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Abstract — This study introduces distributed energy       
resources (DERs) to the optimal aggregation and pricing        
scheme developed by Patel et al. (2013) to group residential          
electric customers according to their cost-to-serve in       
wholesale electricity markets [1]. The bisection algorithm       
used in Patel et al. (2013) was applied to several use cases            
of distributed solar and/or storage considering various       
ownership structures and deployment strategies. Utility      
management of solar and/or storage resources results in a         
lower total cost of procurement than the deployment of the          
resource at the customer level for demand charge        
management and energy arbitrage. The average cost to        
serve customer groups of all sizes decreases significantly        
when customers have access to both solar and storage         
compared to either solar or storage alone.  
 

I. INTRODUCTION 
Traditionally, utilities purchase electricity in bulk      

from wholesale markets on behalf of all of their customers in           
aggregate and charge their customers a flat rate for energy          
consumption. While this structure provides several advantages       
to the customer as the utility takes on the burden of purchasing            
power and forecasting demand, which is difficult to do with          
certainty on an individual household basis, it does result in          
cost sharing amongst a utility’s customers. Customers that        
consume electricity primarily in off-peak and lower price        
times have to pay a higher rate than they would if the utility             
purchased wholesale electricity just to serve them to        
compensate for the utility’s purchases at a higher price to serve           
other customers who consume at peak times. Thus, customers         
that are cheaper to serve subsidize those customers that are          
more expensive to serve through cost sharing.  

While time-of-use (TOU) rates have been introduced       
as a means to reduce sharing by offering time-varying retail          
rates, consumers have been found to be more responsive to the           
average price of power [4]. Reference [1] demonstrated an         
optimal aggregation and pricing scheme in which residential        
customers are grouped based on their cost to serve and a given            
level of tolerated uncertainty in load forecasting. The scheme         
aggregates customers into groups where a single flat rate could          
be offered to all customers in the group to minimize cost           

sharing. This aggregation can be used by any load serving          
entity (LSE) or utility that purchases electricity from        
wholesale markets. The cost to serve customers was modeled         
as the cost to procure power in a two-stage electricity market           
in this scheme. The bisection algorithm developed the authors         
to partition customers results in stable groups such that no          
individual customer can reduce its cost by moving to a          
different group. This aggregation and pricing scheme could be         
useful to LSEs in deregulated markets—where customers can        
be offered a variety of rate plans—to reduce turnover by          
providing customers meaningfully cheaper and stable rate       
plans.  

This study introduces distributed energy resources      
(DERs) to the optimal aggregation and pricing method        
developed by [1]. Behind-the-meter (BTM) and community       
solar are proliferating, changing the net load profiles of         
utilities’ customers and the cost of procurement of power in          
wholesale markets. As the cost of battery energy storage falls,          
the deployment of both BTM and utility-scale batteries will         
change load curve dynamics as well. We examine how the          
pricing and grouping dynamics change in the scheme        
developed by [1] for several common use-cases of DERs:         
customer-sited solar and/or storage, community solar, and       
utility-owned solar and/or storage. We also consider the        
impact of the deployment of DERs to the total cost of           
procurement to the utility.  

 
II. LITERATURE REVIEW 

Several methods have been introduced to address the        
issue of cost-sharing. As discussed, [1] uses a bisection         
algorithm to aggregate a LSE’s customers into groups to         
minimize both their per unit cost of electricity on the          
wholesale market and load forecast error. Given a        
predetermined group size M, the algorithm converges to an         
optimal vector of households that give the minimum possible         
cost to serve. The authors then determine how best to          
determine M, as larger groups will have a higher average cost           
to serve due the inclusion of customers whose consumption         
aligns more closely with peaks in electricity prices, but will          
also have lower forecasting errors. The authors use an         



autoregressive moving average (ARMA) model to predict       
customer loads and the coefficient of variance (CV) as the          
metric to calculate forecast error. They show that LSEs can set           
the maximum CV they are willing to tolerate and determine          
the minimum group size M such that the CV of all groups of             
that size does not exceed that tolerance. The LSE can then run            
the bisection algorithm multiple times to sort all customer into          
groups and determine the cost to serve each group. 

Though [1] uses a bisection algorithm for optimal        
pricing schemes, that is not the only way to segment the           
customer population. Reference [2] introduces a K-means       
algorithm for customer clustering, applied to three methods for         
load curve classification: classical K-means, modified      
K-means (in which the effect of outliers is removed by just           
considering densely situated points within each cluster), and        
hierarchical K-means. Reference [3] also applies K-means       
clustering to group customers together. The authors use        
encoding to match residential customer load shapes to those in          
a dictionary, which was populated by applying K-means        
clustering to the dataset to get representative load shapes. The          
value of K was determined by then finding the number of           
profiles needed so that matching the load profiles to the          
dictionary profiles did not produce a squared error of a          
significant size. While these methods focus on typical load         
shapes in grouping customers, our analysis groups customers        
based on cost, which is a function of both variations in load            
shapes and market prices.  

Standard economic models predict that customers      
respond to marginal price rather than average price. However,         
for a nonlinear price schedule such as electricity prices, [4]          
shows that customers respond to average price. Through the         
encompassing test, the author shows that average price has a          
significant effect on consumption, while marginal price and        
expected marginal price have statistically insignificant effects.       
In fact, customers’ perception of their electricity prices are         
extremely similar to the average price. The author suggests         
that nonlinear electricity pricing is an unsuccessful strategy in         
achieving policy goals of energy conservation, until more        
customers are educated on and provided real-time information        
about their price schedules and consumption levels. Given the         
implications of [4], we model our study to generate average          
prices, whether for individual customers or groups of        
customers. However, in modeling DERs, we also consider        
time-varying rate schedules as these make ownership of DERs         
financially attractive to electric customers.  

 
III.  PROBLEM SETUP  

Utilities conduct procurement of electricity from      
wholesale markets in two-stages: the day-ahead and real-time        
market. In the day-ahead market, the utility forecasts its         
customers aggregate consumption for the next day and        
purchases an amount of electricity related to that forecast at          
the day-ahead price. The following day, the utility purchases         
from the real-time market the residual amount of demand not          

purchased in the day-ahead to meet its customer actual         
demand.  

For simplicity, we assume that the utility procures all         
electricity for its customers at the day-ahead locational        
marginal price (LMP). This assumption is valid if the         
electricity market is efficient such that real-time and day-ahead         
prices are equal. Thus, we can write the cost to the utility for             
procurement of its customers’ aggregate demand, d, at the         
day-ahead price, p, on a given day, k, as:  

dck = pk
T

k  
The rate paid by the utility per unit of electricity ($/kWh) on a             
given day is then:  

λk = 1 dT
k

p dk
T

k  

The utility can determine the rate it pays to serve an           
individual customer by examining its historical demand over a         
period of H days and calculating the rate it pays to procure            
energy for that customer using historical wholesale market        
prices. The cost to serve the ith customer is then:  
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To recruit and aggregate a group of customers that has a low            
cost to serve, a selection vector, u, identifies customers to          
minimize the cost to serve metric, :λu
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When BTM solar is introduced, determining the cost        
to serve metric for an individual or groups of customers is           
complicated by periods when the customer(s) exports       
generation back to the grid. In jurisdictions with net metering,          
the utility pays the customer for this surplus electricity. We,          
therefore, determined the cost to serve metric using the         
absolute value of individual customers’ or groups’ net load:  
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While utilities likely pay their customers a higher retail rate for           
exported electricity, we simplify this dynamic by assuming the         
utility will pay the customer the wholesale market price. This          
assumption results in an underestimate of the cost the utility          
incurs to serve customers with BTM solar.  

In addition to assessing the impact of solar on the cost           
to serve metric, we also consider the introduction of         
customer-sited and utility-scale batteries. We first developed       
optimization models for use cases of each and use the resulting           
load profiles to calculate the cost to serve. Both types of           
batteries were modelled by the following equations:  
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Here and are the charging and discharging rate of the ut
+   ut

−         
battery at time t, is the maximum discharge and charge rate,    u         
μ is the charge and discharge efficiency of the battery, xt is the             
state-of-charge (SOC) of the battery, and B is the capacity of           
the battery. Due to the computational intensity of modelling         
battery operations for every customer for each hour of the          
year, the optimization was conducted for only the first month          
of the dataset, January 2016, and an end condition constraint          
was used to ensure the battery ended with a similar SOC. For            
scenarios in which solar and storage are both modelled, an          
additional constraint is added such that the battery can only          
charge using the available solar generation, st:  

t ...T u∀ = 1 :  t
+ ≤ st  

For a customer on a flat tariff, the use cases for a            
battery are highly limited and would most likely be used for           
backup power in the event of an outage. In the near future, the             
most likely use case of customer-sited batteries is demand         
charge management and energy arbitrage on a TOU rate [5].          
Thus, we optimized the operations of customer-owned       
batteries to minimize the customer’s bill, where lt is the          
customer’s gross load at time t, qt is the retail price of energy             
at time t, and dc is the demand charge: 

in  m ax[∑
T
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For a utility scale battery, we first considered the use 
case of LMP arbitrage. The objective function is to minimize 
the cost of energy procurement for the aggregate load, L, of 
the utility's customers:  

in  m [∑
T

t=1
L( t + ut

+ − ut
−) pt]  

Second, we consider the use of a utility-scale battery for peak           
shaving. In certain electricity markets, utilities may be        
incentivized to engage in peak shaving to minimize costs         
incurred in capacity markets or for transmission services. In         
this use case, the utility’s peak load is minimized with the           
following objective function. 

inm max[ (L )+ u+ − u− ]  
The result of this optimization is used to determine the peak           
load of the utility. The peak load is then used as a constraint             
while optimizing the battery for LMP arbitrage:  

t ...T L ) eak∀ = 1 : ( t + ut
+ − ut

− ≤ p  
The resulting load profiles from optimizing these DERs were         
then applied to the cost to serve algorithm described below. In           
all objective functions, when solar is incorporated into the         
analysis, the objective function is adjusted so that net load is           
calculated net of solar generation.  
 

IV. METHODOLOGY 
A. Algorithm  

Reference [1] developed a bisection algorithm that        
identifies a group of households of size M that has the lowest            

cost to serve amongst a larger group of customers. Here, the           
elements of vector t is the cost of procurement for each           
household, ti:  

dti = pt
h h

(i)    
And, the elements of vector w are the demand of each 
household, wi: 

dwi = 1T
h
(i)  

The algorithm converges iteratively on a value λ. Each         
iteration begins with a value for λ that is halfway between the            
upper bound and lower bound for the value. The algorithm is           
initialized by setting the upper bound to the cost to serve the            
most expensive customer in the set and the lower bound to the            
cost to serve the least expensive customer. For each iteration,          
the households are sorted in the ranking vector (t-λw), and          
then the selection vector is created by selecting the lowest M           
households. If the transpose of the ranking vector multiplied         
by the selection vector is less than 0, then the selection is            
feasible and the upper bound on the cost to serve is set to λ. If               
the selection is not feasible, than the lower bound on the cost            
to serve is raised to λ. The algorithm terminates when the           
convergence criteria is met. Fig. 1 depicts the bisection         
algorithm.  
 

 
Fig 1. Cost to serve bisection algorithm from [1].  

 
B. ARIMA model  



While recruiting and and conducting procurement on       
behalf of a single customer would in theory eliminate the cost           
sharing burden to that customer, this not tenable in practice          
and would also result in large forecasting errors which could          
force utilities to purchase a significant amount of electricity at          
the more expensive real-time price. With larger groups of         
customers, we expect the forecasting error to decrease, but as          
seen in the bisection algorithm, a larger group will result in a            
higher cost-to-serve. Thus, there is a tradeoff in applying this          
algorithm in selecting a reasonable group size so that forecast          
errors are minimized as well as the cost to serve the selected            
group.  

To determine the optimal group size M, we calculated         
the CV of the load forecast for groups of various sizes to            
analyze the relationship between group size and forecasting        
error. First, we established an autoregressive integrated       
moving average (ARIMA) model with daily temperature as an         
exogenous variable to predict the daily total consumption for         
the last three months of the year using consumption data from           
the first nine months. Then, we established a Vector ARIMA          
model, with hourly temperature as an exogenous variable, to         
predict the daily load profile vector for the last three months,      s︿      
using the normalized load profile for the first nine months.          
Each vector contains the fraction of hourly consumption for         
each day. Finally, we multiplied the predicted daily total         
consumptions by predicted normalized load profile, , to      sy 

︿

 
︿   

obtain hourly consumption for the last three months of each          
group of different sizes. 

To tune the ARIMA model and the Vector ARIMA         
model, an augmented Dickey-Fuller (ADF) test was applied to         
determine the degree of differencing. The result shows hourly         
consumption data are stationary when the degree of        
differencing is 1. The number of observations and the order of           
moving average included in the ARIMA model are 10 and 5,           
respectively, as determined by the Akaike Information Criteria        
(AIC) and the Bayesian Information Criteria (BIC) tests.        
Similarly, the order of the Vector ARIMA model for the          
number of AR and MA parameters have been chosen as (1,1). 

The forecasting error (CV) can be calculated as        
follows, where is the actual hourly consumption at time  (h)d         

for each group, and is the predicted hourlyh      (h)d 
︿

     
consumption: 
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Fig. 2 shows the relationship between the group size         
and the forecasting error. We applied the ARIMA model and          
Vector ARIMA model to both randomly constructed groups of         
size M and groups determined by selecting the M customers          
with the lowest cost to serve. For both group types, the CV            
curve is non-monotonic and exhibits complicated behaviors,       
suggesting that CV is a function of both the selection vector           
and the group size. For non-random groups, before the group          
size reaches 20, the CV curve decreases monotonically. As         

group size exceeds 20, the CV curve increases in general.          
Thus, a group size of 20 has been chosen for the analysis. For             
simplicity, all groups will have the size of 20 in this analysis. 

 
Fig. 2 The CV for sorted group (blue line) and the CV for randomly              
constructed groups (red dots)  
 
C. Application of the algorithm to DER use cases  

The cost to serve algorithm was applied through        
multiple use cases of solar and/or storage. First, the algorithm          
was applied for groups of various sizes for the use case in            
which the customers share a 400 kW community solar         
resource. The solar resource was distributed to all customers         
through three different allocation approaches: the customers       
receive equal shares of the resource, the customers receive a          
share of the resource proportional to their gross load, and the           
customers receive a share of the resource proportional to the          
cost to serve their gross load. The net load was calculated by            
subtracting the share of the hourly solar profile allocated to          
that customer from its gross load profile in each of the three            
allocation approaches. The algorithm was applied to the        
resulting net demand profiles for each customer.  

The cost to serve algorithm was also applied to the          
net load profiles generated through customer-sited resources in        
three cases: solar, storage, and solar and storage. The net load           
profiles for the customer solar case were determined by         
subtracting the solar generation of the customers’ resources        
from their gross loads. Not all customers in the dataset have           
BTM solar. For these customers, the hourly generation profile         
is always 0 and their load net of solar is their gross load. The              
absolute value of the net load profiles was used for the           
bisection algorithm as described in the problem setup. The net          
loads for the storage and solar and storage cases were          
constructed from the results of optimizing the customers’        
batteries to a TOU as previously described.  

We also compared the impact to the total cost of          
procurement for the utility of customer-sited DERs and        
utility-owned DERs. The profiles of all customers following        
the TOU optimization were aggregated together and       
multiplied by the hourly LMPs to determine the total cost to           
the utility if every customer optimizes its resources according         
to the signal provided by the TOU rate. The utility was then            
given a solar resource equivalent to the total generation of its           
customers and a battery with the aggregate capacity of the          
customers’ batteries. These resources were then optimized to        
conduct peak shaving and/or LMP arbitrage. The total costs         



from the resulting optimizations were compared to the total         
cost incurred when customers optimize for the TOU rate.  

Finally, we examined how the cost to serve a group          
formed based upon its gross load changes when it adopts          
DERs. The bisection algorithm was applied using the gross         
load of the customers to sort all customers into groups of 20            
according to their cost to serve. We then optimized the          
aggregated load and DERs of the group to a TOU rate. The            
cost to serve the customers with DERs was also calculated          
where the individual customers managed their resources       
independently and sought to minimize their utility bill.  
 
D. Data 

Hourly smart meter data including net load use, gross         
load use and solar generation for 339 customers in Houston,          
Texas, in 2016 are obtained from dataport.cloud, a database         
maintained by Pecan Street Inc. For the ARIMA model, the          
dataset of 8784 hourly load records was separated into a          
training set (the first nine months, 75%) and a testing set (the            
last three months, 25%), to determine the optimal group size.          
When aggregating customers into groups and conducting the        
battery optimizations, only load data from the first month was          
used due to the computational intensity of optimizing DERs         
for all customers for every hour of the year. Hourly          
temperature data over 2016 in Houston, Texas, was obtained         
from NOAA National Centers for Environmental Information       
and used as an exogenous variable in the establishment of          
ARIMA models to reduce seasonal bias [6]. 

Locational Marginal Price (LMP) data from 2016 was        
obtained from ERCOT day-ahead market archive, in order to         
calculate the cost to serve each individual customer as well as           
aggregated groups [7]. For community solar modelling, an        
hourly generation profile was obtained from the National        
Renewable Energy Laboratory’s PVWatts for Houston, Texas       
[8].  
 

V. RESULTS 
The bisection algorithm was applied to the three        

community solar allocation cases to find the average cost to          
serve groups of varying sizes. In all cases, the average cost to            
serve the group increases with group size. The bisection         
algorithm identifies the cheapest households to serve, so        
increasing the group size incorporates increasingly expensive       
customers. The average cost to serve curves shown in Fig. 3           
are remarkably similar, especially in the cases where solar is          
proportioned according to the cost to serve and according to          
consumption. While the cost to serve decreases with the         
introduction of solar, a large decrease is not observed. The size           
of the community solar array was approximately 32% of the          
peak load for the community and likely too small to create a            
large change in the cost to serve.  

 
Fig. 3 The average cost to serve the cheapest group of customers based on              
group size. Three community solar allocation scenarios are modeled and          
compared to the gross load case.  
 

The bisection algorithm was then used to find the         
average cost to serve the cheapest group of any size when           
customers have BTM resources. The result of the algorithm         
using only the gross load was compared to three         
customer-sited resource cases: solar, storage, and both solar        
and storage. Fig. 4 compares the average costs to serve in           
these four cases. The cost to serve is lowest in the case of both              
BTM solar and storage. When only one of the two is used, the             
average cost to serve the cheapest group is lower with only           
storage than with only solar. 

 
Fig. 4 The average cost to serve the cheapest group of customers based on              
group size. Four scenarios are modeled to show that the cost to the utility              
decreases with the implementation of BTM solar and/or storage. 
 
Interestingly, the cheapest group of up to approximately 30         
customers is more expensive to serve with BTM solar than          
without solar or storage. This is likely due to the net metering            
structure of our study; customers who consume less energy         
than they produce with their solar resource sell that extra          
electricity back to the utility. For small group sizes, these          
customers cause an increase in the average cost to serve the           
group. However, for groups larger than approximately 30, this         



phenomenon is no longer observed as cost savings overshadow         
the initial slight increase in cost. The aggregate size of the           
BTM resource in our dataset is much larger (approximately         
73% of peak load) than the modeled community solar         
resource, resulting in a greater decrease in the cost to serve.  

To investigate how the costs to serve groups changes         
with the introduction of DERs, the households were        
aggregated into groups of size 20, which was determined         
previously to be the optimal group size that minimizes CV,          
using their gross load (scenario 1) or their net load after solar            
generation (scenario 2). The customers were then given        
batteries. In each scenario, the cost to serve the group was           
compared in three cases: no customers have storage; individual         
customers optimize their batteries on a TOU rate; and the          
group optimizes an aggregated shared battery to minimize the         
group’s bill on a TOU rate. Fig. 5 shows that incorporating           
storage had a significant impact on reducing the cost to serve.           
While introducing solar and/or storage significantly reduced       
the cost to serve each group, no consistent benefit to          
minimizing the cost to serve was found by optimizing DERs          
on a individual basis or group basis. 
 

 

 
Fig. 5 Comparison of average cost to the utility to serve each customer group              
using (top) storage only and (bottom) both solar power and storage. For both,             
the average cost to serve each group of 20 customers is modeled under three              
battery scenarios: (1) Optimization of individual customers, (2) Group         
optimization under a TOU rate with demand charge in groups of size 20, and              
(3) No battery.  
 

We further compare cost to the utility in three         
different use cases of storage only versus a combination of          
solar and storage: (1) energy arbitrage on a TOU rate in which            
each individual customer owns a battery, (2) LMP arbitrage in          
which the utility has a battery whose size is equal to that of the              
aggregated individual batteries, and (3) peak shaving followed        

by LMP arbitrage with the utility-scale battery. Fig. 6         
compares the total cost to the utility and peak load of the            
system in the six scenarios. As expected, utility ownership of          
solar and/or storage reduces its cost of procurement. The         
utility’s total cost under (2) LMP arbitrage and (3) peak          
shaving followed by LMP arbitrage decreased when       
utility-scale solar is added. However, total cost increased in         
case (1), individual customer battery optimization, when BTM        
solar is added due to the utility having to purchase unused           
solar from their customers that was not modelled to be sold           
elsewhere. However, the average cost per kWh the utility         
incurs in that scenario is $0.0200/kWh, slightly less than the          
average cost without solar, $0.0202/kWh. This suggests that if         
our model incorporated the sale of customer generated power         
to other customers, the cost to the utility in the solar scenario            
would actually be less. The system peak load in all three cases            
decreased when solar was incorporated, indicating that the        
utility could benefit from the addition of DERs by not having           
as high of a maximum load to serve. Although the peak           
shaving case resulting in a significant decrease in system peak          
load, it also resulted in slightly higher energy procurement         
costs compared to the LMP arbitrage alone case. 
 

 

Fig. 6 Total cost to the utility to serve all of its customers and its peak load                 
using (top) storage only and (bottom) both solar power and storage. For both,             
three scenarios of battery optimization are modeled: (1) Each individual          
customer has a battery to manage their demand charge on a TOU rate, (2) The               
utility is given a battery equal to the size of its customers’ aggregated batteries              
that is operated for LMP arbitrage, and (3) The utility operates its battery for              
both LMP arbitrage and aggregate peak demand shaving. 
 



To investigate households’ movement between     
groups, we tracked five households with varying costs to serve          
and their group numbers across seven cases: the base case in           
which only the gross load is considered, equal allocation of          
community solar to all customers, allocation of community        
solar according to energy use, allocation of community solar         
according to cost to serve, BTM solar only, BTM storage only,           
and both BTM solar and storage. In all cases, groups are           
ranked from 1 (cheapest to serve) to 17 (most expensive to           
serve). Table I illustrates the movement of the five households          
of interest--that with the lowest, lower quartile, median, upper         
quartile, and highest costs to serve--and their respective costs         
to serve. Two of these, the lower quartile and most expensive           
customers, do not have BTM solar installed. Therefore, when         
BTM solar data is incorporated in the cost-to-serve        
calculation, these customers move into more expensive       
groups, despite their costs to serve remaining unchanged.        
Group movement was most significant in the three        
behind-the-meter cases. This is due to variations in the         
behind-the-meter solar generation data between customers,      
and subsequently their battery operations, which were based        
on the solar data. 

 
TABLE I. 

BEHAVIOR OF FIVE HOUSEHOLDS IN SEVEN OBSERVED CASES OF 
SOLAR AND/OR STORAGE INCORPORATION. 

 
 

VI. CONCLUSION 
The introduction of DERs to our community of        

households in the Houston, Texas, area decreases the overall         
cost to the utility to serve them. In general, the cost to serve             
the cheapest group of any size with solar and/or storage          
incorporated is lower than that with neither solar nor storage.          
Incorporating a combination of solar and storage resulted in         
lower costs to serve than either alone. Additionally, smaller         
cheapest groups with only BTM solar are more costly to serve           
than those with neither solar nor storage due to net exports. If            
the utility were able use the net exports of a customer to other             
serve other customers in our model, we would expect the total           
cost to the utility serving customers with BTM solar to          
decrease. 

Furthermore, costs to serve differ depending on       
whether the solar and/or storage resources are operated by the          
utility or by the customers. Utility management of storage and          
solar results in lower total costs than individual customer         
management of BTM resources for TOU and demand charge         
management. More specifically for utility-scale DER’s, using       
a utility-scale battery for peak shaving results in higher energy          
procurement costs than using the battery for LMP arbitrage         
alone. The total cost to the utility when customers have both           

solar and storage is higher than when customers have only          
storage due to the utility’s purchases of energy from their          
prosumers. The $/kWh of purchases by the utility, however,         
goes down when solar is introduced. 

It was found that segmenting the customer population        
based upon their gross load or their load net of solar and then             
providing batteries to optimize individual or group load to a          
TOU rate did not result in consistent decrease in the cost to            
serve across all groups. Some of the more expensive groups          
became relatively cheaper after being given batteries while        
other groups became more expensive. This suggests that a         
utility implementing the bisection algorithm would need to do         
so based on their customers load after the adoption of          
batteries. Further, we observed no consistent benefit to the         
utility from group ownership of DERs compared to individual         
ownership, suggesting that the customer ownership structure is        
not of significant importance to the utility in this model.  

Consistent with the results of [1], aggregating       
electricity customers with DERs based on their cost to serve          
reduced cost sharing. In addition, it was found that the addition           
of DER’s, whether those DER’s are customer- or        
utility-owned,  reduced the utility’s procurement costs.  
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