Maximum Likelihood and Binary Dependent Variable Models

Matteo Paradisi

(EIEF)

Applied Micro - Lecture 9

Limited Dependent Variable

- So far Y, the dependent variable, was continuous
- However, dependent variables could be dichotomous (dummy variables) or categorical
- Hence, we study non-linear estimation with dichotomous Y vars
- Some examples
 - Votes (Left vs Right)
 - Labor force participation (extensive margin)
 - College dropout

Example and Intuition

- Suppose you want to relate the share of blacks in the population to whether a black representative is elected
- Dependent variable: dummy =1 if elected
- Now plot the data to see the relationship

Example and Intuition

Example and Intuition - Linear Fit

Example and Intuition

- ► A line does not fit the data well
- We need something better
- AND something that will predict values between 0 and 1
- What can we do?

Example and Intuition

- Think of dependent variable as a probability of the event
- ▶ We need a function that takes continuous values and provides something in the [0, 1] interval
- Which function does this?
- Example: the CDF of a Normal distribution!

$$\mathbf{Y} = \Phi \left(\mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon} \right)$$

- Must be careful about interpretation of β s (we'll see it later)
- ► This model fits the data better!

Example and Intuition - Non-Linear Fit

Estimating the Model

- ► This model allows us to better fit the data
- However, how do we estimate it?
- We need to introduce the concept of maximum likelihood estimation

Maximum Likelihood Estimation

Maximum Likelihood - Introduction

- What is maximum likelihood?
- Estimation method: find values of parameters that maximize the likelihood of observing the sample at hand
- Two steps:
 - 1. Write a closed-form of the likelihood
 - function of data and parameters
 - 2. Maximize it to find estimates
- These methods are particularly useful in models where the dependent variable is a discrete choice

Probit Model

- We start from the simplest model
- Let's assume that our theory gives us a latent variable y* determined by some x

$$y^* = x\beta + u$$

- However, y* is not observed. It could be for instance the utility from a choice
- We instead observe a binary choice

$$y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{if } y^* \leq 0 \end{cases}$$

- Notice that 0 is just a normalization
- ► Example: if y is choice about entering the labor force, then you enter if utility from entering is greater than alternative (normalized to 0)

Probit Model

- ► Suppose that $(y_i, x_i)_{i \in N}$ are i.i.d.
- We need to find a way to write the probability of observing a vector of choices and characteristics
- ightharpoonup Assume that $u \sim N(0, 1)$ then

$$\begin{split} \Pr\left(\mathbf{y}_{i} = 1 \middle| \mathbf{x}_{i}, \boldsymbol{\beta}\right) &= \Pr\left(\mathbf{x}_{i} \boldsymbol{\beta} + \mathbf{u}_{i} > \mathbf{0} \middle| \mathbf{x}_{i}\right) \\ &= \Pr\left(\mathbf{u}_{i} > -\mathbf{x}_{i} \boldsymbol{\beta} \middle| \mathbf{x}_{i}, \boldsymbol{\beta}\right) \\ &= 1 - \Phi\left(-\mathbf{x}_{i} \boldsymbol{\beta}\right) = \Phi\left(\mathbf{x}_{i} \boldsymbol{\beta}\right) \end{split}$$

where $\Phi\left(\cdot\right)$ is the cdf of a Normal distribution

Analogously

$$\Pr\left(\mathbf{y_i} = \mathbf{0} | \mathbf{x_i}, \beta\right) = \mathbf{1} - \Phi\left(\mathbf{x_i}\beta\right)$$

Likelihood Function

▶ We can then write the likelihood of observing (y_i, x_i)

$$p\left(y_{i}|x_{i},\beta\right)=\left[\Phi\left(x_{i}\beta\right)\right]^{y_{i}}\left[1-\Phi\left(x_{i}\beta\right)\right]^{1-y_{i}}$$

also called "likelihood contribution" of i

Hence, the likelihood for the entire sample is

$$L(\beta) = \prod_{i=1}^{N} p(y_i|x_i,\beta)$$

▶ since y_i and x_i are observed, β is the only unknown

Maximizing the Likelihood

 In most cases, algorithms maximize a monotonic transformation of L

$$\hat{\beta}_{\mathsf{ML}} = \arg\max_{\beta \in \Theta} \log \mathsf{L}\left(\beta\right) = \arg\max_{\beta \in \Theta} \sum_{\mathsf{i}=\mathsf{1}}^{\mathsf{N}} \ln \mathsf{p}\left(\mathsf{y}_{\mathsf{i}} | \mathsf{x}_{\mathsf{i}}, \beta\right)$$

- the transformation takes the log of L and it is referred to as log-likelihood
- Notice that Θ is a generic set, so that one can add additional constraints on β

- We can apply maximum likelihood to linear regressions too
- Consider the model

$$\mathbf{y}_{\mathsf{i}} = \mathbf{x}_{\mathsf{i}}\boldsymbol{\beta} + \mathbf{u}_{\mathsf{i}}$$

We add assumption to standard OLS assumptions: $\mathbf{u} \sim \mathbf{N} \ (\mathbf{0}, \sigma^2)$

- Because data is continuous in this case, we cannot write a probability function
- We write a distribution function instead

$$\begin{aligned} f(\mathbf{y}_{i}|\mathbf{x}_{i},\boldsymbol{\beta},\boldsymbol{\sigma}) &= f(\mathbf{u}_{i} = \mathbf{y}_{i} - \mathbf{x}_{i}\boldsymbol{\beta}|\mathbf{x}_{i}) \\ &= \varphi\left(\frac{\mathbf{y}_{i} - \mathbf{x}_{i}\boldsymbol{\beta}}{\boldsymbol{\sigma}}\right) \end{aligned}$$

Hence, log-likelihood is

$$L\left(\beta,\sigma\right) = \sum_{i=1}^{N} \ln \varphi\left(\frac{y_{i} - x_{i}\beta}{\sigma}\right)$$

Rewrite the likelihood as

$$\begin{split} L\left(\beta,\sigma\right) &= \sum_{i=1}^{N} \ln \varphi \left(\frac{y_i - x_i \beta}{\sigma}\right) \\ &= \sum_{i=1}^{N} \ln \left[\frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{y_i - x_i \beta}{\sigma}\right)^2\right)\right] \\ &= \sum_{i=1}^{N} \left[-\ln \sigma - \frac{1}{2} \ln 2\pi - \frac{1}{2\sigma^2} \left(y_i - x_i \beta\right)^2\right] \\ &= -N \ln \sigma - \frac{N}{2} \ln 2\pi - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \left(y_i - x_i \beta\right)^2 \end{split}$$

$$L(\beta, \sigma) = -N \ln \sigma - \frac{N}{2} \ln 2\pi - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - x_i \beta)^2$$

► FOCs are

$$\begin{split} &\frac{1}{\sigma^2}\sum_{i=1}^N x_i'\left(y_i-x_i\beta\right)=0\\ &-\frac{N}{\sigma}+\frac{1}{\sigma^3}\sum_{i=1}^N \left(y_i-x_i\beta\right)^2=0 \end{split}$$

Combining them

$$\begin{split} \hat{\beta}_{ML} &= \left[\sum_{i=1}^{N} x_i' x_i\right]^{-1} \left[\sum_{i=1}^{N} x_i' y_i\right] \\ \hat{\sigma}_{ML}^2 &= N^{-1} \sum_{i=1}^{N} \left(y_i - x_i \beta\right)^2 \end{split}$$

$$\hat{\beta}_{ML} = \left[\sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right]^{-1} \left[\sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{y}_{i}\right]$$

$$\hat{\sigma}_{ML}^{2} = \mathbf{N}^{-1} \sum_{i=1}^{N} (\mathbf{y}_{i} - \mathbf{x}_{i} \boldsymbol{\beta})^{2}$$

- ► These are OLS formulas!
- However, the result depends on the assumption on u's distribution
- With a different distribution, OLS would not be a maximum likelihood estimator for this linear model

Formal Characterization of Maximum Likelihood

- Let's be a little more formal, derive the maximum likelihood, and discuss some properties
- lacksquare Assumption 1: $\mathbf{y}|\mathbf{x}\sim\mathbf{i}.\mathbf{i}.\mathbf{d}.~\mathbf{F}\left(\cdot| heta
 ight)$
- ightharpoonup Conditioning on θ emphasizes the fact that F is a function of the parameters to be estimated

Formal Characterization of Maximum Likelihood

Log likelihood contribution of i

$$\ell_{i}\left(\boldsymbol{\theta}\right) = \ln f\left(\mathbf{y}_{i} | \mathbf{x}_{i}, \boldsymbol{\theta}\right)$$

► Total log likelihood is

$$L(\theta) = \sum_{i=1}^{N} \ell_i(\theta) = \sum_{i=1}^{N} \ln f(y_i | x_i, \theta)$$

The maximum likelihood estimator is

$$\hat{\theta}_{\mathrm{ML}} = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathbf{L}\left(\boldsymbol{\theta}\right)$$

▶ We must add assumptions to make $\hat{\theta}_{ML}$ consistent and asymptotically efficient

Additional Assumptions

- Additional assumptions:
 - a) ⊕ is closed and bounded
 - ullet b) f is continuous and twice differentiable over ullet
 - c) $f(y|\theta)$ is such that $f(y|\theta_1) = f(y|\theta_2)$ if and only if $\theta_1 = \theta_2$
- ► The last assumption makes sure that L is never flat and there is a unique maximizer

Conditional VS Full Maximum Likelihood

- So far the formal model started from a conditional distribution of y|x
- But the probit model presented before relied on a joint distribution of x and y
- Notice that

$$f(y, x|\theta) = f(y|x, \theta) f(x|\theta)$$

- ▶ If the distribution of x does not depend on θ (i.e. $f(x|\theta) = f(x)$) then the θ maximizing $f(y|x, \theta)$ also maximizes $f(y, x|\theta)$
- ► If this is not the case, a full maximum likelihood is needed

Asymptotic Distribution and Properties

▶ What is the asymptotic distribution of $\hat{\theta}_{ML}$?

$$\hat{\theta}_{\mathsf{ML}} \overset{\mathsf{a}}{\sim} \mathsf{N} \left[\theta, -\mathsf{E} \left(\frac{\partial^2 \mathsf{L} \left(\theta \right)}{\partial \theta \partial \theta'} \right)^{-1} \right]$$

- \blacktriangleright First, the mean is θ , so the estimator is consistent
- ➤ Second, the variance is the negative of the inverse of the Hessian matrix. This is called Cramer-Rao lower bound and it is the smallest possible variance estimator. It follows that the estimator is also efficient!

Discussion on Maximum Likelihood VS OLS

- ML is consistent and efficient, so this is like the best we could ask for
- However, we have to put very strong assumptions to derive these estimators
- In particular, we have to take a stance on data distribution
- ▶ OLS only makes assumption on the conditional mean of the distribution (E (u|X) = 0), not on the entire conditional distribution
- However, the mild assumption of the OLS does not guarantee efficiency
- ► ML is attractive, but if wrong assumption on distribution then we lose efficiency AND consistency

Binary Choice Models

Binary Choice Models Formally

- Let's analyze binary choice models in greater details
- Let's go back to probit model

$$\mathsf{y}^* = \mathsf{X}eta + \mathsf{u}$$

We observe

$$y = \begin{cases} 1 & \text{if } y^* > 0 \\ 0 & \text{if } y^* \leq 0 \end{cases}$$

- To derive ML we need assumption on the distribution of u
- We assume it is normally distributed, this time with some variance σ^2

$$\mathbf{u}\sim\mathbf{N}\left(\mathbf{0},\sigma^{\mathbf{2}}
ight)$$

Probit Model

▶ Probability of observing y = 1 and y = 0

$$\begin{split} \Pr\left(\mathbf{y} = \mathbf{1} | \mathbf{X}, \boldsymbol{\beta}\right) &= \Pr\left(\mathbf{X}\boldsymbol{\beta} + \mathbf{u} > \mathbf{0} | \mathbf{X}\right) \\ &= \Pr\left(\frac{\mathbf{u}}{\sigma} > -\frac{\mathbf{X}\boldsymbol{\beta}}{\sigma} | \mathbf{X}, \boldsymbol{\beta}\right) \\ &= \Phi\left(\frac{\mathbf{X}\boldsymbol{\beta}}{\sigma}\right) \\ \Pr\left(\mathbf{y} = \mathbf{0} | \mathbf{X}, \boldsymbol{\beta}\right) &= \mathbf{1} - \Phi\left(\frac{\mathbf{X}\boldsymbol{\beta}}{\sigma}\right) \end{split}$$

Log likelihood is

$$\mathbf{L}\left(\beta,\sigma\right) = \sum_{i=1}^{N} \left\{ \mathbf{y}_{i} \ln \Phi\left(\frac{\mathbf{X}\beta}{\sigma}\right) + (\mathbf{1} - \mathbf{y}_{i}) \ln\left[1 - \Phi\left(\frac{\mathbf{X}\beta}{\sigma}\right)\right] \right\}$$

Cannot identify both β and σ

$$\mathbf{L}\left(\beta,\sigma\right) = \sum_{i=1}^{N} \left\{ \mathbf{y_i} \ln \Phi\left(\frac{\mathbf{X}\beta}{\sigma}\right) + (\mathbf{1} - \mathbf{y_i}) \ln\left[1 - \Phi\left(\frac{\mathbf{X}\beta}{\sigma}\right)\right] \right\}$$

- Notice that β and σ always appear as a ratio
- ▶ Cannot identify both since if $\hat{\beta}$ and $\hat{\sigma}$ maximize L, then also $\tilde{\beta} = c\hat{\beta}$ and $\tilde{\sigma} = c\hat{\sigma}$ do
- \blacktriangleright For this reason, any assumption on σ is irrelevant
- ▶ Hence, as a convention probit models assume $\sigma = 1$

$$\hat{\beta}_{\mathsf{ML}} \in \arg\max_{\beta} \mathsf{L}\left(\beta, \mathsf{1}\right)$$

Interpreting β s

- In OLS, $\hat{\beta}_k=\frac{\partial y}{\partial x_k}$, is the effect of x_k on y (partial derivative interpretation)
- ▶ But remember how we setup the probit: $\hat{\beta}_{ML}$ is the effect on the latent variable y^* , NOT the effect on the probability that y = 1.
- For an economic interpretation we want to know the effect on the probability that y = 1
- ▶ Hence

$$\text{Pr}\left(y=1|X\right)=F\left(X\beta\right)=F\left(\beta_{0}+\beta_{1}x_{1}+\beta_{2}x_{2}+\ldots+\beta_{K}x_{K}\right)$$

► The effect we are interested in is

$$\frac{\partial \operatorname{Pr}\left(\mathbf{y}=\mathbf{1}|\mathbf{X}\right)}{\partial \mathbf{x_{k}}}=\mathbf{f}\left(\mathbf{X}\boldsymbol{\beta}\right)\boldsymbol{\beta}_{\mathbf{k}}$$

► These are called marginal effects

Marginal Effects - Graphical Intuition

The effect is small for small X

Marginal Effects - Graphical Intuition

The effect is larger for average X

Marginal Effects

- Marginal effects depend on F (Xβ) and therefore are not constant
- Normally people look for meaningful points at which presenting marginal effects
- One option is the mean of Xs

$$\frac{\partial \operatorname{Pr}\left(y=1|X\right)}{\partial x_{k}} = f\left(\bar{X}\beta\right)\beta_{k}$$

- ightharpoonup where \bar{X} is the vector of means for Xs
- If x_k is a dummy variable (e.g. gender), marginal effects should show

$$\operatorname{\mathsf{Pr}}\left(\mathbf{y}=\mathbf{1}|ar{\mathbf{X}}_{-\mathbf{k}},\mathbf{x}_{\mathbf{k}}=\mathbf{1}\right)-\operatorname{\mathsf{Pr}}\left(\mathbf{y}=\mathbf{1}|ar{\mathbf{X}}_{-\mathbf{k}},\mathbf{x}_{\mathbf{k}}=\mathbf{0}\right)$$

More on Marginal Effects

- The ML coefficients however already contain some useful info
- First, their sign shows us the direction of the effect of xk
- Second, they tell us the relative importance of marginal effects

$$\frac{\partial \Pr \left(y=1|X\right) /\partial x_{k}}{\partial \Pr \left(y=1|X\right) /\partial x_{j}}=\frac{\beta _{k}}{\beta _{j}}$$

lacksquare If $eta_{\mathbf{k}}>eta_{\mathbf{j}}$, then $\mathbf{x}_{\mathbf{k}}$ has a greater marginal effect than $\mathbf{x}_{\mathbf{j}}$

The Linear Probability Model

- An alternative to the probit is a simple linear probability model
- Linear model with dichotomous dependent variable y
- ▶ Hence

$$Pr(\mathbf{y} = 1) = \beta_0 + \beta_1 \mathbf{x}_1 + \ldots + \beta_K \mathbf{x}_K = \mathbf{X}\beta$$

- ► What is the problem here?
- Nothing constraints Pr(y=1) to be between 0 and 1
- ▶ Indeed

$$\begin{split} \mathsf{E}\left(\mathbf{y}|\mathbf{X}\right) &= 1 \times \mathsf{Pr}\left(\mathbf{y} = \mathbf{1}|\mathbf{X}\right) + \mathbf{0} \times \mathsf{Pr}\left(\mathbf{y} = \mathbf{0}|\mathbf{X}\right) \\ &= \mathsf{Pr}\left(\mathbf{y} = \mathbf{1}|\mathbf{X}\right) = \mathbf{X}\boldsymbol{\beta} \end{split}$$

The Linear Probability Model

► The error term is also a dichotomous variable

$$u = \begin{cases} 1 - X\beta & \text{if } y = 1 \text{ with probability } \Pr\left(y = 1 | X\right) = X\beta \\ -X\beta & \text{if } y = 0 \text{ with probability } \Pr\left(y = 0 | X\right) = 1 - X\beta \end{cases}$$

► The mean is zero

$$\begin{split} \mathbf{E}\left(\mathbf{u}|\mathbf{X}\right) &= (\mathbf{1} - \mathbf{X}\boldsymbol{\beta}) \times \Pr\left(\mathbf{y} = \mathbf{1}|\mathbf{X}\right) - \mathbf{X}\boldsymbol{\beta} \times \Pr\left(\mathbf{y} = \mathbf{0}|\mathbf{X}\right) \\ &= (\mathbf{1} - \mathbf{X}\boldsymbol{\beta})\,\mathbf{X}\boldsymbol{\beta} - \mathbf{X}\boldsymbol{\beta}\,(\mathbf{1} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{0} \end{split}$$

and variance

$$\begin{aligned} \text{Var}\left(\mathbf{u}|\mathbf{X}\right) &= \mathbf{E}\left(\mathbf{u}^2|\mathbf{X}\right) = (1-\mathbf{X}\beta)^2 \, \mathbf{X}\beta - (\mathbf{X}\beta)^2 \, (1-\mathbf{X}\beta) \\ &= (1-\mathbf{X}\beta) \, \mathbf{X}\beta \end{aligned}$$

► since the variance is not constant the model is necessarily heteroskedastic

The Linear Probability Model

- We can deal with heteroskedasticity the usual way (GLS)
- For consistency we only need E(X'u) = 0
- ► The big advantage of this model however is that it requires milder assumptions than the probit
- ▶ Also, easier to interpret: β is already the effect on the probability
- Last but not least, it can easily be used with panel data unlike the probit

The Logit Model

- The logit model is another alternative to the probit
- ▶ It works the same way, but with a different assumption on the distribution of y
- ▶ Logit assumes that $\mathbf{u} \sim \mathsf{F}(\mathbf{u}) = \mathsf{e}^{-\mathsf{e}^{-\mathsf{u}}}$
- ► This is called Type I extreme distribution
- It seems ugly, but has nice properties that we will see in multinomial models

Some Applications

The Effects of Different Political Campaigns

- Wantchekon (2003) studies the effects of clientelism in political campaigns
- ► The focus is on developing countries
- Research question: is a purely clientelist political platform more effective than a purely public policy one?
- Experimental design in Benin to answer the question

Experimental Design

- ► Two interventions: present the same policies with a clientelist framing vs a "public policy" framing
- You need three groups: two treatment arms and one control
- Each group is composed of different villages to avoid spillovers

Experimental Design

Table 1
Description of the Experimental Districts

	Exp.	Ехр.		
District	Candidate	Villages	Treatment	Ethnicity
Kandi	Kerekou	Kassakou	clientelism	Bariba (92%)
		Keferi	public policy	Bariba (90%)
Nikki	Kerekou	Ouenou	clientelism	Bariba (89%)
		Kpawolou	public policy	Bariba (88%)
Bembereke	Saka Lafia	Bembereke Est	clientelism	Bariba (86%)
		Wannarou	public policy	Bariba (88%)
Perere	Saka Lafia	Tisserou	clientelism	Bariba (93%)
		Alafiarou	public policy	Bariba (94%)
Abomey-Bohicon	Soglo	Agnangnan	clientelism	Fon (99%)
	_	Gnidjazoun	public policy	Fon (99%)
Ouidah-Pahou	Soglo	Acadjame	clientelism	Fon (99%)
		Ahozon	public policy	Fon (99%)
Aplahoue	Amoussou	Boloume	clientelism	Adja (99%)
-		Avetuime	public policy	Adja (96%)
Dogbo-Toviklin	Amoussou	Dékandji	clientelism	Adja (99%)
		Avedjin	public policy	Adja (99%)
Parakou	Ker./Lafia	Guema	competition	Bariba (80%)
		Thiam	competition	Bariba (82%)
Come	Am./Soglo	Kande	competition	Adja (90%)
		Tokan	competition	Adja (95%)

Probit Analysis

Estimate the following probit model:

$$\mathbf{y_{ik}^1} = \alpha + \beta \mathbf{X_i} + \lambda \mathbf{y_{ik}^0} + \gamma \mathbf{CL_k} + \delta \mathbf{PB_k} + \varepsilon_{\mathbf{i}}$$

- \blacktriangleright We observe $y_{ik}=1$ if $y_{ik}^*>0$ and $y_{ik}=0$ if $y_{ik}^*\leq 0$
- CL_k: clientist treatment; PB_k: public policy treatment
- y_{ik}: past vote

Results of Probit Analysis

	Southern	Northern	Local	National	Incumbent	Opposition
Constant	-0.946**	-0.513	-0.367	-0.741	-0.186	0.222
	(0.395)	(0.374)	(0.306)	(0.469)	(0.415)	(0.271)
Sex	-0.513*	-0.516***	-0.424	-0.828**	-0.415	0.024
	(0.200)	(0.194)	(0.330)	(0.332)	(0.370)	(0.231)
Age	0.006	-0.003	-0.009*	0.011*	0.004	0.002
	(0.006)	(0.005)	(0.005)	(0.006)	(0.006)	(0.005)
Past	2.139***	.865***	1.555***	2.057***	1.893***	* 0.966***
	(0.203)	(0.235)	(0.201)	(0.271)	(0.180)	(0.215)
Public policy	0.309**	-0.372***	-0.594*	0.429	-0.287	0.512*
	(0.333)	(0.365)	(0.318)	(0.427)	(0.387)	(0.290)
Clientelist	1.004**	0.264	0.444	0.550	0.344	0.754**
	(0.447)	(0.391)	(0.342)	(0.457)	(0.468)	(0.319)
Sex*Client.	-0.502	-0.191	-0.348	0.489	0.208	-0.324
	(0.505)	(0.435)	(0.379)	(0.548)	(0.539)	(0.364)
Sex*Public Pol.	0.167	-1.050**	0.147	-0.572	-0.111	-0.773**
	(0.402)	(0.414)	(0.358)	(0.482)	(0.450)	(0.345)
N	524	543	596	510	472	602
log-L	-145.250	-208.538	-284.0500	-115.986	-146.161	-244.583

Changes in Production Inputs

- Conley and Udry (2010) study how information changes choices of inputs
- They study effect of good and bad news for information neighbors
- See whether farmers adjust to align with those of neighbors
- Study adoption of fertilizer (new technology) in Ghana

Changes in Production Inputs: Logit

► They run the following specification

$$\Pr\left(\Delta \mathbf{x}_{\mathsf{it}} \neq \mathbf{0}\right) = \Lambda \left[\begin{array}{c} \alpha_1 \mathsf{s} \left(\mathsf{good}, \mathbf{x} = \mathbf{x}_{\mathsf{it_p}}\right) + \alpha_2 \mathsf{s} \left(\mathsf{good}, \mathbf{x} \neq \mathbf{x}_{\mathsf{it_p}}\right) \\ \alpha_3 \mathsf{s} \left(\mathsf{bad}, \mathbf{x} = \mathbf{x}_{\mathsf{it_p}}\right) + \alpha_4 \mathsf{s} \left(\mathsf{bad}, \mathbf{x} \neq \mathbf{x}_{\mathsf{it_p}}\right) \\ + \alpha_5 \tilde{\Gamma}_{\mathsf{it}} + \mathbf{z}_{\mathsf{it}}' \alpha_6 \end{array} \right]$$

- \blacktriangleright s $(\mathrm{good},x=x_{it_p})\colon$ share of neighbors with same technology with good news
- $ightharpoonup ilde{\Gamma}_{ ext{it}}$: difference with growing conditions nearby

Results of Logit Analysis

	A	В	C
	Dependent variable:	Dependent variable:	Dependent variable:
	Indicator for change	Indicator for change	Indicator for nonzero
	between zero and positive	> 1Cedi/Plant	change in fertilizer
Good news at previous	-0.94	-0.08	-0.34
input use	(1.24)	(0.95)	(0.84)
$s(good, x = x_{i,nerrious})$	[-0.04]	[-0.01]	[-0.03]
Good news at alternative	1.15	1.64	2.35
fertilizer use	(0.81)	(0.78)	(1.80)
$s(good, x \neq x_{i,uerines})$	[0.03]	[0.09]	[0.14]
Bad news at lagged	6.38	4.32	4.16
fertilizer use	(2.86)	(1.93)	(1.80)
$s(bad, x = x_{i,precious})$	[0.15]	[0.20]	[0.22]
Bad news at alternative	-6.72	-5.90	-3.05
fertilizer use	(3.04)	(2.57)	(1.85)
$s(bad, x \neq x_{i,previous})$	[-0.09]	[-0.15]	[-0.09]
Ave. abs. dev. from geog.	0.09	0.15	0.08
neighbors' fertilizer use	(0.10)	(0.07)	(0.04)
$[\Gamma_{t,t}]$	[0.07]	[0.24]	[0.15]
Novice farmer	2.32	1.97	1.22
	(0.75)	(0.89)	(0.92)
	[0.26]	[0.43]	[0.30]
Talks with extension agent	-0.48	-1.35	-1.38
	(0.61)	(0.67)	(0.76)
	[-0.05]	[-0.29]	[-0.34]
Wealth (million cedis)	0.20	0.18	0.10
	(0.10)	(0.13)	(0.12)
	[0.06]	[0.10]	[0.06]
Clan I	1.62	1.59	2.15
	(1.14)	(1.10)	(1.03)
	[0.18]	[0.35]	[0.54]
Clan 2	4.54	2.15	2.51
	(1.45)	(1.23)	(0.99)
	[0.51]	[0.47]	[0.63]
Church I	1.84	-0.29	-0.24
	(0.93)	(0.73)	(0.77)
	[0.21]	[-0.06]	[-0.06]