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Models for Incomplete Observations:
Censoring, Truncation and Selection

Matteo Paradisi
(EIEF)

Applied Micro - Lecture 12
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Incomplete Observations

▶ Today we study models where the dependent variable is not
completely observed

▶ We study two main cases:
• censoring: y is censored at some point of the distribution
• truncation: y is set to missing above some point in the

distribution
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Censored Data

▶ A variable can be either top or bottom coded

▶ Top coded

y =
{
a if y∗ > a
y∗ if y∗ ≤ a

▶ Bottom coded

y =
{
b if y∗ < b
y∗ if y∗ ≥ b



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Censored Data - Examples

Censored data can arise for two main reasons.

▶ First, data artificially top or bottom coded
• e.g. wages above some level (ceiling on social security

contributions)
• sometimes censoring imposed to prevent identification

▶ Second, data arise naturally from the problem under
consideration

• e.g. charity donations, people decide not to donate and the
distribution shows a mass point at zero

• in natural censoring, the uncensored variable does not exist,
true variable is already censored
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Truncated Data

▶ Similar to censoring, but replaced with missing

▶ Hence, we have

y =
{
y∗ if a < y∗ < b
. otherwise

▶ Sometimes truncation due to fact that X are missing
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Implications of Censoring in OLS

▶ Let’s consider the model

y∗ = Xβ + u

▶ Suppose that y∗ is the complete variable

▶ Assume the model satisfies

E (u) = 0
E
(
X′u

)
= 0

▶ However, we do not observe y∗
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Implications of Censoring in OLS

▶ The conditional mean or regression function of the OLS is

E (y∗|X) = Xβ

▶ If we run OLS on censored variable we assume that
conditional mean is linear

▶ Consider some censoring

y =
{
y∗ if y∗ > 0
0 if y∗ ≤ 0
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Implications of Censoring in OLS

▶ The conditional mean can be decomposed as

E (y|X) = Pr (y = 0|X)× 0+ Pr (y > 0|X) E (y|X, y > 0)
= Pr (y > 0|X) E (y|X, y > 0)
= Pr (u > −βX) [Xβ + E (u|u > −Xβ)]

▶ this is not linear!
▶ We can also rewrite it as

E (y|X) = Xβ + [Pr (u > −βX) E (u|u > −βX)− (1− Pr (u > −βX)) Xβ]

▶ Hence, estimation of OLS with censored variable is essentially
an OLS with omitted variable!

▶ Notice that the omitted term is correlated with X
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Implications of Truncation in OLS

▶ Now, consider truncated data

y =
{
y∗ if y∗ > 0
. if y∗ ≤ 0

▶ Here the conditional mean is

E (y|X) = E (y∗|X, y∗ > 0)
= E (Xβ + u|X, Xβ + u > 0)
= Xβ + E (u|X, u > −Xβ)

▶ We have an omitted variable problem
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Dealing with Censored Data: Tobit Model

▶ We now introduce the Tobit model to solve the OLS bias

▶ As we have seen before when censoring at 0

E (y|X) = Pr (u > −βX) [Xβ + E (u|u > −Xβ)]

▶ Tobit assumptions:

1. E (u) = 0

2. E (X′u) = 0

3. u ∼ N
(
0, σ2)
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Dealing with Censored Data: Tobit Model

▶ The distributional assumption allows to derive the density of
y|X

▶ Then we apply maximum likelihood

▶ The likelihood contribution of censored observations is

Pr (yi = 0|Xi) = 1− Φ (Xiβ/σ)
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Dealing with Censored Data: Tobit Model

▶ The likelihood contribution of non-censored observations
(yi > 0) is

f (yi|X, yi > 0) = f (y∗i |X, y∗i > 0)

▶ We need to find an expression for f

▶ Consider the cdf of f

F (c|y∗ > 0) = Pr (y∗ < c|y∗ > 0) = Pr (y∗ < c, y∗ > 0)
Pr (y∗ > 0)

=
Pr (0 < y∗ < c)
Pr (y∗ > 0)

=
F (c)− F (0)
1− F (0)
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Dealing with Censored Data: Tobit Model

▶ f is just the derivative of the cdf

f (c|X, y∗ > 0) = ∂F (c|y∗ > 0)
∂c

=
∂
[
F(c)−F(0)
1−F(0)

]
∂c

=
f (c)

1− F (0)

▶ Under the distributional assumptions

f (c) = 1
σ

ϕ

(
c− Xβ

σ

)
and 1− F (0) = Φ

(
Xβ

σ

)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dealing with Censored Data: Tobit Model

▶ f (c) is the density of a variable that integrates to 1 in (0,+∞)

▶ We must weight this density for the share of obs above 0

▶ Hence

Pr (y > 0|X) = Pr (Xβ + u > 0|X) = Pr (u > −Xβ|X)
= 1− Φ (−Xβ/σ) = Φ (Xβ/σ)

▶ We have

f (yi|Xi, yi > 0) = Φ (Xiβ/σ) f (yi|Xi, y∗i > 0)

=
1
σ

ϕ

(
yi − Xiβ

σ

)
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Tobit Model: Maximum Likelihood

▶ The individual contribution to the log-likelihood is

ℓ (β, σ) = 1 (yi = 0) ln [1− Φ (Xiβ/σ)] + 1 (yi > 0) ln
[
1
σ

ϕ

(
yi − Xiβ

σ

)]

▶ The log-likelihood therefore is

L (β, σ) =
N
∑
i=1

{
1 (yi = 0) ln [1− Φ (Xiβ/σ)] + 1 (yi > 0) ln

[
1
σ

ϕ

(
yi − Xiβ

σ

)]}

▶ The maximization delivers estimates of (β, σ)
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Truncated Data Models

▶ Using a similar procedure, we can write a likelihood function
for truncated data

▶ Let’s keep the assumption that u ∼ N
(
0, σ2)

▶ Take the model truncated below 0

y =
{
y∗ if y∗ > 0
. otherwise
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Truncated Data Models
▶ We know that the density of the model is

f (y|X) = f (y∗|X, y∗ > 0) = f (y)
1− F (0)

=

1
σ ϕ

(
y−Xβ

σ

)
Φ (Xβ/σ)

▶ The log-likelihood contribution is

ℓi (β, σ) = − ln σ + ln ϕ

(
yi − Xiβ

σ

)
− lnΦ (Xiβ/σ)

▶ Total log-likelihood is

L (β, σ) = −N ln σ +
N

∑
i=1

{
ln ϕ

(
yi − Xiβ

σ

)
− lnΦ (Xiβ/σ)

}
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Comments on Censoring and Truncation

▶ Censoring is ’better’ than truncation

▶ censored data contain more information about the true
underlying distribution

▶ censored observations are available (i.e. the X’s are
observable)

▶ truncated observations are not available
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Comments on Censoring and Truncation
▶ Think about the marginal effects

▶ The type of marginal effects of main interest depends on the
specific analysis

▶ If interested in effects on y∗, then E (y∗|X) = Xβ and βs are
already the marginal effects we need

▶ If interested in effects on y

Censoring: E (y|X) = Pr (u > −Xβ) [Xβ + E (u|u > −Xβ)]

Truncation: E (y|X) = Xβ + E (u|u > −Xβ)

▶ When truncation or censoring is “natural” consequence of data
structure, we want marginal effect on y

▶ When it arises because of some artifact, then we probably
want marginal effect on y∗



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Marginal Effects
▶ To write the marginal effects, we must write E (u|u > −Xβ)

▶ Use the normality assumption on u distribution
▶ Rule with normal distributions

E (z|z > c) = µ + σ
φ
(

c−µ
σ

)
1− Φ

(
c−µ

σ

)
▶ Hence

E (u|u > −Xβ) = σ
φ
(
−Xβ

σ

)
Φ
(

Xβ
σ

)
= σ · λ

(
Xβ

σ

)

▶ where λ
(

Xβ
σ

)
= φ

Φ is called inverse Mills ratio
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Marginal Effects

▶ Using this result, we have

Censoring: E (y|X) = Φ
(
Xβ

σ

)
Xβ + σφ

(
Xβ

σ

)
Truncation: E (y|X) = Xβ + σ · λ

(
Xβ

σ

)

▶ Marginal effects can be easily computed with this formulas
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Sample Selection: Heckman Model

▶ In many cases the sample is not a random draw from the
population of interest

▶ In many applications this is not the case

▶ Consider the model

y = β0 + β1x1 + . . . + βKxK + u

▶ where E (u|X) = 0
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Sample Selection: Heckman Model

▶ Suppose some info is missing

▶ we can run the model only on a selected set of N

▶ Indicator equal to 1 for those observations

si =
{
1 if {yi, Xi} exists
0 if {yi, Xi} does not exist or is incomplete
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Sample Selection: Heckman Model

▶ Let’s write the OLS estimator for this model

β̂OLS =

[
N

∑
i=1

siX′iXi

]−1 [ N

∑
i=1

siX′iyi

]

= β +

[
N

∑
i=1

siX′iXi

]−1 [ N

∑
i=1

siX′iui

]

▶ This estimator is consistent only if E (sX′u) = 0, which is true
if E (u|s) = 0

▶ Hence, u must be independent of the selection process
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Random Selection

▶ Example: suppose that s ∼ Bernoulli(p)

▶ p determines which fraction of the data we select

▶ you might do this to reduce the computational power needed

▶ or, data provider might give you only a random sample

▶ In this case, E (u|s) = 0
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Deterministic Selection

▶ Suppose that selection is based on deterministic rule g(x)

▶ e.g. selection is based on age, gender, region, etc.

▶ Since E (u|X) = 0, and s is a function of X, then E (u|s) = 0

▶ Important: Xs that determine selection do not have to be in the
dataset
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Selection Based on Dependent Variable

▶ Truncated data arise from sample selection

▶ Selection based on y

▶ Hence s is

si =
{
1 if a1 < y < a2
0 otherwise

▶ Obviously, this selection is not exogenous

▶ Indeed, E (u|y) cannot be equal to 0 since y is itself a function
of u
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Endogenous Selection

▶ Endogenous selection arises whenever E (u|s) ̸= 0

▶ e.g. survey data where people asked about income,

▶ people at the tails of the distribution refuse to answer.

▶ We only observe income data for those who actually answered
the question
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Endogenous Selection: Motivating Example

Motivating example in the literature: wages and labor market
participation

▶ Individuals heterogenous in productivity and preference for
work

▶ more productive will receive higher offers

▶ w0
i : wage offer received by i

▶ workers with higher preferences for work have lower
reservation wages

▶ wr
i : reservation wage for i, lowest w he/she would accept



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Endogenous Selection: Motivating Example

▶ Define w0
i and wr

i as

w0
i = Xi1β1 + ui1

wr
i = Xi2β2 + ui2

▶ Assume that E (ui1|Xi1) = 0 and E (ui2|Xi2) = 0

▶ We want to estimate β1, but people work only if wage offer
high enough

w0
i ≥ wr

i ⇒ i works
w0

i < wr
i ⇒ i is inactive/unemployed
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Endogenous Selection: Motivating Example
▶ In the data we only observe the wage for those who work

▶ Hence

si = 1
(
w0

i ≥ wr
i

)
= 1 (Xi1β1 + ui1 ≥ Xi2β2 + ui2)
= 1 (Ziδ + vi ≥ 0)

▶ where Zi = (Xi1, Xi2), δ = (β1, β2)
′ and vi = ui1 − ui2

▶ The model is

w0
i = Xi1β1 + ui1
si = 1 (Ziδ + vi ≥ 0)

▶ Selection is endogenous since vi depends on ui1
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Solving the problem: Heckman Selection
▶ Let’s study a model to solve the selection problem
▶ This model will only work if we have some data on obs that

were not selected
▶ Take a general model with main equation and selection

equation

yi = Xiβ + ui
si = 1 (Ziδ + vi ≥ 0)

▶ Assume: (si, Zi) always observed for all N
▶ (yi, Xi) are observed only if si = 1
▶ E (u|X, Z) = E (v|X, Z) = 0
▶ v ∼ N (0, 1) (can be relaxed to have N

(
0, σ2))

▶ E (u|v) = γv: imposes a linear structure to conditional mean
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Heckman Selection

▶ Take the conditional mean

E (y|X, s = 1) = Xβ + E (u|X, s = 1)
= Xβ + E (u|X, v > −Zδ)

▶ Using the assumptions u = γv+ ξ, where ξ is non-systematic
with zero mean

E (y|X, s = 1) = Xβ + E (u|X, v > −Zδ)

= Xβ + E (γv+ ξ|X, v > −Zδ)

= Xβ + γE (v|X, v > −Zδ)
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Heckman Selection

▶ Now, let’s exploit the assumption on v’s distribution

E (y|X, s = 1) = Xβ + γE (v|X, v > −Zδ)

= Xβ + γ
φ (−Zδ)

1− Φ (−Zδ)

= Xβ + γ
φ (Zδ)

Φ (Zδ)

= Xβ + γ · λ (Zδ)

▶ where λ (Zδ) is the inverse Mills ratio

▶ The true conditional mean includes a second term γ · λ (Zδ)

▶ Excluding this term we introduce a bias (X and Z most likely
overlap)
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Heckman Selection

E (y|X, s = 1) = Xβ + γ · λ (Zδ)

▶ Heckman: let’s include the omitted variable and estimate γ

▶ However, we must first estimate δ

▶ Recover the δ from a probit of si on Zi

Pr (s = 1|Z) = Φ (Zδ)
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Heckman Selection

Pr (s = 1|Z) = Φ (Zδ)

▶ With consistent estimates of δ called δ̂ we have

λ̂i = λ
(
Ziδ̂

)

▶ Then use it in regression

yi = Xiβ + γλ̂i + ui

▶ Standard errors are more complicated since λ̂ comes from a
separate estimate

▶ Notice: estimating γ you can test endogeneity of selection
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Heckman Selection: Additional Comments

▶ Consider the relationship between X and Z

▶ May be completely separated or completely identical

▶ If completely separated omitting λ (Zδ) does not generate OVB
• OLS on selected sample gives consistent estimates (we still

have exogeneity)
• unless E [λ (Zδ)] = 0 the constant will be inconsistent
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Heckman Selection: Additional Comments
▶ If completely identical: X = Z

▶ Problem of multicollinearity: Mills ratio approximately linear

E (y|X) ≈ Xβ + a+ bZδ = X (β + bδ) + a

▶ So that cannot estimate β consistently

▶ Hence, when X = Z identification will only be guaranteed by
non-linearity of Mills ratio

▶ In general, it is better to have Z = X+ Z1 so that there are
”excluded variables”, but all X appear in selection equation

▶ This is very much like with instrumental variables

▶ Without Z1 identification with instrumental variables would be
impossible


