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Random Effects Model
and Dynamic Panels

Matteo Paradisi
(EIEF and NBER)

Applied Micro - Lecture 4
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Random Effects Models

▶ Less Problematic than FE: unobserved heterogeneity
uncorrelated with observables

▶ Find consistent and efficient estimates

▶ Most efficient estimator: simple GLS on the model in levels

▶ We call it random-effects estimator
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Random Effects Models

▶ Start with the usual model

yit = xitβ + ηi + ε it

= xitβ + uit

▶ where uit = ηi + ε it

▶ Assumption:
E (uit|xit) = 0

▶ Unoberved heterogeneity uncorrelated with observables

▶ Hence, omitting uit does not impede identification with OLS!
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Pooled OLS

▶ The OLS of the model is

β̂POLS =

[
N

∑
i=1

X′iXi

]−1 [ N

∑
i=1

X′iyi

]

▶ This is called a pooled OLS (POLS)

▶ It is consistent

▶ This is the same model repeated at each time point

▶ Is POLS the best estimator for this model?

▶ No, there is serial correlation. Hence, not efficient!
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Serial Correlation in the Model

▶ The term ηi appears in multiple periods

▶ Let’s make the following assumptions

Var (ε it) = σ2
ε ∀i,∀t

Cov (ε it, ε is) = 0 ∀i,∀t ̸= s
Var (ηi) = σ2

η ∀i

▶ Notice that

Var (uit) = σ2
η + σ2

ε ∀i, ∀t
Cov (uit, uis) = σ2

η ∀i, ∀t ̸= s
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Serial Correlation in the Model

▶ In a more compact way

Var (ui) = E
(
uiu′i
)
= E




ui1
ui2
...
uiT

( ui1 ui2 . . . uiT
)


=

 σ2
η + σ2

ε . . . σ2
η

... . . . ...
σ2

η . . . σ2
η + σ2

ε

 = Ω

▶ We will use Ω in the GLS estimator
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A GLS: The Random Effects Estimator

▶ GLS is the most efficient estimation method

▶ Let’s apply it to the model

β̂RE =

[
N

∑
i=1

X′iΩ−1Xi

]−1 [ N

∑
i=1

X′iΩ−1yi

]

▶ We need to know Ω to implement the formula

▶ Ω is a function of σ2
η and σ2

ε

▶ Hence, we need consistent estimates for these parameters



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Balestra-Nerlove Estimator

▶ Since there are different ways to estimate σ2
η and σ2

ε , there are
multiple RE estimators

▶ One of the most popular is the Balestra-Nerlove

▶ Estimator for σ2
ε

σ2
ε =

1
N (T− 1)

N

∑
i=1

T

∑
t=1

(
yit − xit β̂FE

)2
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Estimating σ2
η

▶ One solution: estimate ηs and compute variance

▶ However, computationally intense

▶ AND when T small, ηs are imprecisely estimated (more on
this later)
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Estimating σ2
η

▶ We need an alternative

▶ Notice the following

Var (ūi) = Var
(
1
T

T

∑
t=1

uit

)
= Var

[
1
T

T

∑
t=1

(ηi + ε it)

]

= Var
(

ηi +
1
T

T

∑
t=1

ε it

)
= σ2

η +
σ2

ε

T

▶ Hence, to find σ2
η , we need a consistent estimate of Var (ūi)

▶ Once we have it, we invert the formula

σ̂2
η = V̂ar (ūi)−

σ2
ε

T
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The Between-Group Model

▶ ūi is the time average of the error term of the model in levels

▶ can also be interpreted as residual of the between-group
model

▶ model with one observation per individual, equal to time
average of all observations

ȳi =
1
T

T

∑
t=1

yit =
(
1
T

T

∑
t=1

xit

)
β + ηi +

(
1
T

T

∑
t=1

ε it

)
= x̄iβ + ūi
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The Between-Group Model

ȳi = x̄iβ + ūi

▶ The OLS estimator of this model is

β̂BG =

[
N

∑
i=1

x̄′i x̄i

]−1 [ N

∑
i=1

x̄′i ȳi

]

▶ This estimator only exploits variation across individuals

▶ Does not exploit variation within individual over time
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Estimating σ2
η

▶ Using β̂BG, we can estimate ūi using

ˆ̄ui = ȳi − x̄i β̂BG

▶ And get a consistent estimate of σ2
η

σ̂2
η =

(
1
N

N

∑
i=1

ˆ̄u2i

)
− σ̂2

ε

T

=

[
1
N

N

∑
i=1

(
ȳi − x̄i β̂BG

)2]− σ̂2
ε

T

▶ Using σ̂2
η and σ̂2

ε , we can estimate Ω and implement the GLS
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Random vs Fixed-Effects: the Hausman Test

▶ Under the assumption H0 that E (uit|xit) = 0:
• FE is consistent, but not efficient
• RE is both consistent and efficient

▶ Under assumption H1 : E (ε it|xit, ηi) = 0, E (uit|xit) ̸= 0:
• FE is consistent
• RE is not cosistent



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Random vs Fixed-Effects: the Hausman Test

▶ Under H0:

β̂FE → β

β̂RE → β

β̂RE − β̂FE → 0

▶ Under H1:

β̂FE → β

β̂RE → β + bias
β̂RE − β̂FE → bias
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Random vs Fixed-Effects: the Hausman Test

▶ We can test the difference between the two estimators to
investigate the presence of bias

▶ If there is no bias, then use RE since it is efficient

▶ Essentially, we test H0 : Cov (xit, ηi) = 0

▶ The statistics for the test is a quadratic form of the difference
between the two estimators:

H =
(

β̂RE − β̂FE
)′ [Var (β̂RE − β̂FE

)]−1 (
β̂RE − β̂FE

)
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Random vs Fixed-Effects: the Hausman Test

H =
(

β̂RE − β̂FE
)′ [Var (β̂RE − β̂FE

)]−1 (
β̂RE − β̂FE

)
∼a χ2

K

▶ Since the estimators are asymptotically normally distributed,
the H is asymptotically distributed as a χ2

▶ Moreover, one can show that

Var
(

β̂RE − β̂FE
)
= Var

(
β̂RE
)
− Var

(
β̂FE
)
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Lagged Dependent Variable
Models
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Lagged Dependent Variable

▶ Think about the following finding
• those who experienced recent drops in income apply more to

training
• known as Ahenfelter’s Dip

▶ How do we model this situation?

▶ To control for pre-program dip (potential confounder), we must
include the lagged dependent variable

▶ The reason is that yt−1 varies over time and not captured by FE
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Easy Solution with Strong Assumption

▶ Assume exogeneity given lagged outcome, but no FE

E (uit|xit, yt−1) = 0

▶ The model would be

yit = α + xitβ + δyit−1 + uit

▶ Under the exogeneity assumption above, we can identify this

▶ Two alternatives:
• OLS: consistent, but not efficient
• RE: consistent and efficient
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More General Case: FE

▶ Assume exogeneity given lagged outcome AND FE

E (uit|xit, yt−1, ηi) = 0

▶ The model would be

yit = α + xitβ + δyit−1 + ηi + ε it

▶ This complicates the consistent estimation

▶ Let’s see why!
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Nickell Bias

▶ Write the model in first difference

∆yit = ∆xitβ + δ∆yit−1 + ∆ε it

▶ Since ∆ε it = ε it − ε it−1 and ∆yit = yit − yit−1, there is
correlation!

▶ This bias was first noted by Nickell (1981)

▶ Let’s investigate the model with and without FE and lagged y
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Simplified Model to Provide Intuition
▶ Let’s take a very simple model:

• 2 periods t and t− 1
• only one explanatory variable (treatment Dit)
• Dit−1 = 0 for all i

▶ The model is
yit = βDit + ηi + ε it

▶ Assume that ε it is serially uncorrelated and uncorrelated with
ηi and Dit

▶ Also (since Dit−1 = 0):

yit−1 = ηi + ε it−1

▶ ηi and ε it−1 are uncorrelated
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Model with Lagged Variable Only

▶ Suppose we mistakenly estimate

yit = βDit + δyit−1 + ε̃ it

▶ The OLS delivers
Cov

(
yit, D̃it

)
Var

(
D̃it
)

▶ where D̃it = Dit − γyit−1 is the residual of regression of Dit on
yit−1

▶ Substitute ηi, you get

yit = yit−1 + βDit + ε it − ε it−1
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Model with Lagged Variable Only

yit = yit−1 + βDit + ε it − ε it−1

▶ Hence, the estimator delivers

Cov
(
yit, D̃it

)
Var

(
D̃it
) = β −

Cov
(
ε it−1, D̃it

)
Var

(
D̃it
)

= β − Cov (ε it−1,Dit − γyit−1)

Var
(
D̃it
)

= β +
γσ2

ε

Var
(
D̃it
)

▶ If trainees have lower yit−1, γ < 0 and downward bias
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Model with FE Only

▶ Suppose instead that the true model is

yit = α + βDit + θyit−1 + ε it

▶ with ε serially uncorrelated

▶ Suppose we ignore yit−1 and estimate first difference

Cov (yit − yit−1,Dit − Dit−1)

Var (Dit − Dit−1)
=

Cov (yit − yit−1,Dit)

Var (Dit)

▶ The model in first differences is

yit − yit−1 = α + (θ − 1) yit−1 + βDit + ε it
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Model with FE Only

yit − yit−1 = α + (θ − 1) yit−1 + βDit + ε it

▶ Our estimate delivers

Cov (yit − yit−1,Dit)

Var (Dit)
= β + (θ − 1) Cov (yit−1,Dit)

Var (Dit)

▶ Normally, θ < 1 if the process is stationary

▶ Hence, if trainees have low yit−1, the estimates are too big!
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How Do We Solve the Problem?

▶ One solution is to use instruments for lagged variable
• e.g. use yit−2 as an instrument for yit−1

▶ Arellano Bond generalize the approach using all lags in GMM

▶ However, there is a problem with past lags:
• we must require that yit−2 is uncorrelated with ∆ε it
• this is unlikely since earnings are highly correlated over time
• hence, ∆ε it is serially correlated and cannot find a good

instrument

▶ Recommendation: check alternative specifications for
robustness


