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1 Definition to Be Used in The Proceeding Problems

Definition. 1.1: Metric Space

A metric space is an ordered pair (M, d) where M is a set and d is a functiond : M x M — R
such that the following three conditions hold:

1. d(z,y) =0 < z=y
2. d(z,y) = d(y,z)
3. d(z,2) < d(x,y) + d(y, 2)

Definition. 1.2: Open Ball

The open ball inside the metric space (M, d) denoted B,.(z) is the set:

B.(z) :={y € (M,d) : d(y,x) < r}

Definition. 1.3: Open
A set U C (M,d) is called open if Vo € U, Ir > 0,7 € R such that:

B.(x) CcU

Definition. 1.4: Closed

A set U C (M,d) is called closed if U = {y € (M,d) : y € U} (the compliment of U) is open.

Definition. 1.5: Bounded

A set U C (M,d) is called bounded if 3 r < co,r € Rs.t. U C B,(0).

Definition. 1.6: Convex Function

We say that a function, f: R™ — R, is Convex if and only if epi(f) is a convex set, where

epi(f) := {(fc,,u) ‘x eER", peR, u> f(x)} C R™H!




2 Applications of Real Analysis, Multivariate Calculus &
Linear Algebra

2.1 The Existence of a Solution for a Minimization Problem

Show that if f(x) is continuous on R"™ and lim| ;|| f(7) = o0 then there exists & with f() < f(x)
for all x € R™ (i.e. the unconstrained minimization problem for f(x) has a solution).

Proof. Let us define our metric as the standard Euclidean metric in R (d(z,y) :== />, (zi — ¥)?)
(and hence d(z,0) = ||z|| = />, (%;)?) so that we are working in a the metric space: (R",d).
Let us now choose an r € R which satisfies the following:

If m = Hilﬁf f(x), then V [ly[| = r, f(y) =m
X||=Tr
And we know by the continuity and the fact that lim||,||— o f(2) = 0o, there must exist (many) rs.
We can show this explicitly from the definition of a limit. We say lim||,||—o0 f(2) = o0 if Ve > 0 30
s.t. if |||z|] — ool < d = ||f(]|z||) — o0]| < e. This is intuitively equivalent to saying: VM >> 0,
Irs.t. if ||z — 0| >r = ||f(||z]])|]| > M. Next, we recall the following theorem:

Theorem. 2.1: The Extreme Value Theorem

If f is continuous on a compact set €2, then f attains an absolute maximum and an absolute
minimum in €.

Let us now recall that S C R™ is compact <= S is closed and bounded (this is not true in general
for any (M,d), but is for R™). As such, B,(0) is trivially bounded (by r), and is closed by the
definition of closure. Therefore, by Theorem 2.1, we know 3 & s.t. Vo € B,(0), f(2) < f(z), and
since we have the property that Yy € [B,(0)]¢, f(y) > m = f(y) > f(&). Thus, we have now
proven what we wanted to show (3 & which is a global minimum).

O



2.2 Intersection of Closed Sets is Closed

Show that the intersection of any number of closed sets is a closed set.

Let us recall a fundamental Theorem of Set Theory:

Theorem. 2.2: De Morgan’s Law

If A; C S is aset Vi € I, where [ is an indexing set which may be finite or infinite, then:

< N Ai)c = [J@)°.

icl el

Proof. We prove De Morgan’s Law by induction (for the case that |I| < Ng):

For |I| = 1 the result is trivial. When |I| = 2, we have (4; N A2)¢ = A{ U AS. Assume x €
(AlﬂAQ)C < ng(AlﬂAg) <~ I¢A1 or ¢A2 < I’GA% OTZEGAE < I’EAE:UAS,
which = (A; N A2)¢ € Af U A§ and by assuming the last step of our process (z € Af U AS), we
find (A1 N Ag)c D) Af @] Ag which = (Al n AQ)C = Af U Ag

We now assume De Morgan’s Law holds for |I| = n — 1, then for |I| = n,
n c n—1 c n—1 c n—1 n
(4] - (F )= (o) Us= (s -0
i=1 i=1 i=1 i=1 i=1

Where the = step uses De Morgan’s Law for |I| =2, and Z uses our inductive hypothesis. O

We next consider another Theorem to be used to answer this problem:

Theorem. 2.3: Union of Open Sets is Open

If A; C (M,d) is open Vi € I, (I an indexing set), then J,.; 4; is open.

icl

Proof. If x € (U, then 3j s.t. x € Aj, since A; is open, Ir > 0 s.t. B.(x) C A; and therefore
Vo € ;er Ai, Br(xz) C Aj C U, Ai which is our definition of openness. O

Now, our question may be considered a Corollary of De Morgan’s Law (and Theorem 2.3):

Corollary. 2.1: Intersection of Closed Sets is Closed (I.e. the Question)

The intersection of any number of closed sets is a closed set.

Proof. Let A; be a closed set for all i € I, where like before I is an indexing set. Then, by De
Morgran’s Law:

(ﬂ Ai) = U(Ai)c'

il iel
We now recall that a set, S, is open if and only if its compliment, S¢, is closed. Since Vi, A; is closed
— ASis open Vi = |J,.; A; is open (== by Theorem 2.3). We now know (U;cs4;)¢ is open
= U,;er4; is closed.

icl
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2.3 The Maximum of a Set of Convex Functions’ is Convex

Show that if f1, f2, ... fm are convez functions on R™, then the function g(x) = max (f1(x), ..., fm(z))
is also convex.

Proof. Let us recall the following definition of a Convex function:

Definition. 2.1: Convex Function

We say that a function, f:R™ — R, is Convex if and only if epi(f) is a convex set, where

epi(f) := {(:C,,u) ‘x ER", peR, pu> f(x)} C R™H!

And hence, if we let T ={1,...,m};

epi(max (fl(x), .. ,fm(x))) = {(a:,p)’x ER" peR, u> I?éi;((fz)}

~N{@mwlzer neru> f}
i€l
= ﬂ epi( fi(x)
i€l
And since the intersection of convex sets is convex, we can conclude that g(x) is convex.
O

We quickly prove that the intersection of convex sets is convex: For |I| = 2, we have that if z1,22 € S1 N
So = x1,z2 € 51 and Sy, then Vy € S1 and Sz, we have y = az1 + (1 — @)z2, ¢ € [0,1], = y € S1 N Sa.
Since this is true Va1, z2 € S1NS2 and « € [0, 1], we can conclude conclude that S1 NS> is convex. Naturally,
the proof here extends very easily by inductions for all N (for |I| = n — 1, we know that S = NI'-]'S; is
convex, and hence S NS, is convex). Hence V|I| € N, we have that if S; is convex Vi € |I|, then N;c1S; is
convex.

2.4 Approximating an Arbitrary Function

To approzimate the function g over the interval [0,1] by a polynomial p of degree < n, we minimize the
following criterion:

J(a) = / (9(2) - p(a))*da

where p(z) = anz™ + An1z™ '+t aix + ao. Find the equations satisfied by the optimal conditions
a = (ao,...,an).

Proof. We recall that if a is optimal = Vf( = 0 (or does not exist). We thus compute:

([ om)

(9-p)dx

Il
N

Bal

1
_ / 2(g - p)da
0



£ =0V

;g

And hence by requiring Vf(a) =0 =

1 .
/ z'gdr =
0

1 .
x'pdx

1

— —

. - - .
(anx"“ tan 1z a2+ aoaf)dac

1 . .
J</ :Ujﬂdm)
o 0

1+z+]z

Pj:

<.
I

We can thus write the set of our equations in the form of HaT = B:

1 1/2 . 1/(n+1)\ fao [ gda
1/2 1/3 o 1/(n+2) a | fo xgdz
Yin+1) 1/m+2) ... 1/@n+1)) \an [} o gda

Now, by noticing that H is what is referred to as a Hilbert Matrix, and by referencing the literature, we can

write down H~*
2
_ . +i n+j \[(i+i—2
H™Y,, = (1) —n( "
(H )i = (1) 0+ )(anrl n—i+1)\ i—1

Therefore, a = (H~'B)T.

2.5 An Explicit Minimization Problem

A) Using the first-order necessary conditions, find a minimum point of the function:

flz,y,2) =2$2+1‘y+y2+yz+z2 —6x—Ty—8z+9
B) Verify that the point is a relative minimum point by verifying that the second-order sufficiency condi-
tions hold.

C) Prove that the point is a global minimum point.

A) Proof. Let us start by simplifying our function a little:

fla,y,2) =222 4oy +y> +yz+2° —62 —Ty —82+9
:«T2—3€y+(w+y)2—y2+(y+z)2—yz—6:1c—7y—8z+9
=@-3)’+(@+y)’+y+2)’ —yly+z+az+7) -8

We now take the partial derivatives of each variable:

9]

83]: 2@ —-3)+2xz+y)—y=4dz+y—6

0
a—g:2(w+y)+2(y+z)—(y+z+x+7)—y:x+2y+z—7
of e B

—az—2(y+z) y—8=y+2z-8



As such, we want to solve when the above partial derivatives are equal to 0. As such, we manipulate
the following matrix:

41 0|6 1 1/4 0] 3/2 1 1/4 0 | 3/2
[1 2 1 7]~[0 7/4 1 11/2]~[0 1 47 22/7]
01 2|8 0 1 2| 8 0 0 10/7|34/7
1 1/4 0 | 3/2 1 1/4 0] 3/2 1 0 0] 6/5
N[o 147 22/7]~[0 1 0 6/5]~[010 6/5]
0 0 1 |17/5 0 0 1[17/5 0 0 1/17/5

Which means we have a local minimum at:

(at,y,z) = (

B) Proof. We begin by finding all the second order derivatives:

g:gf(élx—&-y—G) =
gzyf_gg(x—i—Zy—f—z—?) =2
gij;:gi<y+2z8> =2
88;5;—?)5(41:—&-?;—6) =1
izv=gﬁcu+y—6>‘°
aajafy_éz<x+2y+z—7> =1

And by recalling the following theorem:

Theorem. 2.4: Clairuit’s Theorem

If f: U C R"® — R is of type C* then:

o f

o™ f

m m:
oz - Dapn

Where Y, mp =m and (m,,...

oxi ..

k3

,my) is a rearrangement of (myq, ..

m
o o
Bw]

S, My).

As such, we compute the Hessian of our function:

oy 9% 0% 2%f
ox2 0x0y oxdz ox2
Hp=| 2L or 2r|=| 2t
dyOx 632 Oyoz dyox
o’y 9% 2% 9’ f
0z0x 0z0y 922 0z0x

2 f o2 f
Oydx 0z0x 4 1 0
a2f 2% | 1 9 1
832 520y
o f o2 f 0 1 2
0z0y 922

Next, we recall the following theorem which classifies critical point as local maximums, minimums,

saddles points, or inconclusive to be classified as follows:



Theorem. 2.5: Critical Point Classifications

Let a be a critical point (V f(a) = 0, or V f(a) does not exist), then:

(a) If H(f(a)) is positive definite, then f attains a local minimum at a.
(b) If H(f(a)) is negative definite, then f attains a local maximum at a.

(c) If H(f(a)) has both positive and negative eigenvalues, then a is a saddle point for f.

And if none of these conditions hold, our test is inconclusive.

We next need a way to check for positive definitiveness, we use the following theorem:

Theorem. 2.6: Sylvester’s criterion

If Ae C"™ (D R™") is a Hermitian matrix, it is positive-definite if and only if all upper-left
sub matrices € C*** Yk where k < n have positive determinants.

As such, we compute:

(a)
4 1 0
det {1 2 1] =4det 21 — det L1 =10>0
0 1 2 1 2 0 2

(b)

(c)
det(4) =4>0

And hence now, we are finally able to conclude by the Critical Point Classifications and Sylvester’s
criterion, we may conclude that a = (6 s 17) is a relative minimum point. O

57575
C) Proof. To answer this question, we prove the following theorem:

Theorem. 2.7: One Global Min for Strictly Convex Functions

A strictly convex function will have at most one global minimum.

Proof. Suppose that f: U C R™ — R has a local minimums at a; and az, where: f(ai) < f(az2), a1 #
ao. Since f is a convex function, we have Vb; € U

f(ﬂb1+(1—ﬁ)a2) < Bf(b1) + (1= B)f(b2), 0<p<1
Now, let a € (0, 1), then:

f(ar) < f(a2) = af(a1) < af(a2)

which implies:

af(a1) + (1 —a)f(az) < af(az) + (1 — a)f(az) = f(az)

And due to our function being strictly convex, we have:



3
3.1

f(aar + (1 - a)az) < f(az) (1)

Since ap is local minimum, 37 > 0,r € R s.t. V x € B(az2)\{az}, we have must have f(az) < f(x).

We can now choose « small enough s.t. aa; + (1 — a)az € By(az2). Which implies
floar + (1 — a)az) > f(az) (2)
And hence we have arrived at a contradiction since it is impossible to satisfy the following equations
simultaneously:
f(oar + (1 — a)az) < f(az) Va € (0,1) (1)
flaar + (1 — @)az) > f(a2) « € (0,1) and small enough (2)

And hence it must be that a; = a2, and hence if f is strictly convex and has a local minimum, that
local minimum is unique and actually f’s global minimum. O

And since the positive definiteness of the Hessian is a sufficient condition for strict convexity, which

we showed to be so in Part B, we may conclude that a = (g, g, %) is a global minimum.

O

Applications of Matrix Calculus

Minimization of the Modulus of a Linear Equations

Consider the problem min, (f(:c)) for f(x) = |Azx — b|?, where A is an m x n matriz with zero null space, b
is an m dimensional vector, and the solution x is an n dimensional vector.

1. What is the first order necessary condition for optimality?
2. Compute the Hessian of f and show that it is positive definite.
3. Conclude from (a) and (b) that f has a unique global minimum. Indicate what theorems you are using.
Then, give a closed form expression for the global minimizer .
4. Give explicit answers to the questions above when:
2 -1 0 2
0o 2 2 6
A= 0 1 0 and b= 9
1 0 1 0
3.1.1 Part 1
Answer:



Lemma. 3.1: Matrix Calculus Lemmas

If x is an (n x 1) variable vector, and A an (m X n) and b an (m X 1) constant matrix and vector

respectively. Then we have the following general results:

1.
obT Ax

T
o =ATh
2.
xT AT _
ox
3. .
‘9"8 :‘x =(A+AT)x

Note: we use the “Denominator layout”, for both this and Question #2 i.e. by y” and x.

.

We omit the proofs for the above as their are pretty standard in most 2nd year calculus classes.

Second, we have the following lemma:

Lemma. 3.2: Matrix Modulus Lemma

If x is an (n X 1) variable vector, and A an (m x n) and b an (m x 1) constant matrix and vector

respectively. Then we have the following general results:

|Ax — b|* = (4x — b)T(Ax — b)

Proof. Computing directly, we have:

|AX — b|2 = i (iajixj — bj)2

j=1 N i=1

Furthermore,
iy @i = by
(Az —b) =
n
Ei:l AmiTi — bm
And hence:
> iy 1w — by

(Ax—b)T(Ax—b) = (Zaumi —bl,...,Zammi _bm) :
i=1 =1 Z:-l:l Amili — bm

j=1 \i=1

= |Ax — b|?

10



Now, back to the question at hand:
From Lemma 1.2 we know |Ax — b|? = (Ax — b)T(Ax — b), thus, we first multiply out:

|[Ax — b|> = (Ax — b)" (Ax — b)

=xTATAx — bTAx — xTATb + b7
since (AB)T = BT AT and (A+ B)T = AT + BT

Therefore, we can now compute the gradient:

V|Ax — b2 = % (XTATAX T Ax— xTATh+ bTb>
=24TAx - A"b—ATb+0
=24"Ax — 24"

Next, for optimality, we recall that if we are considering a domain Q2 C R", we must have Vf-d > 0 Vd,
where d is a feasible direction vector which stays in € given x. Thus, for optimality, we must have:

2(ATAx — ATh)-d >0

and for the interior of Q, Vf-d >0 <= VJf = 0, we have (and since A has a zero null space we know
AAT = AT A must have an inverse:

%= (ATA)(ATD)

Z;n:l a;1a;1 Z;nzl Aj1Qj5n
U =2 , _

ZT:l AjnGi1 ... Z;nzl AjnQjn
3.1.2 Part 2
To compute the Hessian, we recall #(f) = V£, and hence:

H(f) =V2f=V(VS)=V(2ATAx —24Tb) = 2(4T4)" =247 A

Furthermore, we know this is positive-semi-definite since it is the Gram matrix of linearly independent
vectors., i.e., 3H(f) = (ajky s Qjky)-

3.1.3 Part 3

Firstly, we recall that H(f) is positive definite, which by Prop 5, Ch 7.4 in the textbook implies that f is
convex. Next, we recall that since we are considering €2 = R", which is a convex set, we have that f is a
convex function on a convex set and hence we can set Vf = 0 (as we showed how to do explicity above) to
find the global minimum.

11



3.1.4 Part 4

To give explicit answers to the equations above, we need AT A, ATb, and (AT A)~'. We thus compute:

r, (2 001
A b"<—1 2 1 0) (

T =1 1 6 2 1 /(3 1
@A = Gearay (2 5)213(1 5/2)

Therefore, we see that for optimality (d defined as above), we must have:

(4 (1)
() (1)) oo

And in the interior (which in this case is all of our domain, R™) we have:
(o L (3 1\ [4a)_ 1L (2
“13\1 5/2)\12) T 13 \34

= (% )

3.2 Newton’s Method Applied to the Minimization of the Modulus’ Cu-
bic

Consider Newton’s method applied to the minimization of the function f(x) = |z|®, where x € R™.

— o o N
(==
I
/‘_\
b O
@l
N
N———

EECEES
Il
C—\
o B
~__

For optimality we have:

And for the Hessian, we have:

1. Compute the gradient and the Hessian of f.

2. Use the formula (I + uuT)71 =1-— %uuT, where I is the n X n identity matriz, and v € R" is a
unit vector to compute the inverse of the Hessian of f. Use this to give the explicit formula for the
iteration step in Newton’s method for this function.

Answer:

3.2.1 Part1l



And hence:

=1

n 1/2 n 1/2

= V|z| (32@1 (Z(mlf) b 73:&”(2(:&)2) > =3x" x|
i=1 i=1
And as such,
T 0| T ox” . .
H(f)=V(Ex [x]) =3 x -X + o |x]| By the Matrix Chain Rule
. olx|  x ox”
]ln n . —_— = ]ln n
<| | x4 Tk |x) Since % |x| and % x

T
3‘X‘ + ]]-nxn
| L

We can check that our above computations are indeed correct directly, since:

n

A 2 P43 (@) ifk=j
= 3, D)2 =
jof® =32, Y (w:)° = kamj .

0xkKT; — ifk#j
Therefore,
243 ZZ N xl) 6211 L. 6Tn—121 6TnT1
6x122 6(z2)> +3> 1 (z:)® ... 6xn_122 62T
H(p) = : z ' :
Ox1Tn_1 O6x2Tn_1 L. xn 1 24 3 Z 6TnTn_1
6x12n 6x2Tn .. 6Xp—1Tn 6(zn)> +3 Z?:l(xi)Q
(| | X + Loxn - |X|)
3.2.2 Part 2

From the identity of (]lnxn + uuT)_l = Lloxn — %uuT, we can see that:

(H(f) " = <3x(|x| T:HW))—l

T 1
_(X x +11an> @l

x| x|

( 1 x xT>( 1 )
- ]lnxn a0 T Y
20x| x| )\ 3]

Therefore, since in Newton’s Method, have that xx+1 = xx — (’H(f))_l(Vf)T, and hence:

13



s = scn— (1n — 22 BN (Y ()
k+1 — Xk nxn 2|Xk| |Xk| 3|Xk| k k
1 xx xT
=%k — Tnxn — 50— | %k
2 |xk| [l

1 x X7
:]lanXk— 1an_77k,7k * Xk
2 xk| [kl

e XY
T2\ Bxl)
3.3 Steepest Decent

Let f(x) = %((331)2 + c(azz)Q) where x = (zl) and ¢ > 1. Consider applying the method of of steepest
2

descent to this function, starting at x° = (i) Find a formula for x*.
Answer:
If we assume oy = -+ - = ap, we can compute that:

m+1l _ _m my __ m{n ‘TT — (1—o¢)m{”
— X" = X" — aVf(x™) = (xm) -a (;Em) = ((1 —ca)x;”)

Next, since we see that this holds ¥m > 0, and hence we naturally will have:

< — ((1 —a)kw?)
(1 = ca)*ad

k (c(l —oz)k>
* = (1 = ca)”

Now, we need to prove that ax = --- = ap. To do this, we note that the Wolfe Conditions imply that
o =

And therefore if x° = (¢,1)7, then:

14c*

4 Corollaries and Examples of Common Algorithms

4.1 Steepest Descent

Let x', 22, ... 2%, ... be the sequence obtained by applying the method of steepest descent to a continuously
differentiable function f, starting at z°. Show that for any k > 0, the vector (z*72 — z**1) is perpendicular
to (wkH — mk) (This explains the “orthogonal zig-zag pattern” for steepest descent mentioned in class).

Hint: recall that oy is chosen to minimize the function: o — f(as’C — a(Vf(xk))T); use calculus!

Proof. We recall that two vectors, u,v in R™ are orthogonal <= (u,v)rn = uTv = 0. Thus, let us first
alter the expressions (72 — z**1) and (2! — z*) by noting that since we are working within the context
of steepest decent, we have that z*™! = 2% — ay(Vf(2*))T =

14



2= = (V)T - 2 4 an (VST
= (2" — au(THE)") — ann (VI = an(VIE) )T = (25 - an(TF*)")
=~ (VS = an(VI )T
and similarly for zFt! — z*:
g = ok — (V)T - 2*
= —au (V)T
And therefore we see that:
(@2 =), @ — ) =
= (- = (V1)) ) - (- an(T)") =0
= (V6" = an(ViE)T)) - (VH)T) =0

Furthermore, we recall that a4 is chosen s.t. ar = argmin (f (zk — o (Vf(xk))T)), and this condition is
satisfied <= -2 (f(xk — ak(Vf(xk))T)) = 0, and since:

day

(7~ aa(Vra))) = (Vi - an(VrE)T)) - (- rEh)”)

Doy,

It follows that the condition of ap = argmin (f(xk — ak(Vf(xk))T)) is equivalent to the condition of
(@42 = ), (@~ 2¥))n = 0.
O

4.2 The Rosenbrock Banana Function

Let f be the function defined for all x = (x1,22)7 in R? by: f(z) = 100(z2 — z3)? + (1 — z1)%. Find the
global minimum point & of this function, and compute the condition number of the Hessian of f at &. (This
function is known as the Rosenbrock banana function, for which methods such as steepest descent converge
very slowly).

Answer: We first compute all first and second partial derivatives:

of

%{Z = —400z1 (2 — 21) — 2(1 — x1) = 40027 + 221 — 40022 — 2, Ere 200(z> — 22)
a2f 82f 82f

—_— = 2 — 4 IT g

a2 800x1 + 2, 9710, 00z, 922 00

As such, we would like to set Vf((z1,22)”) = 0 to find the minimum, doing so will result in a system of
linear equations as is evident if we do this explicitly:

Vi((1,22)") =0
<= 40027 4 221 — 4002 —2 =0 and 200(z2 — z3) =0
<= 400z = 40027 + 221 — 2 and zo = z;

<z =1 and 1:223@?:12
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Therefore, we see that V(f(z1,22)T) =0 <= (z1,22) = (1,1). We next compute H(f(1,1)).

(802 —400
~ \—400 200

(z1,22)=(1,1)

800x; +2 —400x
H(F(1,1) = ( —4010901 200 1)

And since det(#H(f(1,1))) = 400 > 0 and % = 802 > 0, by Sylvester’s criterion, we now know
1l(z1,22)=(1,1)
that det(H(f(1,1))) is positive-definite. Therefore, £ = (1, 1) is the global minimum of this function (global

because f(1,1) =0, and f(z) = a(ze — 23)? + b(1 — 1) > OVx € R? since a,b > Oghgggy.

Furthermore, we recall that any #(f(Z)) will be trivially normal, and therefore the condition number of
H(f(2)), k(H(f(2))) = iﬁl: We thus compute H(f(%))’s eigenvalues:

802 —400\ (A 0) _,
—400 200 0 A —
<= A% — 1002\ + 400 =0

— (A — (501 — v/250601)(\ — (501 + v/250601) = 0
= \ =501 + v/250601

And therefore:

2
501+ V250601 (501—1—\/250601) iy

k(H(f(2))) = 501 — V250601 501602

4.3 Quadratic Inequalities

Let f be the function defined on R™ as f(x) = %mTQac — bTx, with Q a positive definite symmetric n X n
matriz and b a vector in R™. Let & be the point of global minimum of f. Let E(x) denote the quantity
E(z) = 1(z — 2)"Q(z — &). (You can think of it as the Q-norm of (z — &)).

Show that E(x) = f(z) — f(&). Use this to write the inequality (8.42) from your textbook in terms of values
of f. Compare with the weaker inequality (8.47), valid for a more general class of functions.

Proof. We can show the identity of E(z) = f(x) — f(&) directly. First, we note that Vf(z) = 0 <=
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Qr—b=0 <= x =Q 'b. The rest is just algebra:

B(e) = 3 (¢~ )7 Q(w — @)
~ 5@ =@ )R- Q'
= % (:ETQx -v"(Q7) Qz—2" QR b + bT(Ql)TQQlf))
- % (;CTQ;;: —vTQ 7 'Qr —2TQQ b+ bTQ‘lQQ‘lb)
= % (mTQx —bTr—2Tb+ bTQ‘lb>
_ (;(ITQx) 3 bTx> 3 ( B ;(bTle)> since b7z = 27b

I
~

() — (;(bTle) _ bTQ1b>

= f(z) - (;((le)TQ(le)) - bT(le)>

= f(z) - f(2)

Thus, inequality (8.42) may be written as:

B(Xpi1) < (H) B(e) = floe) - f(2) < (H) (Florsn) — 1))

And inequality (8.47) we recall is:

f(zrgr) = f(2) < (1 - i:?:) (f(zrir) — £(2))

Thus, since Amax, Amin > 0 and Amax > Amin, then we know that: 0 < ;‘"“‘xﬂ <land0<1-— ;“% < 1.

max+Ami
Therefore also, 2max—=tmin < Amax=Mmin — ] _ Mmin  Apd as such, we also have:
Amax+Amin — Amax Amax
2
Arnax - )\min < )\max - Arnin < /\max - )\min -1 )\min
)\max + )\min - )\max + )\min - )\max )\max

And hence the Quadratic Case will likely converge faster than a non-Quadratic Case given the same eigen-
values for each. O

4.4 Conjugate Gradient Algorithm Example

Apply the Conjugate Gradient Algorithm to the quadratic function defined for all x = (x1,22)” in R™ as
f(x) = (221 — 22)® + 23 + 222 starting at 2° = (5/2,2)".

Answer:
since degree(f) = 2, we may write:

Fy) = glwy) o= 3 (@)U @ )T) — (= K (Vi) (@y) +e
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Where K : Im(V) — R'*? such that K removes all non-constant terms in V f(x). Here, we have:

c=0, b—(—K<V<f(x>>>>T—(_02), and ”H(f(x,y))—<_84 ‘f) =H()

We now show the tremendously laborious calculations below:

(1) ro=po=b—H(f)ro = (_02> - (_84 _44) <5é2> = <_32)

—12
o) . T (—12,0)( 0) R
- — - S
po H(f)po (~12,0) (_84 44> (32) 122.8 8

0
T (0’_6)<) 2
(7 =t 0 _ 6 1

TH 1 - — 262 2
piH(f)p (=3, -6) (_84 44) <_2>

o s ()1 (3)-(7)

~1/2
-1

And hence we see that z2 = ( ) is our final solution to the Conjugate Gradient Algorithm (and is

indeed a global minimum).

4.5 Steepest Descent Example

Consider the problem:
minimize 5z2 + 5y2 —ay —1llz + 11y + 11

a) Find a point satisfying the first-order necessary conditions for a solution.

What would be the rate of convergence of steepest descent for this problem?

(c

(a)
(b) Show that this point is a global minimum.
)
(d)

Starting at x = y = 0, how many steepest descent iterations would it take (at most) to reduce the
function value to 10711 2

Let us first compute all the 1st and 2nd order partial derivatives (f(z,y) = 52 +5y* —xy — 11z + 11y + 11):
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dg _ o _ 1oy —

9 = 10z —y —11 oy 10y —x + 11
2 2 2

IS g9 9L 4 TSy

0z? 0xdy 0y?

Furthermore, since degree(f) = 2, we may write:

f@,y) = g(x,y) == %((fﬂ, DH() (@, 9)") — (= K(Vi(z,9)) (@y) +c

Where K : Im(V) — R**? such that K removes all non-constant terms in Vf(2), i.e., here K(Vf(x,y)) =

(_117

(a)

11). (Note: This is also why we are easily able to apply the method of steepest descent).

Answer: We see that the first-order conditions will be satisfied <= Vf(z,y) =0 <= (10z —
y—11,10y — z + 11) = (0,0). We can solve this system of linear equations through the following row

reductions:
10 -1 |11 1 —1/10 11/10 1 0 1
-1 =10 11 0 99/10 | —99/10 0 1]-1

And therefore we see that (,9) = (1, —1) satisfies our first order conditions.

Answer: We can easily see that the hessian is defined as:

wn=(" %)

And since det(H(f)) = 99 > 0 and 2275 = 10 > 0, by Sylvester’s criterion, we now know that
det(H(f(1,1))) is positive-definite. Therefore, (Z,9) = (1, —1) is the global minimum of this function.

Answer: We can quickly see that the two eigenvalues of the Hessian are Ay = 9, A2 = 11 since:
det (H(f(l,l) — )\Inm) =0 <= (10-2)?-1=0 <= A-9A—-11)=0 <= =911
Therefore, we have the condition number, x(f) = i—f = %, and hence we have that the rate of
convergence here will be: p = (ﬂ;gﬁf = .

Answer: We first recall that E(z) := 1(z — 2)"H(f)(z — &) = f(z) — f(&). However, f(2) = 0,

therefore, E(x1) = f(xx). We also recall that E(xy) < p®E(zo), and f(x0) = 11. Therefore:
E(zx) < p"E(x0)
= p" f(wo)

1\" .
_<102> (11) = 11 - (10) =

And hence we see that 11-(10)72* < 107 <= log,((11) < 2k —11 <= k> %10(11) and since
this value is ~ 6.02, we see it will take at most 7 iterations for us to reduce the function value down
to 10711,
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4.6 Symmetric Matrices’ Eigenvalues are Q-conjugate
Let Q be a symmetric matriz. Show that any two eigenvectors of Q, corresponding to distinct eigenvalues,
are Q-conjugate.
Proof. Suppose v1, vy are eigenvectors of Q corresponding to eigenvalues A1, A2 where A1 # A2 and Q = QT
(I.e, Qus = Asvi, i =1,2). We can thus prove this fact quite easily by noticing:
A (vi,v2)g = Mol Quz = (A1) Qua = (Qui) " Qua = v] Q" Que
=01 Q(Qu2) = vi QA2v2 = Aovi Qua = Xa(v1,v2)q

And since A1 # A2 = A {v1,v2)Q = A2{v1,v2)9 <= (v1,v2)g = 0. O
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