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I. INTRODUCTION

The widespread deployment of Advanced Metering In-
frastructure (AMI) has made it feasible to investigate into
household energy consumption characteristics using smart
meter data. Using household energy usage data, we are able
to investigate load profiles that encode use behaviors and
lifestyles. This information may help tailor different demand
response (DR) programs for different households in order to
build a more robust grid design system, offer more effective
energy reduction recommendations, and improve smart pricing
models. Therefore, this project aims at tackling the following
questions:

1) How many different clusters characterize representative
households?

2) What do load profiles of energy consumption look like
for representative households?

3) How many different clusters characterize representative
daily usage for a given household?

4) What are the features of these clusters and how should
we apply them?

II. RELATED WORK

Various clustering methods have been applied to charac-
terize electricity consumption data, which could be generally
grouped into the following categories: hierarchical clustering,
partitioning clustering, density-based clustering and model-
based clustering (Rokach and Maimon, 2005). For example,
Chicco (2012) assessed the performance of different clustering
algorithms using 400 electric load patterns during a weekday
in Italy with a resolution of 15 minutes, and discovered that
whether a cluster algorithm performs well depends on whether
the purpose is to identify outliers or to assign all the load pat-
terns to representative clusters. Kim et al. (2011) used 15-min
meter data from 3183 customers in South Korea to compare
the performance of different clustering methods, including K-
means, hierarchical clustering and fuzzy c-means. He found
that hierarchical clustering is the optimal approach while K-
means is the most efficient option. These studies all adopted
normalization to preprocess the data. However, considering
we care about the variance as well as the magnitude of
the load, we have examined the data both with and without
normalization.

Regarding why the K-means method is adopted in this
project, an empirical study has suggested that when clus-
tering large data sets, where there are more than millions
of records with over 100 dimensions, K-means is the most
widely adopted approach because it has linear time complexity

and is order-independent (Rokach and Maimon, 2005). Thus,
considering that size of the data sets we are plan to deal with,
we have chosen the K-means method to conduct clustering
analysis of household energy consumption. However, for the
final experiment agglomerative clustering is also used, as as
comparison study.

Regarding the evaluation metrics of clustering results, there
are diverse opinions about which validity indices perform best.
Liu et al. (2010) conducted a detailed study of 11 widely used
internal clustering validation measures for crisp clustering, and
discovered that Calinski-Harabaz Index can handle data set
well with subclusters, which are clusters that are close to each
other, but cannot give the right optimal number when the data
set has skewed distributions or has large noise. Moreover, the
Silhouette Index and the Davies-Bouldin Index perform well
even with the impact of skwered distributions or noise but
cannot handle the problem of subclusters. However, Maulik
and Bandyopadhyay (2002) pointed out that Davies-Bouldin
Index and Calinski-Harabaz Index perform better than each
other when dealing with data sets under different contexts.
Therefore, due to the uncertainty of the performance of validity
indices, we have used the Calinski-Harabaz Index, Davies-
Bouldin Index, and the Silhouette Index to determine the
optimal number of clusters.

In terms of the application and interpretation of load profiles
generated from electricity consumption data, previous studies
tend to focus on charging infrastructure design (Momtazpour
et al., 2014) and regression analysis between household fea-
tures and their load profile clusters (Rhodes et al., 2014).
This project expands the perspective of the use of load profile
clusters in the electricity market. Pricing schemes and electric-
ity consumption reduction potential have been discussed by
interpreting the load profiles; for example, Liu et al. (2018)
propose microgrid pricing tariffs based on consumer clusters.
As this is a very specific use case and uses normalized data
(not accounting for load magnitude), further studies could be
beneficial for pricing strategies.

III. DATASET

Data sets containing information about household electricity
use and solar panel electricity generation are publicly available
on dataport.cloud, a database maintained by Pecan Street
research organization. We obtained daily household electricity
use data at an hourly resolution over the year of 2016 across
340 households, eventually aggregating a data set of 122,400
records. These households are mostly located in Austin, Texas.
The whole data set has been randomly separated into a training
set (60%), a validation set (20%) and a testing set (20%).



To preprocess data for the all experiments, the data is
reshaped so that each household included in the input is size
365⇥24, where each row corresponds to a day (one training
example) and each hour of the day is a feature. The purpose
of this choice of features is to allow us to characterize energy
usage by daily use patterns.

In the preprocessing steps for the first experiment (normal-
ized household clustering), we normalize the data by total
energy use over each day (see Methods section). This allows
us to compare only the shape (i.e. schedule) of daily timeseries
data across clusters, as opposed to magnitude of energy usage.

The second and third experiments, the data is used without
normalization, since the magnitude of the load is an important
factor in grid design and demand response.

IV. METHODS

A. Normalizing Data

To normalize data (for some of the experiments), divide the
data in each day by total energy use over the day, so that the
sum of hourly usage over any one day for any one household
is equal to 1. For hourly data point x(d)

h in each day d for each
household:
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B. Clustering Data

K-means clustering was used in all experiments. This clus-
tering algorithm is unsupervised, meaning the training data
has no cluster assignment as an input. The algorithm uses the
objective function:
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where x
(i) is a training example, and µci is the mean of

cluster centroid c that x(i) was assigned to. m is the number
of training examples, and n is the number of features in an
example.

After randomly initializing the centroids, we optimize J

with respect to centroids c
1, c

2, ..., c
K by repeating the

following steps until convergence:
• for i = 1:m

re-assign x
(i) to a cluster

• for k = 1:K
re-calculate cluster centroid µk

This is repeated multiple times for multiple random initial-
izations of µ in order to make sure that a global minimum is
reached.

In addition to K-means clustering (which we implement
ourselves) we use Python’s implementation of agglomerative
clustering (sklearn.cluster.AgglomerativeClustering) to com-
pare results. Rather than initializing K clusters with random
centroids, this algorithm instead begins with every point in
the dataset as a “cluster”. The two closest points are then
combined into one cluster, the new two closest points are then
combined into one cluster, and so on. This is repeated until
there are only K clusters remaining.

C. Evaluating Metrics

In this section, three clustering validity indices, including
Davies-Bouldin Score, Calinski-Harabaz Score and Silhouette
Score, that have been used to determine the optimal number
of clusters are described in detail as below.

1) Davies-Bouldin Score: This index calculates the ratio of
the sum of within-cluster scatter to between-cluster separation.
The scatter within the ith cluster, Si, can be computed as
Si =

1
|Ci|

P
xi
{||x � zi||}. The distance dij between cluster

Ci and Cj can be calculated as dij = ||zi � zj ||. Here, zi

represents the ith cluster centroid. Thus, the Davies-Bouldin
Score can be defined as:
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where Ri,qt = maxj,j
Si,q+Sj,q

dij,t
.

The objective is to minimize the Davies-Bouldin Score.
2) Calinski-Harabaz Score: The Calinski-Harabaz Score

can be defined as:

CH =
traceB/(K � 1)

traceW/(n�K)
, (4)

where n is the number of data points, K is the number of
clusters, B and W are the between and within cluster scatter
matrices.

The objective is to maximum the hierarchy level.
Then, the trace of the between cluster scatter matrix B can

be computed as:

traceB =
X
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where nk is the number of data points in cluster k and z is
the centroid of the entire data set.

The trace of the within cluster scatter matrix W can be
calculated as:
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Thus, the Calinski-Harabaz Score can be computed as:
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3) Silhouette Score: For each data sample xi the Silhouette

Score can be defined as:

Silhouettei =
di � si

max{di, si}
, (8)

where si is the mean distance to samples in the same cluster,
and di is the mean distance to samples in the next nearest
cluster.

Thus, the Silhouette Score for the whole data set x1, ...xN

can be computed as:
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V. EXPERIMENTS, RESULTS, & DISCUSSION

A. Normalized Clustering: All Households

1) Experiment: The first experiment involves clustering
all households’ normalized data over one year into K use
cases, representing different daily schedules of consumers. To
determine the optimal number of K, we firstly run clustering
methods over the training set for K from 5 to 100 with 1000
iterations, then use three validity indices to evaluate the results.
After the optimal K is determined, we run K-means over
the training set again with 5000 iterations to obtain the daily
schedules.

2) Results & Evaluation: Figure 1 shows the clustering
errors of different numbers of clusters based on three indices.
For Davies-Bouldin Score, it can be seen that the minimum
error is when K is chosen within the range of 5 and 20.
For both Calinski-Harabaz Score and Silhouette Score, the
optimal K should be chosen as 10 based on the elbow method.
Therefore, the final value of K chosen is 10.

3) Discussion: Figure 2 shows the 10 daily representative
schedules. In general, different schedules have different peak
hours, including 8:00, 13:00, 17:00, 19:00, 21:00, 22:00, with
peak loads most commonly occurring in the evening. This
could be as a result of the discrepancy of lifestyles, household
conditions or other demographic features. Moreover, for each
cluster, we can see how much hourly energy use contributed
to total energy use.

B. Non-normalized Clustering: All Households

1) Experiment: In the second experiment we again cluster
all households’ data over one year into K use cases, but this
time we use non-normalized data. This results in use clusters
that account for the magnitude of the load.

2) Results: Again using K = 10, household clusters are
calculated again using non-normalized data. The centroids are
shown in the timeseries plots in Figure 3.

3) Discussion: While most clusters have a peak load in the
evening, as in experiment 1, we find that several schedules
with very different loads (with peak energy consumption
around 0:00-5:00, for example) contribute significantly to total
demand. This suggests that most consumers follow normal
daytime work schedules but the data may also include indus-
trial use cases, which would be less frequent but have a higher
load.

From these 2 experiments we see that both normalized and
non-normalized load distributions show important energy use
cases. Clustering of normalized loads better shows variance
in peak load times, which is useful for peak load reduction
planning, while clustering of non-normalized loads may be
more useful for targeting different consumers with different
pricing or other programs.

Fig. 1: Validity indices versus the number of clusters

Fig. 2: Representative normalized daily schedules for all
households

Fig. 3: Representative non-normalized daily schedules for all
households

C. Non-normalized Clustering: Daily Use of Representative

Households

1) Experiment: In this third experiment, for each centroid
found in Experiment 1 a single household closest to that
centroid is chosen as a representative household. For each of
these representative households, 3 non-normalized use clusters
are found.



TABLE I: Clustering Composition of Each Representative Household’s Use Cases

House-
hold Cluster # of Days

(k-means)
% of Days
(k-means)

# of Days
(agglom.)

% of Days
(agglom.)

8767
1 95 26.0 86 23.5
2 99 27.0 121 33.1
3 172 47.0 159 43.4

4767
1 77 21.0 58 15.8
2 81 22.1 66 18.0
3 208 56.8 242 66.1

100153
1 85 23.2 21 5.7
2 122 33.3 129 35.2
3 159 43.4 216 59.0

8317
1 44 12.0 34 9.3
2 119 32.5 108 29.5
3 203 55.5 224 61.2

9939
1 55 15.0 76 20.8
2 75 20.5 76 20.8
3 236 64.5 214 58.5

7769
1 69 18.9 80 21.9
2 93 25.4 103 28.1
3 204 55.7 183 50.0

5187
1 34 9.3 89 24.3
2 115 31.4 110 30.1
3 217 59.3 167 45.6

3482
1 51 13.9 48 13.1
2 138 37.7 102 27.9
3 177 48.4 216 59.0

545
1 82 22.4 79 21.6
2 95 26.0 87 23.8
3 189 51.6 200 54.6

2575
1 35 9.6 17 4.6
2 131 35.8 171 46.7
3 200 54.6 178 48.6

2) Results: Table I shows the composition of the 3 clus-
ters for each representative normalized household. Since the
clusters represent typical daily use cases, the table shows the
number of days assigned to each cluster, and the percent of
days (out of the year of data) assigned to the cluster. The
results are shown for both K-means clustering as well as for
agglomerative clustering (run using the Python package), for
comparison.

The plots of all daily load distributions for each household,
colored according to their cluster, are shown in Figure 4 and
Figure 5. These show the results for K-means and agglomer-
ative clustering, respectively.

3) Discussion: Since both the representative “schedules”
found by clustering normalized data as well as the magnitude
of energy consumption are important for grid design and
demand response, the results of this section effectively show
clusters of clusters that take into account both schedule and
magnitude of loads.

The choice of K was based on the expectation that, given a
household with a particular normalized use, further variance in
magnitude and shape of daily use is due to seasonal changes
in irradiation (cluster assignment was found to vary approxi-
mately according to time of year), suggesting K  4. Visual
observation of differences in daily use clusters determines that
K = 3 captures most of the variance of a household’s usage.

We find from the clustering composition evaluation that both
K-means and agglomerative clustering perform similarly and
skew the clusters a similar amount (i.e. place more data in one
cluster than another). The agglomerative clusters are slightly

Fig. 4: Representative daily use timeseries clusters for each
household closest to a centroid from experiment 1 (K-means)

more visually distinct when the features are plotted all at once.

VI. CONCLUSIONS & FUTURE WORK

This project expands work on clustering of energy con-
sumption by examining both representative load shapes and
magnitudes, as well as representative households and repre-
sentative 24-hour timeseries consumption. We effectively used
unsupervised K-means clustering to cluster households based
on 3 evaluation metrics, and further clustered typical use cases
of those households at a small value of K. Agglomerative clus-
tering performed similarly; however, further work to compare



Fig. 5: Representative daily use timeseries clusters for each
household closest to a centroid from experiment 1 (agglomer-
ative)

clustering algorithms based on the intended use of the clusters
may be useful.

As expected, most load profiles peak in the evening. How-
ever, our goal was to group these separately from unusual
profile shapes as well as to group different magnitudes/cases
of daily usage. This is a key step in targeting specific customer
groups with time-of-use pricing to reduce peak load, and may
be used in demand response modeling.

As we were not able to obtain data relating the load profiles

to local geographical location or socioecenomic profiles, the
results of this study are more useful for price modeling
and demand response programs than for finding relationships
between these demographic factors and energy use. In future
work, including features that characterize the households may
improve our understanding of the factors associated with
different energy use cases, as well as adapting pricing tariffs
to take into account low- or high-income housing.

Additional future work could also study methods of com-
bining the results found due to both normalized and non-
normalized clustering.
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