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Limited Dependent Variable

» So farY, the dependent variable, was continuous

» However, dependent variables could be dichotomous (dummy
variables) or categorical

» Hence, we study non-linear estimation with dichotomous Y
vars

» Some examples
® Votes (Left vs Right)
® Labor force participation (extensive margin)
® College dropout



Example and Intuition

» Suppose you want to relate the share of blacks in the
population to whether a black representative is elected

» Dependent variable: dummy =1 if elected

» Now plot the data to see the relationship



Example and Intuition
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Example and Intuition - Linear Fit
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Example and Intuition

» A line does not fit the data well
» We need something better
» AND something that will predict values between 0 and 1

» What can we do?



Example and Intuition

» Think of dependent variable as a probability of the event

» We need a function that takes continuous values and provides
something in the [0, 1] interval

» Which function does this?

» Example: the CDF of a Normal distribution!

Y=®(XB+e¢)

> Must be careful about interpretation of s (we’ll see it later)

» This model fits the data better!



Example and Intuition - Non-Linear Fit
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Estimating the Model

» This model allows us to better fit the data
» However, how do we estimate it?

» We need to introduce the concept of maximum likelihood
estimation



Maximum Likelihood
Estimation



Maximum Likelihood - Introduction

» What is maximum likelihood?

» Estimation method: find values of parameters that maximize
the likelihood of observing the sample at hand

> Two steps:
1. Write a closed-form of the likelihood
® function of data and parameters
2. Maximize it to find estimates

» These methods are particularly useful in models where the
dependent variable is a discrete choice



Probit Model

» We start from the simplest model

P Let’s assume that our theory gives us a latent variable y*
determined by some x

y"=xB+u

» However, y* is not observed. It could be for instance the utility
from a choice

» We instead observe a binary choice

_J1 ify* >0
Y=o it y* <0
» Notice that 0 is just a normalization

» Example: if y is choice about entering the labor force, then you
enter if utility from entering is greater than alternative
(normalized to 0)



Probit Model

> Suppose that (y;, x;);-y arei.i.d.

» We need to find a way to write the probability of observing a
vector of choices and characteristics

» Assume thatu ~ N (0, 1) then
Pr(yi = 1|x;, B) = Pr (xi8 + u; > 0[x;)

= Pr(uj > —x;B|x;, B)
=1-® (—Xi,B) = CI)(Xiﬁ)

where @ (-) is the cdf of a Normal distribution

» Analogously

Pr(yi = 0], B) = 1 — @ (xif)



Likelihood Function

» We can then write the likelihood of observing (y;, x;)

p (yilxi. B) = [@ (xiB)]" [1 — @ (xiB)]' "
also called "likelihood contribution” of i

» Hence, the likelihood for the entire sample is

N
H (¥ilxi, B)

» sincey; and x; are observed, j is the only unknown



Maximizing the Likelihood

» In most cases, algorithms maximize a monotonic
transformation of L

N
pmL = arg HEKS logL (B) = arg ?Eagi; Inp (yi|xi, B)

» the transformation takes the log of L and it is referred to as
log-likelihood

» Notice that @ is a generic set, so that one can add additional
constraints on



Linear Regression and Maximum Likelihood

» We can apply maximum likelihood to linear regressions too

» Consider the model
Yi = Xi + U

» We add assumption to standard OLS assumptions:
u~N(0,0?)



Linear Regression and Maximum Likelihood

» Because data is continuous in this case, we cannot write a
probability function

» We write a distribution function instead

f(yilxi, B, o) = f(ui = yi — xiB|x;)

(2

» Hence, log-likelihood is

L<ﬁ,a>=iln¢(y“j‘ﬁ)

i=1



Linear Regression and Maximum Likelihood

Rewrite the likelihood as

0=jne (22E)
R0
i{ InU—f|n27T 2(17(Vi_xi5)2]

— Nino— Nin2 —Li(-—x- )2
= no Enn =) Yi iB




Linear Regression and Maximum Likelihood

N

L(B,o) =—N|ncf—2l|n27r—2;22(yi_xiﬁ>2

» FOCs are
(72 ZX X,ﬁ )=0
N 1 N )
ot 3 (i—xp) =0

i=1

» Combining them



Linear Regression and Maximum Likelihood

» These are OLS formulas!

» However, the result depends on the assumption on u’s
distribution

» With a different distribution, OLS would not be a maximum
likelihood estimator for this linear model



Formal Characterization of Maximum Likelihood

P> Let’s be a little more formal, derive the maximum likelihood,
and discuss some properties

» Assumption 1: y|x ~ i.i.d. F (-]0)

» Conditioning on 8 emphasizes the fact that F is a function of
the parameters to be estimated



Formal Characterization of Maximum Likelihood

» Log likelihood contribution of i
Ei (9) =Inf (yi|Xi, 9)

» Total log likelihood is

N N

L(6) =) 4i(6) = ;'nf()’ﬂxiﬂ)

i=1
» The maximum likelihood estimator is

O = L (0
m = argmaxt (6)

» We must add assumptions to make L consistent and
asymptotically efficient



Additional Assumptions

» Additional assumptions:

® a) O is closed and bounded
® D) fis continuous and twice differentiable over ®
® ¢)f(y|0) is suchthatf(y|6;) = f(y|f;) if and only if 6; = 6,

» The last assumption makes sure that L is never flat and there
is a unique maximizer



Conditional VS Full Maximum Likelihood

» So far the formal model started from a conditional distribution
of y|x

» But the probit model presented before relied on a joint
distribution of x and y

» Notice that
f(y,x|8) = f(y|x,0) f(x]6)

> If the distribution of x does not depend on 0 (i.e. f (x|0) = f(x))
then the 6 maximizing f (y|x, 6) also maximizes f (y, x|6)

» If this is not the case, a full maximum likelihood is needed



Asymptotic Distribution and Properties

> What is the asymptotic distribution of Gy ?
A RLO)
a
o2 (P

» First, the mean is 0, so the estimator is consistent

» Second, the variance is the negative of the inverse of the
Hessian matrix. This is called Cramer-Rao lower bound and it
is the smallest possible variance estimator. It follows that the
estimator is also efficient!



Discussion on Maximum Likelihood VS OLS

» ML is consistent and efficient, so this is like the best we could
ask for

» However, we have to put very strong assumptions to derive
these estimators

» In particular, we have to take a stance on data distribution

» OLS only makes assumption on the conditional mean of the
distribution (E (u|X) = 0), not on the entire conditional
distribution

» However, the mild assumption of the OLS does not guarantee
efficiency

» ML is attractive, but if wrong assumption on distribution then
we lose efficiency AND consistency



Binary Choice Models



Binary Choice Models Formally

» Let’s analyze binary choice models in greater details

> Let's go back to probit model

y"=XB+u

» We observe
)1 ify* >0
Y= 0 ity <o
» To derive ML we need assumption on the distribution of u

» We assume it is normally distributed, this time with some

variance ¢
uNN(aﬁ)



Probit Model

» Probability of observingy = 1andy =0

Pr(y = 1]X, B) = Pr (XB +u > 0X)
— Pr (; > —%x, /3)

e
Pr(y:oyx,fs):1—q><)ff>

» Log likelihood is

L(B,0) zi{yim@(?) +(1=yi)ln [‘ —q’();)]}



Cannot identify both g and ¢

1= fone () 0-nwfr-o (2]

> Notice that 8 and ¢ always appear as a ratio

> Cannot identify both since if 3 and ¢maximize L, then also
B=cpandi = co do

» For this reason, any assumption on ¢ is irrelevant

» Hence, as a convention probit models assume o =1

ﬁML € arg mﬁaxL (B, 1)



Interpreting Bs

>

>

In OLS, Bk = %. is the effect of x on y (partial derivative
interpretation)

But remember how we setup the probit: BML is the effect on
the latent variable y*, NOT the effect on the probability that

y=1

For an economic interpretation we want to know the effect on
the probability thaty = 1

Hence

Pr(y: 1|X) :F(X‘B) :F(ﬁg—FIB]X|+‘32X2+...—|—‘BKXK)

The effect we are interested in is
dPr(y=1|X)
an

= f(XB) Bk

These are called marginal effects



Marginal Effects - Graphical Intuition

The effect is small for small X
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Marginal Effects - Graphical Intuition

The effect is larger for average X
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Marginal Effects

>

>

Marginal effects depend on F (X5) and therefore are not
constant

Normally people look for meaningful points at which
presenting marginal effects

One option is the mean of Xs

aPr (y = 1X)
an

= f (XB) B«

where X is the vector of means for Xs

If Xk is a dummy variable (e.g. gender), marginal effects
should show

Pry=1X_k,xk =1) = Pr(y = 1|X_k, xx = 0)



More on Marginal Effects

» The ML coefficients however already contain some useful info
» First, their sign shows us the direction of the effect of xi
» Second, they tell us the relative importance of marginal effects

IPr(y =1X) /oxc _ P«
aPriy=15) /3%

> If B > B;. then xi has a greater marginal effect than x;



The Linear Probability Model

» An alternative to the probit is a simple linear probability model
» Linear model with dichotomous dependent variable y

» Hence

Pr(y:1) :,Bg—{—ﬁ1X1—|-...—|—,BKXK:Xﬁ

» What is the problem here?

v

Nothing constraints Pr@zn to be between 0 and 1

» Indeed

E(y]X) =1xPr(y=1/X) 40 x Pr(y =0|X)
= Pr(y=1]X) =X



The Linear Probability Model

» The error term is also a dichotomous variable
~J1=XpB ify =1 with probability Pr (y=1X) =XB
| =XB  ify = 0 with probability Pr (y = 0]X) = 1 — X8

» The mean is zero
E (ulX) = (1 —XB) x Pr(y =1|X) — XB x Pr(y = 0|X)
=(1-XB)Xp—XB(1—-Xp) =0

» and variance
Var (ulX) = E (W2[X) = (1= XB)2XB — (XB)* (1 — Xp)
= (1-Xp)Xp

» since the variance is not constant the model is necessarily
heteroskedastic



The Linear Probability Model

» We can deal with heteroskedasticity the usual way (GLS)
» For consistency we only need E (X'u) = 0

» The big advantage of this model however is that it requires
milder assumptions than the probit

P Also, easier to interpret: j is already the effect on the
probability

» Last but not least, it can easily be used with panel data unlike
the probit



The Logit Model

» The logit model is another alternative to the probit

» It works the same way, but with a different assumption on the
distribution of y

> Logit assumes thatu ~ F (u) = e~ ¢ "
» This is called Type | extreme distribution

» It seems ugly, but has nice properties that we will see in
multinomial models



Some Applications



The Effects of Different Political Campaigns

» Wantchekon (2003) studies the effects of clientelism in political
campaigns

» The focus is on developing countries

» Research question: is a purely clientelist political platform
more effective than a purely public policy one?

» Experimental design in Benin to answer the question



Experimental Design

» Two interventions: present the same policies with a clientelist
framing vs a "public policy” framing

» You need three groups: two treatment arms and one control

» Each group is composed of different villages to avoid spillovers



Experimental Design

TABLE 1
DESCRIPTION OF THE EXPERIMENTAL DISTRICTS
Exp. Exp.
District Candidate Villages Treatment Ethnicity
Kandi Kerekou Kassakou clientelism Bariba (92%)
Keferi public policy ~ Bariba (90%)
Nikki Kerekou Ouenou clientelism Bariba (89%)
Kpawolou public policy ~ Bariba (88%)
Bembereke Saka Lafia Bembereke Est  clientelism Bariba (86%)
Wannarou public policy ~ Bariba (88%)
Perere Saka Lafia Tisserou clientelism Bariba (93%)
Alafiarou public policy ~ Bariba (94%)
Abomey-Bohicon  Soglo Agnangnan clientelism Fon (99%)
Gnidjazoun public policy  Fon (99%)
OQuidah-Pahou Soglo Acadjame clientelism Fon (99%)
Ahozon public policy  Fon (99%)
Aplahoue Amoussou Boloume clientelism Adja (99%)
Avetuime public policy  Adja (96%)
Dogbo-Toviklin Amoussou Dékandji clientelism Adja (99%)
Avedjin public policy  Adja (99%)
Parakou Ker./Lafia Guema competition Bariba (80%)
Thiam competition Bariba (82%)
Come Am./Soglo Kande competition  Adja (90%)

Tokan competition Adja (95%)




Probit Analysis

» Estimate the following probit model:

Yic = & + BXi + AYj + YCLi + 6PBy + ¢

> Weobserveyy = 1ify, > 0andyy =0ify, <0
» CLy: clientist treatment; PBy: public policy treatment

> yo: past vote



Results of Probit Analysis

TABLE 5
PROBIT ANALYSIS OF VOTE FOR TYPE OF CANDIDATES IN
TREATMENT VILLAGES
Southern  Northern Local National — Incumbent Opposition
Constant -0.946** -0.513 —0.367 -0.741 -0.186 0.222
(0.395) (0.374) (0.306) (0.469) (0.415) (0.271)
Sex —0.513* -0.516"*  —0.424 -0.828**  —-0.415 0.024
(0.200) (0.194) (0.330) (0.332) (0.370) (0.231)
Age 0.006 —0.003 -0.009* 0.011* 0.004 0.002
(0.006) (0.005) (0.005) (0.006) (0.006) (0.005)
Past 2.139* .865™* 1.555™*  2.057"** 1.893**  0.966™*

(0.203) (0.235) (0.201) (0.271) (0.180)  (0.215)
Public policy 0.309"*  -0.372**  -0.594* 0.429 -0.287 0.512*
(0.333) (0.365) (0.318) (0.427) (0.387)  (0.290)

Clientelist 1.004** 0.264 0.444 0.550 0.344 0.754*
(0.447) (0.391) (0.342) (0.457) (0.468)  (0.319)
Sex*Client. -0.502 -0.191 —0.348 0.489 0.208 -0.324

(0.505) (0.435) (0.379) (0.548) (0.539)  (0.364)
Sex*Public Pol.  0.167 -1.050* 0.147 -0.572 -0.111 -0.773*

(0.402) (0.414) (0.358) (0.482) (0.450)  (0.345)
N 524 543 596 510 472 602
log-L -145.250 -208.538  —284.0500 -115.986 -146.161 -244.583




Changes in Production Inputs

» Conley and Udry (2010) study how information changes
choices of inputs

» They study effect of good and bad news for information
neighbors

» See whether farmers adjust to align with those of neighbors

» Study adoption of fertilizer (new technology) in Ghana



Changes in Production Inputs: Logit

» They run the following specification

a1 (good, X = X, ) + s (good, X # Xit, )
Pr(Axi #0) = A | azs (bad,x = Xyt,) + ass (bad, x # xi,)

+asTis + Zjne

> s (good,x = X, ): share of neighbors with same technology
with good news

» [} difference with growing conditions nearby



Results of Logit Analysis

TABLE 4= DETERMINANTS OF CHANGING INPUT Usi:

A B C
Dependent variable: Dependent variable: Dependent variable:
Indicator for change cator for [change] — Indicator for nonzero
between zero and positive -+ \Cedi/Plant change in fertilizer
Good news at previous 094 0.08 034
input use (1.24) (095) (0.84)
s(good. x ous) [-0.04] (=001 [-0.03]
Good news at alternative LIS 1.64 235
fertilizer use (0.81) (0.78) (1.80)
S(800d.X 7 X, i) 10.03] 0.09] 0.14]
Bad news at lagged 6.38 432 4.16
fertilizer use (2.86) (193) (1.80)
S(bad.X = X, prons) (0,15 0.20] (0.22]
Bad news at alternative 672 ~590 ~305
fertilizer use (3.04) (2.57) (1.85)
S(bad.x # X, pyevions) [~0.09] [~0.15) [~0.09)
Ave. abs. dev. from geog. 0.09 015 0.08
neighbors’ fertilizer use (0.10) 0.07) (0.04)
(] 0.07) 0.24] (0.15]
Novice farmer 197 1.22
(0.75) (0.89) (092)
0.26] 0.43] 0.30]
Talks with extension agent 048 -1.35
(0.61) (0.67)
[-0.05] [~0.29]
Wealth (million cedis) 020 0.18
(0.10) (0.13)
0.06] (0.10]
Clan | 162 1.59
(1.14) (1.10)
[0.18] 0.35]
Clan2 454 215
(1.45) (1.23)
0.51] 10.47]
Church | 1.84 -0.29
(0.93) (0.73)
[0.21] [~0.06]

u]
b
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