Theorem

If f is continuous on a compact set Ω, then f attains an absolute maximum and an absolute
minimum in Ω.

Let us now recall that S ⊂ Rn is compact ⇐⇒ S is closed and bounded (this is not true in general
for any (M,d), but is for Rn). As such, Br(0) is trivially bounded (by r), and is closed by the
definition of closure. Therefore, by Theorem 2.1, we know ∃ x̂ s.t. ∀x ∈ Br(0), f(x̂) ≤ f(x), and
since we have the property that ∀y ∈ [Br(0)]c, f(y) ≥ m =⇒ f(y) ≥ f(x̂). Thus, we have now
proven what we wanted to show (∃ x̂ which is a global minimum).
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2.2 Intersection of Closed Sets is Closed
Show that the intersection of any number of closed sets is a closed set.
Let us recall a fundamental Theorem of Set Theory:

Theorem. 2.2: De Morgan’s Law

If Ai ⊂ S is a set ∀i ∈ I, where I is an indexing set which may be finite or infinite, then:(⋂
i∈I

Ai

)c

=
⋃
i∈I

(Ai)c.

Proof. We prove De Morgan’s Law by induction (for the case that |I| ≤ ℵ0):
For |I| = 1 the result is trivial. When |I| = 2, we have (A1 ∩ A2)c = Ac

1 ∪ Ac
2. Assume x ∈

(A1 ∩ A2)c ⇐⇒ x 6∈ (A1 ∩ A2) ⇐⇒ x 6∈ A1 or 6∈ A2 ⇐⇒ x ∈ Ac
1 or x ∈ Ac

2 ⇐⇒ x ∈ Ac
1 ∪ Ac

2,
which =⇒ (A1 ∩ A2)c ⊆ Ac

1 ∪ Ac
2 and by assuming the last step of our process (x ∈ Ac

1 ∪ Ac
2), we

find (A1 ∩A2)c ⊇ Ac
1 ∪Ac

2 which =⇒ (A1 ∩A2)c = Ac
1 ∪Ac

2.
We now assume De Morgan’s Law holds for |I| = n− 1, then for |I| = n,( n⋂

i=1
Ai

)c

=
[( n−1⋂

i=1
Ai

)⋂
An

]c
∗=
( n−1⋂

i=1
Ai

)c⋃
Ac

n
∗∗=
( n−1⋃

i=1
Ac

i

)⋃
Ac

n =
n⋃

i=1
Ac

i

Where the ∗= step uses De Morgan’s Law for |I| = 2, and ∗∗= uses our inductive hypothesis.

We next consider another Theorem to be used to answer this problem:
Theorem. 2.3: Union of Open Sets is Open

If Ai ⊆ (M,d) is open ∀i ∈ I, (I an indexing set), then
⋃

i∈I Ai is open.

Proof. If x ∈
⋃

i∈I , then ∃j s.t. x ∈ Aj , since Aj is open, ∃r > 0 s.t. Br(x) ⊂ Aj and therefore
∀x ∈

⋃
i∈I Ai, Br(x) ⊂ Aj ⊂

⋃
i∈I Ai which is our definition of openness.

Now, our question may be considered a Corollary of De Morgan’s Law (and Theorem 2.3):

Corollary. 2.1: Intersection of Closed Sets is Closed (I.e. the Question)

The intersection of any number of closed sets is a closed set.

Proof. Let Ai be a closed set for all i ∈ I, where like before I is an indexing set. Then, by De
Morgran’s Law: (⋂

i∈I

Ai

)c

=
⋃
i∈I

(Ai)c.

We now recall that a set, S, is open if and only if its compliment, Sc, is closed. Since ∀i, Ai is closed
=⇒ Ac

i is open ∀i ∗=⇒
⋃

i∈I Ai is open ( ∗=⇒ by Theorem 2.3). We now know (∪i∈IAi)c is open
=⇒ ∪i∈IAi is closed.
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2.3 The Maximum of a Set of Convex Functions’ is Convex
Show that if f1, f2, . . . fm are convex functions on Rn, then the function g(x) = max

(
f1(x), . . . , fm(x)

)
is also convex.

Proof. Let us recall the following definition of a Convex function:
Definition. 2.1: Convex Function

We say that a function, f : Rn → R, is Convex if and only if epi(f) is a convex set, where

epi(f) :=
{

(x, µ)
∣∣∣x ∈ Rn, µ ∈ R, µ ≥ f(x)

}
⊆ Rn+1

And hence, if we let I = {1, . . . ,m};

epi
(

max
(
f1(x), . . . , fm(x)

))
=
{

(x, µ)
∣∣∣x ∈ Rn, µ ∈ R, µ ≥ max

i∈I
(fi)

}
=
⋂
i∈I

{
(x, µ)

∣∣∣x ∈ Rn, µ ∈ R, µ ≥ fi

}
=
⋂
i∈I

epi
(
fi(x)

)
And since the intersection of convex sets is convex, we can conclude that g(x) is convex.

We quickly prove that the intersection of convex sets is convex: For |I| = 2, we have that if x1, x2 ∈ S1 ∩
S2 =⇒ x1, x2 ∈ S1 and S2, then ∀y ∈ S1 and S2, we have y = αx1 + (1−α)x2, α ∈ [0, 1], =⇒ y ∈ S1 ∩S2.
Since this is true ∀x1, x2 ∈ S1∩S2 and α ∈ [0, 1], we can conclude conclude that S1∩S2 is convex. Naturally,
the proof here extends very easily by inductions for all N (for |I| = n − 1, we know that S = ∩n−1

i=1 Si is
convex, and hence S ∩ Sn is convex). Hence ∀|I| ∈ N, we have that if Si is convex ∀i ∈ |I|, then ∩i∈ISi is
convex.

2.4 Approximating an Arbitrary Function
To approximate the function g over the interval [0, 1] by a polynomial p of degree ≤ n, we minimize the
following criterion:

f(a) =
∫ 1

0

(
g(x)− p(x)

)2
dx

where p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0. Find the equations satisfied by the optimal conditions
a = (a0, . . . , an).

Proof. We recall that if a is optimal =⇒ ∇f(a) = 0 (or does not exist). We thus compute:

∂f

∂ai
= ∂

∂ai

(∫ 1

0
(g − p)2dx

)
=
∫ 1

0

∂

∂ai
(g − p)2dx

= −2
∫ 1

0
xi(g − p)dx
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And hence by requiring ∇f(a) = 0 ≡ ∂f
∂ai

= 0 ∀i:∫ 1

0
xigdx =

∫ 1

0
xipdx

=
∫ 1

0

(
anx

n+i + an−1x
n+i−1 + · · ·+ a1x

i+1 + a0x
i
)
dx

=
n∑
j=0

aj

(∫ 1

0
xj+idx

)

= 1
1 + i+ j

n∑
j=0

aj

We can thus write the set of our equations in the form of HaT = B:
1 1/2 . . . 1/(n+ 1)

1/2 1/3 . . . 1/(n+ 2)
...

...
. . .

...
1/(n+ 1) 1/(n+ 2) . . . 1/(2n+ 1)



a0
a1
...
an

 =


∫ 1

0 gdx∫ 1
0 xgdx

...∫ 1
0 x

ngdx


Now, by noticing that H is what is referred to as a Hilbert Matrix, and by referencing the literature, we can
write down H−1 as:

(H−1)i,j = (−1)i+j(i+ j − 1)
(

n+ i

n− j + 1

)(
n+ j

n− i+ 1

)(
i+ j − 2
i− 1

)2

Therefore, a = (H−1B)T .

2.5 An Explicit Minimization Problem
A) Using the first-order necessary conditions, find a minimum point of the function:

f(x, y, z) = 2x2 + xy + y2 + yz + z2 − 6x− 7y − 8z + 9
B) Verify that the point is a relative minimum point by verifying that the second-order sufficiency condi-

tions hold.
C) Prove that the point is a global minimum point.
A) Proof. Let us start by simplifying our function a little:

f(x, y, z) = 2x2 + xy + y2 + yz + z2 − 6x− 7y − 8z + 9
= x2 − xy + (x+ y)2 − y2 + (y + z)2 − yz − 6x− 7y − 8z + 9
= (x− 3)2 + (x+ y)2 + (y + z)2 − y(y + z + x+ 7)− 8z

We now take the partial derivatives of each variable:

∂f

∂x
= 2(x− 3) + 2(x+ y)− y = 4x+ y − 6

∂f

∂y
= 2(x+ y) + 2(y + z)− (y + z + x+ 7)− y = x+ 2y + z − 7

∂f

∂z
= 2(y + z)− y − 8 = y + 2z − 8
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As such, we want to solve when the above partial derivatives are equal to 0. As such, we manipulate
the following matrix:[ 4 1 0 6

1 2 1 7
0 1 2 8

]
∼

[ 1 1/4 0 3/2
0 7/4 1 11/2
0 1 2 8

]
∼

[ 1 1/4 0 3/2
0 1 4/7 22/7
0 0 10/7 34/7

]

∼

[ 1 1/4 0 3/2
0 1 4/7 22/7
0 0 1 17/5

]
∼

[ 1 1/4 0 3/2
0 1 0 6/5
0 0 1 17/5

]
∼

[ 1 0 0 6/5
0 1 0 6/5
0 0 1 17/5

]
Which means we have a local minimum at:

(x, y, z) =
(

6
5 ,

6
5 ,

17
5

)

B) Proof. We begin by finding all the second order derivatives:

∂2f

∂x2 = ∂f

∂x

(
4x+ y − 6

)
= 4

∂2f

∂y2 = ∂f

∂y

(
x+ 2y + z − 7

)
= 2

∂2f

∂z2 = ∂f

∂z

(
y + 2z − 8

)
= 2

∂2f

∂y∂x
= ∂f

∂y

(
4x+ y − 6

)
= 1

∂2f

∂z∂x
= ∂f

∂z

(
4x+ y − 6

)
= 0

∂2f

∂z∂y
= ∂f

∂z

(
x+ 2y + z − 7

)
= 1

And by recalling the following theorem:

Theorem. 2.4: Clairuit’s Theorem

If f : U ⊆ Rn → R is of type Ck then:

∂mf

∂xm1
1 · · · ∂xmn

n
= ∂mf

∂xmi
i · · · ∂x

mj

j

Where
∑n

k=1 mk = m and (mi, . . . ,mk) is a rearrangement of (m1, . . . ,mn).

As such, we compute the Hessian of our function:

H(f) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 =


∂2f
∂x2

∂2f
∂y∂x

∂2f
∂z∂x

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂z∂y

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 =

(4 1 0
1 2 1
0 1 2

)

Next, we recall the following theorem which classifies critical point as local maximums, minimums,
saddles points, or inconclusive to be classified as follows:
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Theorem. 2.5: Critical Point Classifications

Let a be a critical point (∇f(a) = 0, or ∇f(a) does not exist), then:

(a) If H(f(a)) is positive definite, then f attains a local minimum at a.
(b) If H(f(a)) is negative definite, then f attains a local maximum at a.
(c) If H(f(a)) has both positive and negative eigenvalues, then a is a saddle point for f .

And if none of these conditions hold, our test is inconclusive.

We next need a way to check for positive definitiveness, we use the following theorem:

Theorem. 2.6: Sylvester’s criterion

If A ∈ Cn×n(⊃ Rn×n) is a Hermitian matrix, it is positive-definite if and only if all upper-left
sub matrices ∈ Ck×k ∀k where k ≤ n have positive determinants.

As such, we compute:

(a)

det

(4 1 0
1 2 1
0 1 2

)
= 4 det

(
2 1
1 2

)
− det

(
1 1
0 2

)
= 10 > 0

(b)

det
(

4 1
1 2

)
= 7 > 0

(c)
det(4) = 4 > 0

And hence now, we are finally able to conclude by the Critical Point Classifications and Sylvester’s
criterion, we may conclude that a =

(
6
5 ,

6
5 ,

17
5

)
is a relative minimum point.

C) Proof. To answer this question, we prove the following theorem:

Theorem. 2.7: One Global Min for Strictly Convex Functions

A strictly convex function will have at most one global minimum.

Proof. Suppose that f : U ⊆ Rn → R has a local minimums at a1 and a2, where: f(a1) ≤ f(a2), a1 6=
a2. Since f is a convex function, we have ∀bi ∈ U

f
(
βb1 + (1− β)a2

)
< βf(b1) + (1− β)f(b2), 0 < β < 1

Now, let α ∈ (0, 1), then:

f(a1) ≤ f(a2) =⇒ αf(a1) ≤ αf(a2)

which implies:

αf(a1) + (1− α)f(a2) ≤ αf(a2) + (1− α)f(a2) = f(a2)

And due to our function being strictly convex, we have:
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f
(
αa1 + (1− α)a2

)
< f(a2) (1)

Since a2 is local minimum, ∃ r > 0, r ∈ R s.t. ∀ x ∈ Br(a2)\{a2}, we have must have f(a2) ≤ f(x).
We can now choose α small enough s.t. αa1 + (1− α)a2 ∈ Br(a2). Which implies

f(αa1 + (1− α)a2) > f(a2) (2)

And hence we have arrived at a contradiction since it is impossible to satisfy the following equations
simultaneously:

f
(
αa1 + (1− α)a2

)
≤ f(a2) ∀α ∈ (0, 1) (1)

f(αa1 + (1− α)a2) > f(a2) α ∈ (0, 1) and small enough (2)

And hence it must be that a1 = a2, and hence if f is strictly convex and has a local minimum, that
local minimum is unique and actually f ’s global minimum.

And since the positive definiteness of the Hessian is a sufficient condition for strict convexity, which
we showed to be so in Part B, we may conclude that a =

(
6
5 ,

6
5 ,

17
5

)
is a global minimum.

3 Applications of Matrix Calculus
3.1 Minimization of the Modulus of a Linear Equations
Consider the problem minx

(
f(x)

)
for f(x) = |Ax− b|2, where A is an m× n matrix with zero null space, b

is an m dimensional vector, and the solution x is an n dimensional vector.

1. What is the first order necessary condition for optimality?
2. Compute the Hessian of f and show that it is positive definite.
3. Conclude from (a) and (b) that f has a unique global minimum. Indicate what theorems you are using.

Then, give a closed form expression for the global minimizer x̂.
4. Give explicit answers to the questions above when:

A =

2 −1 0
0 2 2
0 1 0
1 0 1

 and b =

2
6
2
0



3.1.1 Part 1
Answer:
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Lemma. 3.1: Matrix Calculus Lemmas

If x is an (n × 1) variable vector, and A an (m × n) and b an (m × 1) constant matrix and vector
respectively. Then we have the following general results:

1.
∂bTAx
∂x = AT b

2.
∂xTAT b
∂x = AT b

3.
∂xTAx
∂x = (A+AT )x

Note: we use the “Denominator layout”, for both this and Question #2 i.e. by yT and x.

We omit the proofs for the above as their are pretty standard in most 2nd year calculus classes.

Second, we have the following lemma:

Lemma. 3.2: Matrix Modulus Lemma

If x is an (n × 1) variable vector, and A an (m × n) and b an (m × 1) constant matrix and vector
respectively. Then we have the following general results:

|Ax− b|2 = (Ax− b)T (Ax− b)

Proof. Computing directly, we have:

|Ax− b|2 =
m∑
j=1

( n∑
i=1

ajixj − bj
)2

Furthermore,

(Ax− b) =


∑n

i=1 a1ixi − b1
...∑n

i=1 amixi − bm


And hence:

(Ax− b)T (Ax− b) =
( n∑

i=1

a1ixi − b1, . . . ,

n∑
i=1

amixi − bm
)

∑n

i=1 a1ixi − b1
...∑n

i=1 amixi − bm


=

m∑
j=1

( n∑
i=1

ajixj − bj
)2

= |Ax− b|2
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Now, back to the question at hand:

From Lemma 1.2 we know |Ax− b|2 = (Ax− b)T (Ax− b), thus, we first multiply out:

|Ax− b|2 = (Ax− b)T (Ax− b)

= xTATAx− bTAx− xTAT b+ bT b

since (AB)T = BTAT and (A+B)T = AT +BT

Therefore, we can now compute the gradient:

∇|Ax− b|2 = ∂

∂x

(
xTATAx− bTAx− xTAT b+ bT b

)
= (2ATA)x−AT b−AT b+ 0

= 2ATAx− 2AT b

Next, for optimality, we recall that if we are considering a domain Ω ⊆ Rn, we must have ∇f · d ≥ 0 ∀d,
where d is a feasible direction vector which stays in Ω given x. Thus, for optimality, we must have:

2(ATAx−AT b) · d ≥ 0
and for the interior of Ω, ∇f · d ≥ 0 ⇐⇒ ∇f = 0, we have (and since A has a zero null space we know
AAT = ATA must have an inverse:

x̂ = (ATA)−1(AT b)

H(f) = 2 ·


∑m

j=1 aj1aj1 . . .
∑m

j=1 aj1ajn
...

. . .
...∑m

j=1 ajnaj1 . . .
∑m

j=1 ajnajn


3.1.2 Part 2
To compute the Hessian, we recall H(f) = ∇2f , and hence:

H(f) = ∇2f = ∇(∇f) = ∇(2ATAx− 2AT b) = 2(ATA)T = 2ATA
Furthermore, we know this is positive-semi-definite since it is the Gram matrix of linearly independent
vectors., i.e., 1

2H(f) = 〈ajk1 , ajk2〉.

3.1.3 Part 3

Firstly, we recall that H(f) is positive definite, which by Prop 5, Ch 7.4 in the textbook implies that f is
convex. Next, we recall that since we are considering Ω = Rn, which is a convex set, we have that f is a
convex function on a convex set and hence we can set ∇f = 0 (as we showed how to do explicity above) to
find the global minimum.
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3.1.4 Part 4
To give explicit answers to the equations above, we need ATA, AT b, and (ATA)−1. We thus compute:

ATA =
(

2 0 0 1
−1 2 1 0

)2 −1
0 2
0 1
1 0

 =
(

5 −2
−2 6

)

AT b =
(

2 0 0 1
−1 2 1 0

)2
6
2
0

 =
(

4
12

)

(ATA)−1 = 1
det(ATA)

(
6 2
2 5

)
= 1

13

(
3 1
1 5/2

)
Therefore, we see that for optimality (d defined as above), we must have:

∇f = 2

[(
5 −2
−2 6

)
x−

(
4
12

)]
For optimality we have:

∇f = 2

[(
5 −2
−2 6

)
x−

(
4
12

)]
· d ≥ 0

And in the interior (which in this case is all of our domain, Rn) we have:

x̂ = 1
13

(
3 1
1 5/2

)(
4
12

)
= 1

13

(
24
34

)
And for the Hessian, we have:

H(f) =
(

10 −4
−4 12

)
3.2 Newton’s Method Applied to the Minimization of the Modulus’ Cu-

bic
Consider Newton’s method applied to the minimization of the function f(x) = |x|3, where x ∈ Rn.

1. Compute the gradient and the Hessian of f .

2. Use the formula
(
I + uuT

)−1 = I − 1
2uu

T , where I is the n × n identity matrix, and u ∈ Rn is a
unit vector to compute the inverse of the Hessian of f . Use this to give the explicit formula for the
iteration step in Newton’s method for this function.

Answer:

3.2.1 Part 1

|x|3 =
( n∑

i=1

(xi)2
)3/2

12



And hence:

∂

∂xj
|x|3 = 3xj

( n∑
i=1

(xi)2
)1/2

=⇒ ∇|x|3 =

(
3x1

( n∑
i=1

(xi)2
)1/2

, . . . , 3xn
( n∑

i=1

(xi)2
)1/2

)
= 3xT |x|

And as such,

H(f) = ∇(3xT |x|) = 3
(
∂|x|
∂x · x

T + ∂xT

∂x · |x|
)

By the Matrix Chain Rule

= 3
(

x
|x| · x

T + 1n×n · |x|
)

Since ∂|x|
∂x = x

|x| and ∂xT

∂x = 1n×n

= 3|x|
(

x
|x| ·

xT

|x| + 1n×n

)
We can check that our above computations are indeed correct directly, since:

∂2

∂xkxj
|x|3 = 3xj

n∑
i=1

(xi)2 =
{

6(xj)2 + 3
∑n

i=1(xi)2 if k = j

6xkxj if k 6= j

Therefore,

H(f) =


6(x1)2 + 3

∑n

i=1(xi)2 6x2x1 . . . 6xn−1x1 6xnx1
6x1x2 6(x2)2 + 3

∑n

i=1(xi)2 . . . 6xn−1x2 6xnx2
...

...
. . .

...
...

6x1xn−1 6x2xn−1 . . . 6(xn−1)2 + 3
∑n

i=1(xi)2 6xnxn−1
6x1xn 6x2xn . . . 6xn−1xn 6(xn)2 + 3

∑n

i=1(xi)2



= 3
(

x
|x| · x

T + 1n×n · |x|
)

3.2.2 Part 2
From the identity of

(
1n×n + uuT

)−1 = 1n×n − 1
2uu

T , we can see that:

(
H(f)

)−1 =

(
3|x|
(

x
|x| ·

xT

|x| + 1n×n

))−1

=
(

x
|x| ·

xT

|x| + 1n×n

)−1

(3|x|)−1

=
(
1n×n −

1
2

x
|x| ·

xT

|x|

)(
1

3|x|

)
Therefore, since in Newton’s Method, have that xk+1 = xk −

(
H(f)

)−1(∇f)T , and hence:
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xk+1 = xk −
(
1n×n −

1
2

xk
|xk|

· xTk
|xk|

)(
1

3|xk|

)(
3xTk |xk|

)T
= xk −

(
1n×n −

1
2

xk
|xk|

· xT

|xk|

)
· xk

= 1n×nxk −
(
1n×n −

1
2

xk
|xk|

· xTk
|xk|

)
· xk

= 1
2

(
xk
|xk|

· xTk
|xk|

)
· xk

3.3 Steepest Decent

Let f(x) = 1
2

(
(x1)2 + c(x2)2) where x =

(
x1
x2

)
and c > 1. Consider applying the method of of steepest

descent to this function, starting at x0 =
(
c
1

)
. Find a formula for xk.

Answer:
If we assume αk = · · · = α0, we can compute that:

∇f(x) =
(
x1
cx2

)
=⇒ xm+1 = xm − α∇f(xm) =

(
xm1
xm2

)
− α

(
xm1
cxm2

)
=
(

(1− α)xm1
(1− cα)xm2

)
Next, since we see that this holds ∀m > 0, and hence we naturally will have:

xk =
(

(1− α)kx0
1

(1− cα)kx0
2

)
And therefore if x0 = (c, 1)T , then:

xk =
(
c(1− α)k
(1− cα)k

)
Now, we need to prove that αk = · · · = α0. To do this, we note that the Wolfe Conditions imply that
αk = 2

1+c .

4 Corollaries and Examples of Common Algorithms
4.1 Steepest Descent
Let x1, x2, . . . , xk, . . . be the sequence obtained by applying the method of steepest descent to a continuously
differentiable function f , starting at x0. Show that for any k ≥ 0, the vector (xk+2 − xk+1) is perpendicular
to (xk+1 − xk). (This explains the “orthogonal zig-zag pattern” for steepest descent mentioned in class).
Hint: recall that αk is chosen to minimize the function: α→ f

(
xk − α(∇f(xk))T

)
; use calculus!

Proof. We recall that two vectors, u, v in Rn are orthogonal ⇐⇒ 〈u, v〉Rn := uT v = 0. Thus, let us first
alter the expressions (xk+2 − xk+1) and (xk+1 − xk) by noting that since we are working within the context
of steepest decent, we have that xk+1 = xk − αk(∇f(xk))T =⇒

14



xk+2 − xk+1 = xk+1 − αk+1(∇f(xk+1))T − xk + αk(∇f(xk))T

=
(
xk − αk(∇f(xk))T

)
− αk+1(∇f(xk − αk(∇f(xk))T ))T −

(
xk − αk(∇f(xk))T

)
= −αk+1(∇f(xk − αk(∇f(xk))T ))T

and similarly for xk+1 − xk:

xk+1 − xk = xk − αk(∇f(xk))T − xk

= −αk(∇f(xk))T

And therefore we see that:

〈(xk+2 − xk+1), (xk+1 − xk)〉Rn = 0

⇐⇒
(
− αk+1(∇f(xk − αk

(
∇f(xk))T )

))
·
(
− αk(∇f(xk))T

)
= 0

⇐⇒
(
∇f(xk − αk

(
∇f(xk))T

))
·
(
∇f(xk))T

)
= 0

Furthermore, we recall that αk is chosen s.t. αk = arg min
(
f
(
xk − αk(∇f(xk))T

))
, and this condition is

satisfied ⇐⇒ ∂
∂αk

(
f
(
xk − αk(∇f(xk))T

))
= 0, and since:

∂

∂αk

(
f
(
xk − αk(∇f(xk))T

))
=
(
∇f(xk − αk

(
∇f(xk))T

))
·
(
−∇f(xk))T

)
It follows that the condition of αk = arg min

(
f
(
xk − αk(∇f(xk))T

))
is equivalent to the condition of

〈(xk+2 − xk+1), (xk+1 − xk)〉Rn = 0.

4.2 The Rosenbrock Banana Function
Let f be the function defined for all x = (x1, x2)T in R2 by: f(x) = 100(x2 − x2

1)2 + (1 − x1)2. Find the
global minimum point x̂ of this function, and compute the condition number of the Hessian of f at x̂. (This
function is known as the Rosenbrock banana function, for which methods such as steepest descent converge
very slowly).

Answer: We first compute all first and second partial derivatives:

∂f

∂x1
= −400x1(x2 − x1)− 2(1− x1) = 400x2

1 + 2x1 − 400x2 − 2, ∂f

∂x2
= 200(x2 − x2

1)

∂2f

∂x2
1

= 800x1 + 2, ∂2f

∂x1∂x2
= −400x1,

∂2f

∂x2
2

= 200

As such, we would like to set ∇f((x1, x2)T ) = 0 to find the minimum, doing so will result in a system of
linear equations as is evident if we do this explicitly:

∇f((x1, x2)T ) = 0
⇐⇒ 400x2

1 + 2x1 − 400x2 − 2 = 0 and 200(x2 − x2
1) = 0

⇐⇒ 400x2 = 400x2
1 + 2x1 − 2 and x2 = x2

1

⇐⇒ x1 = 1 and x2 = x2
1 = 12
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Therefore, we see that ∇(f(x1, x2)T ) = 0 ⇐⇒ (x1, x2) = (1, 1). We next compute H(f(1, 1)).

H(f(1, 1)) =
(

800x1 + 2 −400x1
−400x1 200

)∣∣∣∣∣
(x1,x2)=(1,1)

=
(

802 −400
−400 200

)
And since det(H(f(1, 1))) = 400 > 0 and ∂2f

∂x2
1

∣∣∣
(x1,x2)=(1,1)

= 802 > 0, by Sylvester’s criterion, we now know

that det(H(f(1, 1))) is positive-definite. Therefore, x̂ = (1, 1) is the global minimum of this function (global
because f(1, 1) = 0, and f(x) = a(x2 − x2

1)2 + b(1− x1)2 ≥ 0∀x ∈ R2 since a, b > 0ghgggy.

Furthermore, we recall that any H(f(x̂)) will be trivially normal, and therefore the condition number of
H(f(x̂)), κ(H(f(x̂))) = λmin

λmin
. We thus compute H(f(x̂))’s eigenvalues:(

802 −400
−400 200

)
−
(
λ 0
0 λ

)
= 0

⇐⇒ λ2 − 1002λ+ 400 = 0

⇐⇒ (λ− (501−
√

250601)(λ− (501 +
√

250601) = 0

⇐⇒ λ = 501±
√

250601

And therefore:

κ(H(f(x̂))) = 501 +
√

250601
501−

√
250601

=

(
501 +

√
250601

)2

501602 ≈ 2

4.3 Quadratic Inequalities
Let f be the function defined on Rn as f(x) = 1

2x
TQx − bTx, with Q a positive definite symmetric n × n

matrix and b a vector in Rn. Let x̂ be the point of global minimum of f . Let E(x) denote the quantity
E(x) = 1

2 (x− x̂)TQ(x− x̂). (You can think of it as the Q-norm of (x− x̂)).

Show that E(x) = f(x)− f(x̂). Use this to write the inequality (8.42) from your textbook in terms of values
of f . Compare with the weaker inequality (8.47), valid for a more general class of functions.

Proof. We can show the identity of E(x) = f(x) − f(x̂) directly. First, we note that ∇f(x) = 0 ⇐⇒
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Qx− b = 0 ⇐⇒ x = Q−1b. The rest is just algebra:

E(x) = 1
2(x− x̂)TQ(x− x̂)

= 1
2(xT − bT (Q−1)T )Q(x−Q−1b)

= 1
2

(
xTQx− bT (Q−1)TQx− xTQQ−1b+ bT (Q−1)TQQ−1b

)
= 1

2

(
xTQx− bTQ−1Qx− xTQQ−1b+ bTQ−1QQ−1b

)
= 1

2

(
xTQx− bTx− xT b+ bTQ−1b

)
=
(

1
2
(
xTQx

)
− bTx

)
−
(
− 1

2
(
bTQ−1b

))
since bTx = xT b

= f(x)−
(

1
2
(
bTQ−1b

)
− bTQ−1b

)
= f(x)−

(
1
2
((
Q−1b

)T
Q
(
Q−1b

))
− bT

(
Q−1b

))
= f(x)−

(
1
2
(
x̂TQx̂

)
− bT x̂

)
= f(x)− f(x̂)

Thus, inequality (8.42) may be written as:

E(Xk+1) ≤
(
λmax − λmin

λmax + λmin

)2

E(xk) ≡ f(xk+1)− f(x̂) ≤
(
λmax − λmin

λmax + λmin

)2(
f(xk+1)− f(x̂)

)
And inequality (8.47) we recall is:

f(xk+1)− f(x̂) ≤
(

1− λmax

λmin

)(
f(xk+1)− f(x̂)

)
Thus, since λmax, λmin > 0 and λmax ≥ λmin, then we know that: 0 ≤ λmax−λmin

λmax+λmin
< 1 and 0 ≤ 1− λmin

λmax
< 1.

Therefore also, λmax−λmin
λmax+λmin

≤ λmax−λmin
λmax

= 1− λmin
λmax

. And as such, we also have:(
λmax − λmin

λmax + λmin

)2

≤ λmax − λmin

λmax + λmin
≤ λmax − λmin

λmax
= 1− λmin

λmax

And hence the Quadratic Case will likely converge faster than a non-Quadratic Case given the same eigen-
values for each.

4.4 Conjugate Gradient Algorithm Example
Apply the Conjugate Gradient Algorithm to the quadratic function defined for all x = (x1, x2)T in Rn as
f(x) = (2x1 − x2)2 + x2

2 + 2x2 starting at x0 = (5/2, 2)T .

Answer:
since degree(f) = 2, we may write:

f(x, y) = g(x, y) := 1
2
(
(x, y)H(f)(x, y)T

)
−
(
−K

(
∇f(x, y)

))T (x, y) + c

17



Where K : Im(∇)→ R1×2 such that K removes all non-constant terms in ∇f(x). Here, we have:

c = 0, b = (−K(∇(f(x))))T =
(

0
−2

)
, and H(f(x, y)) =

(
8 −4
−4 4

)
:= H(f)

We now show the tremendously laborious calculations below:

(1) r0 = p0 = b−H(f)x0 =
(

0
−2

)
−
(

8 −4
−4 4

)(
5/2
2

)
=
(
−12

0

)

(2) α0 = rT0 r0

pT0H(f)p0
=

(−12, 0)
(
−12

0

)
(−12, 0)

(
8 −4
−4 4

)(
−12

0

) = 122

122 · 8 = 1
8

(3) x1 = x0 + α0p0 =
(

5/2
2

)
+ 1

8

(
−12

0

)
=
(

1
2

)
(4) r1 = r0 − α0H(f)p0 =

(
−12

0

)
− 1

8

(
8 −4
−4 4

)(
−12

0

)
=
(

0
−6

)

(5) β0 = rT1 r1

rT0 r0
=

(0,−6)
(

0
−6

)
(−12, 0)

(
−12

0

) = 62

122 = 1
4

(6) p1 = r1 + β0p0 =
(

0
−6

)
+ 1

4

(
−12

0

)
=
(
−3
−6

)

(7) α1 = rT1 r1

pT1H(f)p1
=

(0,−6)
(

0
−6

)
(−3,−6)

(
8 −4
−4 4

)(
−3
−6

) = 62

2 · 62 = 1
2

(8) x2 = x1 + α1p1 =
(

1
2

)
+ 1

2

(
−3
−6

)
=
(
−1/2
−1

)

And hence we see that x2 =
(
−1/2
−1

)
is our final solution to the Conjugate Gradient Algorithm (and is

indeed a global minimum).

4.5 Steepest Descent Example
Consider the problem:

minimize 5x2 + 5y2 − xy − 11x+ 11y + 11
(a) Find a point satisfying the first-order necessary conditions for a solution.
(b) Show that this point is a global minimum.
(c) What would be the rate of convergence of steepest descent for this problem?
(d) Starting at x = y = 0, how many steepest descent iterations would it take (at most) to reduce the

function value to 10−11?

Let us first compute all the 1st and 2nd order partial derivatives (f(x, y) = 5x2 +5y2−xy−11x+11y+11):
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∂g

∂x
= 10x− y − 11 ∂f

∂y
= 10y − x+ 11

∂2f

∂x2 = 10 ∂2f

∂x∂y
= −1 ∂2f

∂y2 = 10

Furthermore, since degree(f) = 2, we may write:

f(x, y) = g(x, y) := 1
2
(
(x, y)H(f)(x, y)T

)
−
(
−K

(
∇f(x, y)

))T (x, y) + c

Where K : Im(∇) → R1×2 such that K removes all non-constant terms in ∇f(x), i.e., here K(∇f(x, y)) =
(−11, 11). (Note: This is also why we are easily able to apply the method of steepest descent).

(a) Answer: We see that the first-order conditions will be satisfied ⇐⇒ ∇f(x, y) = 0 ⇐⇒ (10x −
y − 11, 10y − x+ 11) = (0, 0). We can solve this system of linear equations through the following row
reductions: (

10 −1 11
−1 −10 11

)
∼
(

1 −1/10 11/10
0 99/10 −99/10

)
∼
(

1 0 1
0 1 −1

)
And therefore we see that (x̂, ŷ) = (1,−1) satisfies our first order conditions.

(b) Answer: We can easily see that the hessian is defined as:

H(f) =
(

10 −1
−1 10

)
And since det(H(f)) = 99 > 0 and ∂2f

∂x2 = 10 > 0, by Sylvester’s criterion, we now know that
det(H(f(1, 1))) is positive-definite. Therefore, (x̂, ŷ) = (1,−1) is the global minimum of this function.

(c) Answer: We can quickly see that the two eigenvalues of the Hessian are λ1 = 9, λ2 = 11 since:
det
(
H(f(1, 1) − λIn×n

)
= 0 ⇐⇒ (10 − λ)2 − 1 = 0 ⇐⇒ (λ − 9)(λ − 11) = 0 ⇐⇒ λ = 9, 11.

Therefore, we have the condition number, κ(f) = λ2
λ1

= 11
9 , and hence we have that the rate of

convergence here will be: ρ =
( 11/9−1

11/9+1

)2 = 1
102 .

(d) Answer: We first recall that E(x) := 1
2 (x − x̂)TH(f)(x − x̂) = f(x) − f(x̂). However, f(x̂) = 0,

therefore, E(xk) = f(xk). We also recall that E(xk) ≤ ρkE(x0), and f(x0) = 11. Therefore:

E(xk) ≤ ρkE(x0)

= ρkf(x0)

=
(

1
102

)k
(11) = 11 · (10)−2k

And hence we see that 11 · (10)−2k ≤ 10−11 ⇐⇒ log10(11) ≤ 2k− 11 ⇐⇒ k ≥ 11+log10(11)
2 and since

this value is ≈ 6.02, we see it will take at most 7 iterations for us to reduce the function value down
to 10−11.
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4.6 Symmetric Matrices’ Eigenvalues are Q-conjugate
Let Q be a symmetric matrix. Show that any two eigenvectors of Q, corresponding to distinct eigenvalues,
are Q-conjugate.

Proof. Suppose v1, v2 are eigenvectors of Q corresponding to eigenvalues λ1, λ2 where λ1 6= λ2 and Q = QT

(I.e, Qvi = λivi, i = 1, 2). We can thus prove this fact quite easily by noticing:

λ1〈v1, v2〉Q = λ1v
T
1 Qv2 = (λ1v1)TQv2 = (Qv1)TQv2 = vT1 Q

TQv2

= vT1 Q(Qv2) = vT1 Qλ2v2 = λ2v
T
1 Qv2 = λ2〈v1, v2〉Q

And since λ1 6= λ2 =⇒ λ1〈v1, v2〉Q = λ2〈v1, v2〉Q ⇐⇒ 〈v1, v2〉Q = 0.
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