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Maximum Likelihood and
Binary Dependent Variable Models

Matteo Paradisi
(EIEF)

Applied Micro - Lecture 9
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Limited Dependent Variable

▶ So far Y, the dependent variable, was continuous

▶ However, dependent variables could be dichotomous (dummy
variables) or categorical

▶ Hence, we study non-linear estimation with dichotomous Y
vars

▶ Some examples
• Votes (Left vs Right)
• Labor force participation (extensive margin)
• College dropout
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Example and Intuition

▶ Suppose you want to relate the share of blacks in the
population to whether a black representative is elected

▶ Dependent variable: dummy =1 if elected

▶ Now plot the data to see the relationship



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example and Intuition
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Example and Intuition - Linear Fit
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Example and Intuition

▶ A line does not fit the data well

▶ We need something better

▶ AND something that will predict values between 0 and 1

▶ What can we do?
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Example and Intuition

▶ Think of dependent variable as a probability of the event

▶ We need a function that takes continuous values and provides
something in the [0, 1] interval

▶ Which function does this?

▶ Example: the CDF of a Normal distribution!

Y = Φ (Xβ + ε)

▶ Must be careful about interpretation of βs (we’ll see it later)

▶ This model fits the data better!
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Example and Intuition - Non-Linear Fit
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Estimating the Model

▶ This model allows us to better fit the data

▶ However, how do we estimate it?

▶ We need to introduce the concept of maximum likelihood
estimation
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Maximum Likelihood
Estimation
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Maximum Likelihood - Introduction

▶ What is maximum likelihood?

▶ Estimation method: find values of parameters that maximize
the likelihood of observing the sample at hand

▶ Two steps:
1. Write a closed-form of the likelihood

• function of data and parameters
2. Maximize it to find estimates

▶ These methods are particularly useful in models where the
dependent variable is a discrete choice
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Probit Model
▶ We start from the simplest model
▶ Let’s assume that our theory gives us a latent variable y∗

determined by some x

y∗ = xβ + u

▶ However, y∗ is not observed. It could be for instance the utility
from a choice

▶ We instead observe a binary choice

y =
{
1 if y∗ > 0
0 if y∗ ≤ 0

▶ Notice that 0 is just a normalization
▶ Example: if y is choice about entering the labor force, then you

enter if utility from entering is greater than alternative
(normalized to 0)
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Probit Model

▶ Suppose that (yi, xi)i∈N are i.i.d.

▶ We need to find a way to write the probability of observing a
vector of choices and characteristics

▶ Assume that u ∼ N (0, 1) then

Pr (yi = 1|xi, β) = Pr (xiβ + ui > 0|xi)
= Pr (ui > −xiβ|xi, β)

= 1− Φ (−xiβ) = Φ (xiβ)

where Φ (·) is the cdf of a Normal distribution

▶ Analogously

Pr (yi = 0|xi, β) = 1− Φ (xiβ)
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Likelihood Function

▶ We can then write the likelihood of observing (yi, xi)

p (yi|xi, β) = [Φ (xiβ)]yi [1− Φ (xiβ)]1−yi

also called ”likelihood contribution” of i

▶ Hence, the likelihood for the entire sample is

L (β) =
N

∏
i=1

p (yi|xi, β)

▶ since yi and xi are observed, β is the only unknown
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Maximizing the Likelihood

▶ In most cases, algorithms maximize a monotonic
transformation of L

β̂ML = argmax
β∈Θ

log L (β) = argmax
β∈Θ

N

∑
i=1

ln p (yi|xi, β)

▶ the transformation takes the log of L and it is referred to as
log-likelihood

▶ Notice that Θ is a generic set, so that one can add additional
constraints on β
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Linear Regression and Maximum Likelihood

▶ We can apply maximum likelihood to linear regressions too

▶ Consider the model
yi = xiβ + ui

▶ We add assumption to standard OLS assumptions:
u ∼ N

(
0, σ2)
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Linear Regression and Maximum Likelihood

▶ Because data is continuous in this case, we cannot write a
probability function

▶ We write a distribution function instead

f (yi|xi, β, σ) = f (ui = yi − xiβ|xi)

= φ

(
yi − xiβ

σ

)

▶ Hence, log-likelihood is

L (β, σ) =
N

∑
i=1

ln φ

(
yi − xiβ

σ

)
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Linear Regression and Maximum Likelihood

Rewrite the likelihood as

L (β, σ) =
N

∑
i=1

ln φ

(
yi − xiβ

σ

)

=
N

∑
i=1

ln

[
1

σ
√
2π

exp

(
−1
2

(
yi − xiβ

σ

)2
)]

=
N

∑
i=1

[
− ln σ − 1

2 ln 2π − 1
2σ2 (yi − xiβ)2

]
= −N ln σ − N

2 ln 2π − 1
2σ2

N

∑
i=1

(yi − xiβ)2
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Linear Regression and Maximum Likelihood

L (β, σ) = −N ln σ − N
2 ln 2π − 1

2σ2

N

∑
i=1

(yi − xiβ)2

▶ FOCs are
1
σ2

N

∑
i=1

x′i (yi − xiβ) = 0

−N
σ
+

1
σ3

N

∑
i=1

(yi − xiβ)2 = 0

▶ Combining them

β̂ML =

[
N

∑
i=1

x′ixi

]−1 [ N

∑
i=1

x′iyi

]

σ̂2
ML = N−1

N

∑
i=1

(yi − xiβ)2
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Linear Regression and Maximum Likelihood

β̂ML =

[
N

∑
i=1

x′ixi

]−1 [ N

∑
i=1

x′iyi

]

σ̂2
ML = N−1

N

∑
i=1

(yi − xiβ)2

▶ These are OLS formulas!

▶ However, the result depends on the assumption on u’s
distribution

▶ With a different distribution, OLS would not be a maximum
likelihood estimator for this linear model
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Formal Characterization of Maximum Likelihood

▶ Let’s be a little more formal, derive the maximum likelihood,
and discuss some properties

▶ Assumption 1: y|x ∼ i.i.d. F (·|θ)

▶ Conditioning on θ emphasizes the fact that F is a function of
the parameters to be estimated
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Formal Characterization of Maximum Likelihood
▶ Log likelihood contribution of i

ℓi (θ) = ln f (yi|xi, θ)

▶ Total log likelihood is

L (θ) =
N

∑
i=1

ℓi (θ) =
N

∑
i=1

ln f (yi|xi, θ)

▶ The maximum likelihood estimator is

θ̂ML = argmax
θ∈Θ

L (θ)

▶ We must add assumptions to make θ̂ML consistent and
asymptotically efficient
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Additional Assumptions

▶ Additional assumptions:
• a) Θ is closed and bounded
• b) f is continuous and twice differentiable over Θ
• c) f (y|θ) is such that f (y|θ1) = f (y|θ2) if and only if θ1 = θ2

▶ The last assumption makes sure that L is never flat and there
is a unique maximizer
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Conditional VS Full Maximum Likelihood

▶ So far the formal model started from a conditional distribution
of y|x

▶ But the probit model presented before relied on a joint
distribution of x and y

▶ Notice that
f (y, x|θ) = f (y|x, θ) f (x|θ)

▶ If the distribution of x does not depend on θ (i.e. f (x|θ) = f (x))
then the θ maximizing f (y|x, θ) also maximizes f (y, x|θ)

▶ If this is not the case, a full maximum likelihood is needed
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Asymptotic Distribution and Properties

▶ What is the asymptotic distribution of θ̂ML?

θ̂ML
a∼ N

[
θ,−E

(
∂2L (θ)
∂θ∂θ′

)−1]

▶ First, the mean is θ, so the estimator is consistent

▶ Second, the variance is the negative of the inverse of the
Hessian matrix. This is called Cramer-Rao lower bound and it
is the smallest possible variance estimator. It follows that the
estimator is also efficient!
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Discussion on Maximum Likelihood VS OLS

▶ ML is consistent and efficient, so this is like the best we could
ask for

▶ However, we have to put very strong assumptions to derive
these estimators

▶ In particular, we have to take a stance on data distribution

▶ OLS only makes assumption on the conditional mean of the
distribution (E (u|X) = 0), not on the entire conditional
distribution

▶ However, the mild assumption of the OLS does not guarantee
efficiency

▶ ML is attractive, but if wrong assumption on distribution then
we lose efficiency AND consistency
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Binary Choice Models
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Binary Choice Models Formally
▶ Let’s analyze binary choice models in greater details

▶ Let’s go back to probit model

y∗ = Xβ + u

▶ We observe

y =
{
1 if y∗ > 0
0 if y∗ ≤ 0

▶ To derive ML we need assumption on the distribution of u

▶ We assume it is normally distributed, this time with some
variance σ2

u ∼ N
(
0, σ2

)
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Probit Model

▶ Probability of observing y = 1 and y = 0

Pr (y = 1|X, β) = Pr (Xβ + u > 0|X)

= Pr

(
u
σ
> −Xβ

σ
|X, β

)
= Φ

(
Xβ

σ

)

Pr (y = 0|X, β) = 1− Φ
(
Xβ

σ

)

▶ Log likelihood is

L (β, σ) =
N

∑
i=1

{
yi lnΦ

(
Xβ

σ

)
+ (1− yi) ln

[
1− Φ

(
Xβ

σ

)]}
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Cannot identify both β and σ

L (β, σ) =
N

∑
i=1

{
yi lnΦ

(
Xβ

σ

)
+ (1− yi) ln

[
1− Φ

(
Xβ

σ

)]}

▶ Notice that β and σ always appear as a ratio

▶ Cannot identify both since if β̂ and σ̂maximize L, then also
β̃ = cβ̂ and σ̃ = cσ̂ do

▶ For this reason, any assumption on σ is irrelevant

▶ Hence, as a convention probit models assume σ = 1

β̂ML ∈ argmax
β

L (β, 1)
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Interpreting βs
▶ In OLS, β̂k =

∂y
∂xk , is the effect of xk on y (partial derivative

interpretation)
▶ But remember how we setup the probit: β̂ML is the effect on

the latent variable y∗, NOT the effect on the probability that
y = 1.

▶ For an economic interpretation we want to know the effect on
the probability that y = 1

▶ Hence

Pr (y = 1|X) = F (Xβ) = F (β0 + β1x1 + β2x2 + . . . + βKxK)

▶ The effect we are interested in is
∂Pr (y = 1|X)

∂xk
= f (Xβ) βk

▶ These are called marginal effects
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Marginal Effects - Graphical Intuition

The effect is small for small X
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Marginal Effects - Graphical Intuition

The effect is larger for average X
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Marginal Effects
▶ Marginal effects depend on F (Xβ) and therefore are not

constant

▶ Normally people look for meaningful points at which
presenting marginal effects

▶ One option is the mean of Xs

∂Pr (y = 1|X)
∂xk

= f
(
X̄β
)

βk

▶ where X̄ is the vector of means for Xs

▶ If xk is a dummy variable (e.g. gender), marginal effects
should show

Pr
(
y = 1|X̄−k, xk = 1

)
− Pr

(
y = 1|X̄−k, xk = 0

)
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More on Marginal Effects

▶ The ML coefficients however already contain some useful info

▶ First, their sign shows us the direction of the effect of xk

▶ Second, they tell us the relative importance of marginal effects

∂Pr (y = 1|X) /∂xk
∂Pr (y = 1|X) /∂xj

=
βk
βj

▶ If βk > βj, then xk has a greater marginal effect than xj
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The Linear Probability Model

▶ An alternative to the probit is a simple linear probability model

▶ Linear model with dichotomous dependent variable y

▶ Hence

Pr (y = 1) = β0 + β1x1 + . . . + βKxK = Xβ

▶ What is the problem here?

▶ Nothing constraints ̂Pr (y = 1) to be between 0 and 1

▶ Indeed

E (y|X) = 1× Pr (y = 1|X) + 0× Pr (y = 0|X)
= Pr (y = 1|X) = Xβ
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The Linear Probability Model
▶ The error term is also a dichotomous variable

u =

{
1− Xβ if y = 1 with probability Pr (y = 1|X) = Xβ

−Xβ if y = 0 with probability Pr (y = 0|X) = 1− Xβ

▶ The mean is zero

E (u|X) = (1− Xβ)× Pr (y = 1|X)− Xβ × Pr (y = 0|X)
= (1− Xβ) Xβ − Xβ (1− Xβ) = 0

▶ and variance

Var (u|X) = E
(
u2|X

)
= (1− Xβ)2 Xβ − (Xβ)2 (1− Xβ)

= (1− Xβ) Xβ

▶ since the variance is not constant the model is necessarily
heteroskedastic
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The Linear Probability Model

▶ We can deal with heteroskedasticity the usual way (GLS)

▶ For consistency we only need E (X′u) = 0

▶ The big advantage of this model however is that it requires
milder assumptions than the probit

▶ Also, easier to interpret: β is already the effect on the
probability

▶ Last but not least, it can easily be used with panel data unlike
the probit
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The Logit Model

▶ The logit model is another alternative to the probit

▶ It works the same way, but with a different assumption on the
distribution of y

▶ Logit assumes that u ∼ F (u) = e−e−u

▶ This is called Type I extreme distribution

▶ It seems ugly, but has nice properties that we will see in
multinomial models
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Some Applications
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The Effects of Different Political Campaigns

▶ Wantchekon (2003) studies the effects of clientelism in political
campaigns

▶ The focus is on developing countries

▶ Research question: is a purely clientelist political platform
more effective than a purely public policy one?

▶ Experimental design in Benin to answer the question
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Experimental Design

▶ Two interventions: present the same policies with a clientelist
framing vs a ”public policy” framing

▶ You need three groups: two treatment arms and one control

▶ Each group is composed of different villages to avoid spillovers
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Experimental Design
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Probit Analysis

▶ Estimate the following probit model:

y1ik = α + βXi + λy0ik + γCLk + δPBk + ε i

▶ We observe yik = 1 if y∗ik > 0 and yik = 0 if y∗ik ≤ 0

▶ CLk: clientist treatment; PBk: public policy treatment

▶ y0ik: past vote
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Results of Probit Analysis
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Changes in Production Inputs

▶ Conley and Udry (2010) study how information changes
choices of inputs

▶ They study effect of good and bad news for information
neighbors

▶ See whether farmers adjust to align with those of neighbors

▶ Study adoption of fertilizer (new technology) in Ghana
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Changes in Production Inputs: Logit

▶ They run the following specification

Pr (∆xit ̸= 0) = Λ

 α1s
(
good, x = xitp

)
+ α2s

(
good, x ̸= xitp

)
α3s

(
bad, x = xitp

)
+ α4s

(
bad, x ̸= xitp

)
+α5Γ̃it + z′itα6



▶ s
(
good, x = xitp

)
: share of neighbors with same technology

with good news

▶ Γ̃it: difference with growing conditions nearby
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Results of Logit Analysis


