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Random Effects Models

» Less Problematic than FE: unobserved heterogeneity
uncorrelated with observables

» Find consistent and efficient estimates
» Most efficient estimator: simple GLS on the model in levels

» We call it random-effects estimator



Random Effects Models

» Start with the usual model
Yit = Xt + 17 + €t
= Xit + Uit

» where uj; = 7; + &it

» Assumption:
E (uit’Xit) =0

» Unoberved heterogeneity uncorrelated with observables

» Hence, omitting u;; does not impede identification with OLS!



Pooled OLS

» The OLS of the model is

» This is called a pooled OLS (POLS)

> |t is consistent

» This is the same model repeated at each time point
» |Is POLS the best estimator for this model?

» No, there is serial correlation. Hence, not efficient!



Serial Correlation in the Model

» The term 7; appears in multiple periods

» Let's make the following assumptions

Var (git) = 02 Vi.vt
Cov (&, €is) =0 ViVt #s
Var (17;) = o} Vi

> Notice that

Var (ui) = (7,? + o2 Vi, vt
Cov (uj, Uis) = 0,? Vi,Vt £s



Serial Correlation in the Model

» In a more compact way

Ui
; U2
Var (uj) = E (uiuf) = E o Cun o ug
uir
2 2 2
oy + 0 g
= : : =0
2 2 2
7y oy + 0

» We will use Q) in the GLS estimator



A GLS: The Random Effects Estimator

» GLS is the most efficient estimation method
> Let's apply it to the model
N

N —1
Bre = [ZX{Q"Xi] [
i=1 i

Xi/Q_1Yi]
1

» We need to know () to implement the formula

> ()is a function of o and o7

» Hence, we need consistent estimates for these parameters



Balestra-Nerlove Estimator

» Since there are different ways to estimate ag and o7, there are
multiple RE estimators

» One of the most popular is the Balestra-Nerlove
» Estimator for o2

. 1 N T
Uy = m ZE Yit — |t,3FE

i=1t=1



Estimating o

» One solution: estimate s and compute variance
» However, computationally intense

» AND when T small, s are imprecisely estimated (more on
this later)



Estimating o

» We need an alternative

» Notice the following
T 1 T
Var (4;) = Var Z uj | = Var | = Y (i + €it)
1 2 (7'2
= Var (m - _I_Zeit> =0, + Tg

t=1

» Hence, to find 0‘%. we need a consistent estimate of Var (@)

» Once we have it, we invert the formula



The Between-Group Model

» {; is the time average of the error term of the model in levels

» can also be interpreted as residual of the between-group
model

» model with one observation per individual, equal to time
average of all observations

14 1d 1d
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= Xip + Ui



The Between-Group Model

Vi = Xip + G

» The OLS estimator of this model is

» This estimator only exploits variation across individuals

» Does not exploit variation within individual over time



Estimating o

» Using BBG- we can estimate U; using

=Yi— )_(i,BBG

=

» And get a consistent estimate of 0’%

> Using 67 and 67, we can estimate () and implement the GLS



Random vs Fixed-Effects: the Hausman Test

» Under the assumption Hg that E (uj|xit) = O:

® FE is consistent, but not efficient
® RE is both consistent and efficient

» Under assumption Hy : E (eit|xit, 77i) = 0, E (ujt|xit) # O:

® FE is consistent
® RE is not cosistent



Random vs Fixed-Effects: the Hausman Test

» Under Hg:
Pre — B
Bre — B
Bre — Bre — 0
» Under Hy:
Bre — B
BRE — ,B + bias

BRE — BFE — bias



Random vs Fixed-Effects: the Hausman Test

> We can test the difference between the two estimators to
investigate the presence of bias

» If there is no bias, then use RE since it is efficient
» Essentially, we test Hg : Cov (xit, 77;) =0

> The statistics for the test is a quadratic form of the difference
between the two estimators:

H= (Bre — Bre)’ [Var (Bre — Bre)] " (Bre — Pre)



Random vs Fixed-Effects: the Hausman Test

H= (Bre — ,BFE)/ [Var (Bre — Bre) | - (Bre — Bre) ~® xk

» Since the estimators are asymptotically normally distributed,
the H is asymptotically distributed as a x?

» Moreover, one can show that

Var (Bre — Bre) = Var (Bre) — Var (Bre)



Lagged Dependent Variable
Models



Lagged Dependent Variable

» Think about the following finding
® those who experienced recent drops in income apply more to

training
® known as Ahenfelter’s Dip
» How do we model this situation?

» To control for pre-program dip (potential confounder), we must
include the lagged dependent variable

» The reason is that y;_; varies over time and not captured by FE



Easy Solution with Strong Assumption

» Assume exogeneity given lagged outcome, but no FE

E(uit|xitht—1) =0

» The model would be

Yit = & + Xit + OYit—1 + Uit

» Under the exogeneity assumption above, we can identify this

» Two alternatives:

® OLS: consistent, but not efficient
® RE: consistent and efficient



More General Case: FE

» Assume exogeneity given lagged outcome AND FE

E (uit|Xit, yt—1,7i) =0

» The model would be

Yit = & + Xit + OYit—1 + 7i + &t

» This complicates the consistent estimation

> Let's see why!



Nickell Bias

» Write the model in first difference
Ayit = AxiB + 0AYi—1 + Agjy

» Since Agjy = it — €it_1 and Ay = yit — Yit_1. there is
correlation!

» This bias was first noted by Nickell (1981)

> Let’s investigate the model with and without FE and lagged y



Simplified Model to Provide Intuition

> Let's take a very simple model:

® 2periodstandt—1
® only one explanatory variable (treatment D;;)
® Djy_q =0foralli

» The modelis
Yit = BDit + 17i + &t

» Assume that ¢j; is serially uncorrelated and uncorrelated with
i and Dit

» Also (since Djy_1 = 0):

Yit—1 = i + €it1

» 1;and g;;_1 are uncorrelated



Model with Lagged Variable Only

» Suppose we mistakenly estimate

Yit = BDit + OYit—1 + &t

» The OLS delivers _
Cov (yit, Dit)

Var (Dy)

» where Di; = Di; — yit_1 is the residual of regression of D on
Yit—1

> Substitute 7;, you get

Yit = Yit—1 + BDit + €it — &it—1



Model with Lagged Variable Only

Yit = Yit—1 + BDit + &it — &it—1

» Hence, the estimator delivers

Var (Dy) Var (Dy)
_p- Cov (eit—1, Dit — vYit-1)
Var (Dy)
2
. Y0
= (9 Var (Dy)

» [f trainees have lower y; 1.y < 0 and downward bias



Model with FE Only

» Suppose instead that the true model is

Yit = & + BDj + Oyit—1 + &it

» with ¢ serially uncorrelated

» Suppose we ignore y;;_1 and estimate first difference

Cov (¥it — ¥it—1, Dit = Dit—1) _ Cov (yit — ¥it—1, Dir)

Var(D" — Ditf1) Var(Dit)

» The model in first differences is

Yit — Yite1 = &« + (0 — 1) yir_1 + BDit + €t



Model with FE Only

Yit — Yite1 = & + (0 — 1) yir_1 + BDit + €it

» Our estimate delivers

Cov (yit — Yit—1. Dit)
Var (Dy)

Cov (yit—1, Dit)
Var (Dy)

=p+(0-1)

» Normally, 0 < 1 if the process is stationary

» Hence, if trainees have low y;;_1, the estimates are too big!



How Do We Solve the Problem?

» One solution is to use instruments for lagged variable
® e.g. useyj_o as an instrument for y;_1

» Arellano Bond generalize the approach using all lags in GMM

» However, there is a problem with past lags:

® we must require that y;;_, is uncorrelated with Ag;;

® this is unlikely since earnings are highly correlated over time

® hence, Agj; is serially correlated and cannot find a good
instrument

» Recommendation: check alternative specifications for
robustness



