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Abstract Mobile technologies, web-based platforms, and
social media have transformed the landscape of disaster
management by enabling a new generation of digital net-
works to produce, process, and analyse georeferenced data
in real time. This unprecedented convergence of
geomobile technologies and crowdsourcing methods is
opening up multiple forms to participate in disaster man-
agement tasks. Based on empirical research, this paper
first proposes a conceptualisation of crowdsourcing roles
and then analyses methods and tools based on a combi-
nation of two variables: (i) types of data being processed;
(ii) involvement of the crowds. The paper also surveys a
number of existing platforms and mobile apps leveraging
crowdsourcing in disaster and emergency management
with the aim to contribute to the discussion on the advan-
tages and limits of using crowdsourcing methods and tools
in these areas.
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1 Introduction

Mobile technologies and social media have transformed the
landscape of emergency and disaster management by enabling
disaster-stricken citizens to produce digital, real time, local
information on critical events. Hurricane Sandy in 2012,
Typhoons Haiyan or Hagpuit in 2013–2014, or the Nepal
earthquake in 2015 offer examples of user-generated data by
the millions (Purohit et al. 2014; Imran et al., 2015). The
2015–2016 refugee crises in Europe, with hundreds of thou-
sands of asylum seekers checking their social media and mes-
saging apps across borders, constitute another example of
data-intensive emergency management in the humanitarian
domain. Metaphors of social media data as a stream, torrent,
deluge, flood, or exaflood, so popular in the information man-
agement literature, are now equally common among disaster
management experts. The growing interest on how to leverage
the vast landscape of social media data for disaster manage-
ment comes as no surprise, nor the number of online platforms
and tools that aim at making sense of crowdsourced data for
disaster and emergency management. Collaborative manage-
ment and negotiated integration of information are distinctive
features of the Bparadigmatic shift^ that data-intensive disaster
response represents (Bunker et al. 2015).

Together with streams of big data, social media have
brought new forms of crowd participation in emergencies
and disasters. From Hurricane Sandy’s response in 2012 to
the refugee waves in Europe in 2016, there are many examples
of tech-savvy affected populations, first responders and dias-
poras with different degrees of data management expertise.
Likewise, digital volunteers with the most varied backgrounds
and fortuitous experiences contribute remotely either as indi-
viduals or within networks and organisations. This opening up
of new forms of participation for individuals and communities
often blurs the distinctions between amateurs and
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professionals based on skill levels. At the same time, the het-
erogeneity of the participants may render difficult a shared
understanding about how the data must be represented. In this
regard, the use of standardized ontologies should be an impor-
tant objective towards unification of different sources of data
(e.g. Fan and Zlatanova 2011, Yusuf et al. 2012, Shih et al.
2013). Standards are a form of soft regulation, but they have
become crucial to facilitate interoperability, to promote the
practical efficacy of systems, to clarify possible misunder-
standings, and to prevent different interpretations causing le-
gal conflicts that may arise in the web of data (Casanovas et al.
2016). This approach seems particularly appropriate for the
management of crowdsourcing platforms, which typically
bring together people with different geographical, cultural,
and professional backgrounds.

This paper explores the synergies between crowds and
data by focusing on the intersection between the level of
involvement of citizens and the type of data they process
in disaster and emergency management. These two dimen-
sions can also help to understand the affordances of the
online platforms and tools that we survey in this paper.
The paper, therefore, is organised as follows: Section 2
offers an overview of re levant approaches to
crowdsourcing within the broader field of collective intel-
ligence as a conceptual framework for its use in emergen-
cy and cr is is management ; Sec t ion 3 crosses
crowdsourcing methods with different types of data and
proposes a classification of crowdsourcing roles emerging
from this intersection; Section 4 surveys the features and
functionalities of current platforms and mobile applications
leveraging the convergence of crowds and data and pro-
poses a classification of the tools based on their origin,
methods, functionalities, and prospective end users.
Section 5 discusses the main findings, including a review
on the use of ontologies for the emergency and disaster
management domain. Finally, the paper concludes by
stressing the need for further research on crowdsourcing
roles matching the needs of each phase of the disaster
management cycle (DMC).

2 Crowdsourcing: Social and technological aspects

For some years now, both researchers and practitioners in the
areas of disaster and emergency management have been ex-
ploring the role of crowdsourcing in collecting, processing,
and sharing information across organisations and affected
populations. Even if the concept has a recent history,
crowdsourcing has now a number of ramifications. The term
was first coined by Jeff Howe in 2006 to define Bthe act of
taking a job traditionally performed by a designated agent
(usually an employee) and outsourcing it to an undefined,
generally large group of people in the form of an open call^

(Howe 2006). To Howe, crowdsourcing finds its contempo-
rary roots in the open source software movement:

Open source revealed a fundamental truth about
humans that had go largely unnoticed until the connec-
tivity of the Internet brought it into high relief: labor can
often be organized more efficiently in the context of
community than it can in the context of a corporation.
The best person to do a job is the one who most wants to
do that job; and the best people to evaluate their per-
formance are their friends and peers who, by the way,
will enthusiastically pitch in to improve the final prod-
uct, simply for the sheer pleasure of helping one another
and creating something beautiful from which they all
will benefit (Howe 2008).

Since Howe’s first definition, an extended range of
crowdsourcing categories, processes, and typologies have been
proposed from a number of disciplines: computer sciences (Doan
et al. 2011; Hetmank 2013); management (Schenk and Guittard;
2011; Hossain and Kauranen 2015); information systems
(Geiger et al. 2011; Estellés-Arolas and Gonzalez-Ladron-de-
Guevara 2012; Haklay 2013; Saxton et al. 2013; Nakatsu et al.
2014; Zhao and Zhu 2014). While these domains may vary the
emphasis on different components (computational arrangements,
organisational aspects, data management), they all consider the
challenges of crowdsourcing in the web as of a ‘socio-technical^
nature (Doan et al. 2011), for they strike an appropriate balance
between technology and human intelligence.

In this regard, and as a Bgeneral-purpose problem-solving
method^ (Doan et al. 2011) crowdsourcing has also caught the
attention of emerging paradigms such as collective intelli-
gence, human computation, or social computing (e.g. Quinn
and Bederson 2011; Michelucci 2013). The intersections be-
tween these domains have been noted as they coincide in their
focus on horizontal processes that engage large groups of
individuals towards clearly defined goals. The term
Bcollective intelligence^ (CI) predates the notion of
crowdsourcing and gained popularity with the publication of
Pierre Lévy’s book L’intelligence collective (Lévy 1997).
Lévy initially defined CI as Buniversally distributed intelli-
gence, constantly enhanced, coordinated in real time, and
resulting in the effective mobilization of skills^ (Levy 1997).
This premise resonates with Hutchins’ work on socially dis-
tributed cognition and his effort to resituate the focus of cog-
nitive science as a study of Bthe social and material organiza-
tion of cognitive activity’ rather than the solitary individual^
(Hutchins, 1995). Other frequently quoted definitions ap-
proach CI as Bthe capability for a group of individuals to
envision a future and reach it in a complex context^ (Noubel
2004), Bgroups of individuals doing things collectively
that seem intelligent^ (Malone 2009) or Bthe general ability
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of a group to perform a wide variety of tasks^ (Woolley et al.
2010). A critical review of the CI literature has pointed that
these somewhat overlapping definitions fail to Bexclude any-
thing that is collectively created^, and then proposes to distin-
guish CI from other forms of Bcommunal intelligence^ such as
Bteam intelligence^ (Aulinger and Miller 2014). In this view,
CI is Bthe degree of ability of two or more living things to
overcome challenges through the aggregation of individually
processed information, whereby all actors follow identical
rules of how to participate in the collective^, as opposed to
Bteam intelligence^where Bthe actors don’t follow completely
identical rules of how to participate in the team^ (Aulinger and
Miller 2014). Another review discussing literature on CI in
humans highlights the multidisciplinary character of this
emergent paradigm and identifies three levels of abstraction:
the micro-level (CI as Ba combination of psychological, cog-
nitive and behavioral elements^), the macro-level (CI as a
Bstatistical phenomenon^), and the level of emergence be-
tween the two which Bdeals with the question of how system
behavior on the macro-level emerges from interactions of in-
dividuals at the micro-level^ (Salminen 2012).

Crowdsourcing and human computation are sometimes
considered interchangeable concepts too. The notion of hu-
man computation has been traced back to 1838 in the philos-
ophy and psychology literature (Quinn and Bederson 2011),
but its present meaning has been shaped by the influential
work of Louis Von Ahm, the inventor of the CAPTCHA,
ReCAPTCHA and Duolingo (Von Ahn et al. 2003, 2008;
Von Ahn 2013). To Quinn and Bederson, the overlap between
the two concepts exists but they apply to different operations:
Bwhereas human computation replaces computers with
humans, crowdsourcing replaces traditional human workers
with members of the public^ (Quinn and Bederson 2011). In
Michelucci’s view, crowdsourcing does not necessarily re-
quire the computational component, but since Bit is a common
method for engagingmany participants in human computation
[…] they often coincide^ (Michelucci 2013).

Likewise, there are coincidences with these terms and the
notions of social computing, even though the social behaviour
component might not be present in the two previous ones. As
Michelucci puts it, Ba workflow process may elicit human
input, transform that input, and then pass the result to another
human, in a pipeline that involves no social behaviour or in-
teraction whatsoever, yet is very much a manifestation of hu-
man computation^ (Michelucci 2013).

The multiple definitions of crowdsourcing result from
combining different theoretical elements drawn from CI, hu-
man computation and social computing approaches. But web-
based and mobile technologies have given crowdsourcing its
present allure. According to Saxton et al. definition,
Bcrowdsourcing is a sourcing model in which organizations
use predominantly advanced Internet technologies to harness
the efforts of a virtual crowd to perform specific

organizational tasks^ (Saxton et al. 2013). Chamales also
highlights the technological component of crowdsourcing,
noting that Bthe implementation of a crowdsourcing system
can vary widely, from complex online websites that coordi-
nate a million simultaneous workers to low-tech, ad hoc ap-
proaches that use a shared spreadsheet.^ (Chamales 2013).

There is no doubt that web-based and mobile technologies
have expanded crowdsourcing methods to the point that the
concept has become an umbrella term covering multiple ways
to collect and share information online, respond to labour
offers or contests, or volunteer for a number of tasks. The size
and composition of the crowd can also help to determinate
whether the crowdsourced effort is unbounded (anyone can
participate) or bounded to Ba small number of trusted
individuals^ (Meier 2011). In this line, Prpic and Shukla
(2013) have distinguished different types of Bcrowd capital^
generation based on the Bcrowd capabilities^ of organizations
as they engage with the dispersed knowledge of individuals
(i.e. public crowd, public crowd curated, and captive crowd).

Similarly, in her account of crowdsourcing for emergencies
and crises, Liu has analysed the distinct skills and expertise of
different crowds typically involved in crisis management: (i)
affected-populations, (ii) diasporas, (iii) social networks, and
(iv) digital volunteer communities (Liu 2014). In this frame-
work, disaster-affected populations bring Blocal, timely, and
direct experiential information^, diasporas provide their dis-
tinctive Bsocio-cultural tacit knowledge^, social networks
make available Bvaried background with unexpected and pos-
sibly fortuitous experience^ and, finally, digital volunteers offer
their Bcapabilities in processing and managing crisis data^ (Liu
2014).While the benefits of combining these different layers of
information, knowledge, and skills have already been docu-
mented (e.g. Whipkey and Verity 2015) there are new chal-
lenges to address, such as organisational coordination (Digital
Humanitarian Network 2012a, b) and the quality and accuracy
of information gathered through crowdsourcing methods
(Hossain and Kauranen 2015). Both challenges have socio-
technical components. For example, coordination among orga-
nisations requires well-defined responsibilities, workflows, and
tasks. Likewise, the quality and accuracy of crisis information
relies on the capacity to assign different levels of trust and the
use of semantic web tools (e.g. Keßler and Hendrix 2015) and
artificial intelligence (e.g. Imran et al. 2014) to facilitate the
processing of filtered and relevant information.

3 Crowdsourcing for data generation: Capabilities
and roles

When it comes to data, the crowdsourcing literature abounds in
disaster-related metaphors: data may come as an Bexplo-
sion^, Bdeluge^, Bflood^ or Bexaflood^. Crowdsourcing
methods typically include the design of architectures and
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workflows that aim at effectively channelling the flood of
digital data (e.g. by collecting, filtering, tagging, mapping,
etc.). As a result, the vast majority of crowdsourced tasks are
either data-intensive or rely on data-intense aggregation
processes.

Given the ubiquity and variety of data, it is possible to
consider the different roles of the participant crowds based
on the type of data they produce or process. In this regard,
we can distinguish different types of data:

(i) raw data (e.g. data collected from mobile position sen-
sors, geo-social check-ins)

(ii) unstructured data (e.g. texts, images, videos)
(iii) semi-structured data (e.g. tags, geotags, hashtags)
(iv) structured data (e.g. spreadsheets, tables, datasets,

metadata)

Moreover, we may also combine different types of data
with participants’ type of involvement. Thus, individuals can
contribute to crowdsourced projects either as passive data
generators or as actively engaged contributors. Data drawn
from the position sensors of mobile devices (e.g. accelerome-
ters, gyroscopes, magnetometers, GPS receivers) are an exam-
ple of passive involvement. Citizens collecting and sharing
data from barometers or ambient thermometers embedded in
their smartphones in the context of urban sensing initiatives,
environmental projects, or participatory mapping qualify as
active involvement.

Figure 1 captures four different roles of the crowd when
associated to four types of data and two types of involvement
(active or passive).

The bottom of the pyramid represents the wide base of
users who generate raw data by merely carrying their

mobile devices or being involved in a data collection ini-
tiative. In both cases, people generate raw data just because
some processes are automatically performed by sensor-
enabled mobile devices (e.g. processes run in the backend
by GIS receivers, accelerometers, gyroscopes, magnetome-
ters, etc.) which can be later on used for a purpose (i.e.
mobile phone coordinates for positional triangulation, traffic
flow estimates, etc.). This type of data collection has been
defined elsewhere as Bpeople as sensors^ (Goodchild
2007), Bopportunistic sensing^ (Lane et al. 2008) or
Bopportunistic crowdsourcing^ (Chatzimilioudis et al.
2012). Opportunistic crowdsourcing requires very low data
processing capabilities (if any) on the side of participants
and is the most passive role in the contributing information
chain. Yet, a fraction of these users may actively engage in
crowdsourcing projects by enabling their devices to contrib-
ute to particular data collection processes. In a recent meta-
analysis of studies that use smartphones, Birenboim and
Shoval (2016) have found a combination of both ap-
proaches in the research design (e.g., passive location re-
cording with active reports that participants are asked to
send). Whether opportunistic or actively participatory, there
are many potential uses of these crowdsourced raw data for
disaster management, especially in the mitigation and pre-
paredness phases (e.g. detection of spatial-temporal patterns
to prevent stampedes or traffic jams, seismic sensing, dis-
place population sensing, etc.). With regard to scalability,
this data collection process relies on the platform under use
but we can envision that it is scalable at a reasonable cost
(i.e. using Amazon IaaS as the number of people in-
creases). In addition, raw data are available to third users
real time, as soon as sensors release them.

Fig. 1 Crowdsourcing roles
based on types of data processed
and level of involvement
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The second layer of the pyramid includes social media
users (crowd as a social computer). People use social media
(e.g. Twitter, Facebook, Instagram, etc.) for their own com-
munication purposes and process information with no partic-
ular structure, but these data can be reused to extract semanti-
cally structured information (Garcia-Santa et al. 2016). This
type of interaction does not need an implicit domain knowl-
edge and it is a low complexity task that is performed volun-
tarily or unintentionally (i.e. whenever people just post mes-
sages about the disaster in social media channels).
Furthermore, in the last years there has been extended research
on different methods to process social media messages to ex-
tract actionable real-time information during disasters (e.g.
Imran et al. 2015). In some cases, social media users can also
actively engage in social games whose purpose goes beyond
the pure entertainment objective. These games have been re-
ferred to as Bserious games^ (Zyda 2005) or Bgames with a
purpose^ (GWAP) (Von Ahn and Dabbish, 2008). Individuals
can also engage in activities that help to achieve other goals
(e.g. Duolingo invites user to freely learn a language and in-
teract with peers as they progress, but the application is also a
crowdsourced text translation platform drawing from the
translation effort of advanced learners). The use of serious
games for emergency and disaster management is being cur-
rently explored to increase awareness, education, or training
skills (e.G. Loreto et al. 2012; Meesters and Van der Walle
2014; Meera et al. 2016).

The two top tiers include users with an explicit, conscious
use of a priori knowledge to achieve a specific goal. Thus,
Bcrowd as reporters^ refers to social media users producing
first-hand, real-time information on events as they are
unfolding (e.g. they tweet about a hurricane making landfall
and the reporting damages in a specific location). This user-
generated content already contains valuable metadata added by
users themselves (e.g. hashtags) than can be used as semi-struc-
tured, preprocessed data. It is worth mentioning here that ve-
racity of the data (also known as the fourth BV^ in big data) can
be as good as the credibility of the reporters and, therefore, a
lack of control in this step could eventually mislead the deci-
sions based on it. Credibility is one of the quality dimensions
according to the ISO/IEC 25012 (ISO/IEC 25012 2009) and
has been included by the authors (Merino et al. 2015) as part of
the contextual adequacy in their proposed data quality in use
model for big data. There are also other studies that have inde-
pendently tested this quality dimension for uncontrolled data
sources such as Twitter (Castillo et al. 2013; Gupta et al. 2014;
Lee et al. 2015) showing that the credibility can be predicted
with a high precision helping to achieve it in an automatic way
and solving, at least at some degree, the problem of the veracity
of the data. The tasks associated to this role are of medium
complexity since they must provide quality control based on
its experience, reputation of sources, and verification with other
sources of information. As a result, the response time of this

type of tasks increases compared with the previous two layers
that are nearly instantaneous (i.e. we can assume a response
time of seconds or minutes in the best cases).

Finally, Bcrowd as microtaskers^ include people
performing micro-tasked activities. Microtasking can be con-
sidered a special sub-type of human computation where tasks
involving different degrees of complexity are divided into
smaller and independent micro-tasks (Luz et al. 2015).
Microtaskers can then generate structured, high-quality, and
interpreted data by performing some specific tasks over raw
data (e.g. labelling images, adding coordinates, tagging re-
ports with categories, etc.). This role requires an active partic-
ipation of users in the crowdsourcing effort and it may exploit
special skills or require different levels of previous training.
The response time for this type of activities may vary upon the
specific task to be performed but in the best cases it will be in
the range of seconds or minutes (i.e. analysing a text for re-
trieving people needs) and it could go from days to weeks (i.e.
finding the Malaysia Airline flight MH370 and its 239 pas-
sengers vanished from radar using satellite imagery1). Also,
automatics tools and machine learning algorithms (i.e. catego-
rizing text) can be combined to meet the adequate response
time in a disaster management scenario.

4 Participation of the crowd in the disaster
management cycle

The UN-SPIDER glossary defines the DMC as Bthe complete
set of phases related to disasters and their management^ (UN-
SPIDER 2014). While disaster relief agencies and organiza-
tions may conceptualize the disaster management phases dif-
ferently, most models generally include the following ones: (i)
mitigation; (ii) preparedness, (iii) response, and (iv) recovery.

According to the standard definitions by the United
Nations Office for Disaster Risk Reduction, mitigation refers
to Bthe lessening or limitation of the adverse impacts of haz-
ards and related disasters^; preparedness includes Bthe knowl-
edge and capacities developed by governments, professional
response and recovery organizations, communities and indi-
viduals to effectively anticipate, respond to, and recover from,
the impacts of likely, imminent or current hazard events or
conditions^; response involves Bthe provision of emergency
services and public assistance during or immediately after a
disaster in order to save lives, reduce health impacts, ensure
public safety and meet the basic subsistence needs of the peo-
ple affected^; recovery extends to Bthe restoration, and im-
provement where appropriate, of facilities, livelihoods and

1 This task was performed by roughly 8 million volunteers using the platform
Tomnod (http://www.tomnod.com/) and tagging images from an area covering
over 1.007.750 square km.
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living conditions of disaster-affected communities, including
efforts to reduce disaster risk factors^ (UNISDR 2009).

The entire DMC has only recently been understood and
modelled in its integrity, as a whole integrated iterative pro-
cess within other broader social and economic processes.
Policy making, effective allocation of resources, procedural
ruling and local decision-making are closely interlinked tasks,
but efficient coordination is far from easy and can lead to
error-prone situations.

Even if, in practice, disasters tend to unfold in a con-
tinuum and the phases of the cycle may sometimes be
difficult to isolate, the four crowdsourcing roles we have
established in Section 3 can be linked to the different
phases of the cycle. This association can be valuable in
order to identify specific groups for different disaster
phases. Thus, the role of the crowd as a sensor is espe-
cially relevant in the preparedness and training phases
when sensors can provide critical information of events
or sub-events for different geographical locations and at
large scale (Boulos et al. 2011; Kjærgaard et al. 2012;
Sheick Dawood et al. 2013; Radianti et al. 2013).
People may contribute data either inadvertently or by ex-
plicit consent: while GPS location services require users’
explicit permission of access on both Android and iOS
systems, other location sensors such as accelerometers
and gyroscopes do not (Liu 2013).

The role of the crowd as a Bsocial computer^ and as a
Breporter^ may be critical in the other three steps of the
lifecycle (response, recovery, and mitigation) where people
and organizations (citizens, volunteer groups, and emergency
authorities) can engage in multi-channeled information shar-
ing and provide near-real time updates on the events as they
unfold (Chon et al. 2012). Given the ever-growing amount of
information that people shares during a disaster, leveraging
social media information posted on Twitter or Facebook be-
comes most relevant to facilitate situational awareness during
an emergency (Cameron et al. 2012). In this regard, there is a
growing literature onmethods to mine Twitter data for disaster
management (e.g. Li and Rao 2008; Caragea et al. 2011;
Chowdhury et al. 2013; Imran et al. 2013; Robinson et al.
2013; Sakaki et al. 2013; Power et al. 2013; Parsons et al.
2015; de Albuquerque et al. 2015; Takahashi et al. 2015).

Yet, there are a number of critical issues when using social
media information: trustworthiness of the sources, veracity
and accuracy of information, and privacy. Some of these is-
sues are easier to handle as the crowd actively take the role of a
Breporter .̂ In that case, as people tend to be already identified,
assessing the trustworthiness of the source and verifying the
incoming information may become less problematic. People
who reports and uses the reported information can even be
part of the crowdsourced verification process (e.g. within an
Ushahidi deployment). Efficient methods to do it by applying
simple recruiter reward and punishment approach have

already been proposed and tested (Tang et al. 2011;
Naroditskiy et al. 2012).

The role of the crowd as a Bmicrotasker^ is especially rel-
evant when it comes to produce and analyse structured data,
both in the preparedness and training phases or later in the
response and recovery ones when a priori knowledge is re-
quired to get insights into what is happening and set a plan to
react rapidly. Table 1 summarizes how the different types of
crowdsourcing roles described above relate to the different
phases of the emergency management cycle:

4.1 Crowdsourcing tools and disaster management phases

In this section we present the different technologies and plat-
forms that are already available for the disaster management
domain. We have classified them by establishing a set of di-
mensions that best represent their main characteristics in order
to obtain a global perspective. Previous research offers a pre-
liminary classification of mobile technologies within the gov-
ernance domain (Poblet 2011a). In this study, we have added
new ones based on related sources and initiatives turning into
the elaboration of the final matrix. The four basic criteria for
inclusion in the final list have been:

1. The tool has been designed to be used on one or more
phases of the emergency management cycle or, alterna-
tively, it is applicable in this domain.

2. The tool leverages at least one of the crowdsourcing roles
described in Section 3 (crowds as sensors, social
computers, reporters, or micro-taskers) as part of the
emergency management process,

3. The tool is currently available to end users,
4. The tool comes with enough information (i.e. demos, use

cases, technical documentation, etc.) to make an accurate
assessment of its functionalities.

Our analysis includes a total of 38 tools (25 web platforms
and 13 mobile apps) addressing different aspects of the DMC.
The analysis does not include Mobile Data Collection
Systems (MDCS) that are intended to collect specific infor-
mation from targeted audiences via pre-designed surveys. In
this regard, previous research on MDCS has shown that, from
an initial list of 36 solutions, there are up to 24 tools currently

Table 1 Crowdsourcing roles and DMC

Crowd as a
sensor

Crowd as a social
computer

Crowd as a
reporter

Crowd as a
microtasker

Preparedness ● ●
Response ● ● ●
Recovery ● ● ●
Mitigation ● ● ●
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available for use in humanitarian relief interventions (Jung
2011). While MDCS are highly relevant to our research, the
platforms reviewed here have a broader scope and typically
include additional functionalities (i.e. data aggregation, data
filtering, data clustering, analytics, etc.). In fact, most MDCS
could be integrated into DMC platforms as part of the data
collection process treating each mobile data collector as a
sensor or as we have defined previously considering the
crowdsourcing type of Bpeople as sensors^ ( i .e .
FrontlineSMS and Ushahidi have already worked together to
push incoming SMS to the Ushahidi and Crowdmap plat-
forms). Similarly, our analysis does not consider the 250
emergency-related applications available in Google Play al-
ready reviewed in Gómez et al. (2013).

4.2 Taxonomy of crowdsourcing tools

We have classified the different platforms and mobile apps
upon the next four major characteristics: i) the phase of the
DMC where it better applies to, ii) the availability of the tool
and its source code, iii) the main core functionalities, and the
iv) crowdsourcing role types:

& Management crisis lifecycle step: which one of the four
phases of the DMC the tool applies to (mitigation, pre-
paredness, response, and recovery).

& Availability of the tool: how the tool is made it available
and under which license (open source license, commercial
license).

& Core functionalities: which are the main functionalities
that the tool is offering. We have identified the following
subclasses:

& Natural Language Understanding (NLU): the tool pro-
vides some functionalities to perform text analysis in order
to obtain useful information from natural language
sentences (structured or unstructured) or from raw text
(e.g. entity recognition).

& Data collection: the tool enables data collection from any
device connected to the platform. It also provides data
management functionalities on the data collected. This
dimension is closely linked to the roles of the crowd as a
sensor and as a social computer.

& Data filtering: the tool displays different filtering options
over the data collected. The filtering can be done by key-
words, by location, or by any other predefined filter.

& Data tagging: the tool provides tagging functionalities to
facilitate the categorization of the collected data. This di-
mension is closely related with the crowdsourcing role of
the crowd as a social computer.

& Mapping and navigation: the tool allows plotting geo-
graphic information related with the collected data in a
map. It also may allow using this data for navigating in
the map and retrieve data based on its geolocation. This

dimension is closely related with the crowdsourcing role
of the crowd as a sensor.

& Volunteer management tools: the tool comes with a dedi-
cated module to manage the participation of digital or field
volunteers (or both).

& Crowdsourcing roles: the tool provides a framework for a
particular crowdsourcing role, as in:

& Crowd as a sensor: the tool enables the collection of data
from multiple devices, including mobile handsets, and
each of these devices provides some local information that
can be either automatically generated (run by sensors in
the background) or human generated.

& Crowd as a social computer: the tool provides some appli-
cations or human computer interfaces enabling the users to
collect data from social media and engage in social con-
versation if needed.

& Crowd as a reporter: the tools provides a platform where
people can offer first-hand information on events as they
are unfolding and allow the identification of a reporter
versus an occasional user in order to preserve
trustworthiness.

& Crowd as a microtasker: the tool provides applications or
human computer interfaces for the execution of specific
processing tasks by users. These tasks differ from the pre-
vious ones in that they that they exploit some specific
knowledge and may also require a training phase to ac-
complish them.

5 Main findings

Stemming from this approach and taxonomies, there are
two main types of end users that can benefit from these
tools. The first ones are emergency responders such as
fire services, 911 emergency services, police, and the
CERTs (Community Emergency Response Teams) that
can leverage real time analysis and enrichment of the
data provided by reporters, social interaction, and sen-
sors. Critical needs for these users are: (i) finding infor-
mation directly related with the disaster; (ii) detecting
precise location; (iii) detecting current needs within the
affected area; (iv) categorising data; (v) verification of
the information provided. These needs can be met by
the tools reviewed in Table 2 (marked within the core
functionalities of data filtering, data tagging, mapping,
and NLU). Yet, as there is no tool including all these
functionalities some of they will need to be added man-
ually. For instance, Garcia-Santa et al. (2016) used
Ushahidi but since it did not support NLU this func-
tionality was included by adding external tools (i.e.
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Freeling NLU2) jointly with some machine learning al-
gorithms for categorization of the collected data.

A second type of end users are the people involved in a
disaster area who relies in this technology to provide real-time
feedback and capabilities for verifying it (i.e. people as re-
porters for supervising the quality collected data). Some ex-
amples of this type of information are Bfour people injured in
collision of two passenger cars in GR3417 #Granada^ or
Binquiries are continuing after a house fire at Springwood
overnight^. The tools shown in Table 2 that are marked within
the core functionalities of data collection and volunteer man-
agement tools can cover this type of information.

From a technological point of view, there are two main
methods to cater for the needs of the two end users groups
above. One relies on web-based online platforms that aggre-
gate information and provide an ongoing monitorisation of
events as they unfold (it can be assumed that this is part of
the command-and-control strategy and therefore it suits to the
first group of users); the other method applies mobile apps
which provide a straightforward way for users, reporters, etc.
to submit information of the current happenings within a spe-
cific area (end user type 2). Table 2 includes these two differ-
ent methods in a matrix of tools and functionalities.

5.1 Web-based platforms

The majority of the web-platforms included in our list (15 out
of 25) are either open source, have some open source compo-
nents or can be used for free. CrowdCrafting, GeoTag-X and
Micromappers are three platforms powered by PyBossa, an
open source software designed for large microtasking pro-
jects. Likewise, the AIDR platform (providing real-time auto-
matic classifications of tweets) has been integrated in
CrisisTracker.

The majority of the solutions analysed primarily support
response (22 out of 25) and recovery-based efforts (14 out of
22). Generally, the primary focus is on single, event-based,
location-specific, and dynamically evolving scenarios that
trigger an urgent response and the need for verified facts
(Coppola 2011). Nevertheless, most of the platforms could
also be applicable in the mitigation and preparedness phases,
especially those who have developed dedicated modules (i.e.
Sahana contains different modules for organization registry,
human resources, inventory, assets, etc. which focus on the
mitigation and preparedness phases; OpenIR maps ecological
risks revealed by infrared satellite data to identify vulnerable
areas and support its emergency management). ArcGIS enable
developers and users to build custom applications or create
and run projects that could also focus on mitigation and
preparedness.

Yet, since social media information can also be leveraged at
any stage of the emergency management cycle (i.e. at the
preparedness and training phase, by constantly monitoring
information to spot and follow emergency situations, or at
the response phase, by communicating real-time between cit-
izens or citizens and authorities) it is difficult to constrain
potential uses of the platforms that include social media func-
tionalities (i.e. Ushahidi and CrisisTracker) to just one phase.
An example of flexibility and interoperability can be found in
(Garcia-Santa et al. 2016) where a complete system based on
Ushahidi platform is implemented for detecting and enriching
needs on real time given a set of Web sources.

As per core functionalities of the platforms, the most com-
mon ones are data collection (20 instances) and data filtering
and tagging (16 and 17 instances respectively); up to 14 tools
offer mapping functionalities and 12 of them include some
module to manage volunteer contributions, mostly through
explicitly designed microtasking workflows (CrowdCrafting,
GeoTax-0, i-Coast, Micromappers, Tomnod, and Verily).
Some common elements to this specific microtasking ap-
proach are: (i) size: a large number of small unit tasks which
are aggregated to form a large project; (ii) scale: undertaken by
a large number of distributed individuals; (iii) temporal/spatial
span: short tasks conducted online either individually or col-
laboratively; (iv) human intelligence involvement: tasks can-
not be fully automated and include routine and specialist
skills.

5.2 Mobile apps

The market for disaster management apps has remarkably
expanded in the last few years (Poblet 2011b). Updates and
alerts on hurricanes are now embedded in several apps that
target residents in hurricane-prone areas (Peckham 2012).
However, even if these apps provide real-time information
and updates georeferenced in storm maps, satellite images,
and weather forecasts, the information flow remains one
way, since it is delivered by the US National Hurricane
Center or the US National Weather Service. In contrast, the
apps listed in Table 2 tap into user-generated contents to sup-
ply updated information to both response organizations (i.e.
UN or FEMA) and citizens.

As it is the case with online platforms, mobile applications
reviewed here address the response phase of the disaster cycle
(although four of them are also applicable in preparedness and
one in recovery). Three of the platforms reviewed come with
open source licenses and the remaining eight can be used for
free.

As per core functionalities, the vast majority of the plat-
forms allow data collection (10) and havemapping/navigation
functionalities (10), while a few of them provide data filtering
(5) and data tagging (5) functionalities. More specifically,
Geopictures, UN Assign, FemaApp, and FirsToSee allow2 http://nlp.lsi.upc.edu/freeling/
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users to upload and share geo-tagged pictures, Pushpin and
Vespucci are editing apps intended to facilitate edition and
contribution of new data to OpenStreetMap. OSMTracker al-
lows track logging and quick (voice) waypoint annotations
when driving a car or on a bicycle, and OSMAnd is a map
and navigation application with access to OpenStreetMap data
that also offers both online and offline routing, with optical
and voice guidance, for cars, bikes, and pedestrians. Fulcrum
offers a suite of dedicated apps for disaster response (i.e. dam-
age report, disaster shelter assessment, evacuee information,
or post storm building damage report). Stormpins turns its
users into local reporter by enabling them to share pin alerts
with local TV, emergency managers and local communities.
EmergencyAU, also enables its users to upload pictures,
videos, and comments about breaking emergencies. The most
recent one, MyShake, uses people as passive sensors by
collecting data from the accelerometers embedded in mobile
phones related to earthquake vibrations.

5.3 Ontologies

Only a small set of the tools surveyed in Table 2 integrate the
use of ontologies developed within the domains of situational
awareness and crisis management. ArcGIS allows
customisation to leverage an ontology; Publicsonar (previous-
ly known as Twitcident/CrowdSense) uses the GeniUS frame-
work to exploit Linked Open Data; Swiftriver developed
SiLCC, a semantic based relevancy filter/tagger/classifier;
Twitris uses the DBPedia ontology (Jadhav et al. 2013).
Apisakmontri et al. (2013, 2016) have proposed the
Humanitarian Aid for Refugees in Emergencies ontology
(HARE) which would be compatible with systems such as
Sahana and Ushahidi (Apisakmontri et al. 2016).

A number of papers have reviewed ontologies in the areas
of emergency and disaster management. For example,
Baumgartner and Retschitzegger (2006) provide a review of
situational awareness ontologies, and proposals to formalize
the basic components of situation awareness in an ontology
can also be found in the literature (e.g. Kokar et al. 2009,
Baumgartner et al. 2010) which also provides different onto-
logical approaches to disaster management (Klien et al., 2006;
Xu and Zlatanova 2007; Ratnam and Karunaratne, 2008;
Babitski et al. 2009; Murgante et al., 2009; Babitski et al.,
2011; Kalabokidis et al. 2011; Grolinger et al. 2011;
Ortmann et al . 2011; Apisakmontr i e t a l . 2013;
Mansourizadeh and Gharooni 2013; Li and Li 2014). Liu
et al. (2013) offer a comprehensive review of 26 ontologies.
The types of crisis information systems reviewed include crit-
ical infrastructures, resource management, decision support,
response coordination, command and control, and other types
such as humanitarian response and relief. While some of these
ontologies have been completed and are publicly available,
the others are the result of academic work and remain non-

downloadable. The authors identified eleven subject-matters
pointing at their interoperability —people, organizations, re-
sources, disasters, geography, processes, infrastructure, dam-
age, topography, hydrology and meteorology. 65% of the
existing ontologies are semantically interoperable. Only four
of them (EM-DAT, UNEP-DTIE, Canadian Disaster
Database, Australian Government Attorney-General’s
Department Disasters Database) are focused specifically on
disaster management. But those are database-oriented and do
not provide a formal representation of disasters and their
properties. Therefore, the review concludes that this is an
emerging research field with room for improvement.
Apisakmontri et al. (2016) have also noted that most existing
humanitarian aid information systems are Bstored in relational
databases and are not initially developed for supporting infor-
mation integration^.

More recently, Imran et al. (2015) have reviewed up to 11
crisis ontologies, includingManagement of a Crisis (MOAC)3

and the newly developed Humanitarian eXchange Language
(HXL).4 Although not social-media specific, these ontologies
Bcan be combined with ontologies describing social media
concepts such as users, tagging, sharing, and linking^
(Imran et al. 2015). In a similar vein, Hassan and Chen-
Burger (2016) have proposed a Communication Tracking
Ontology (CTO) that reuses some of these ontologies to sup-
port disaster relief mobile applications.

There have been some other attempts to find a consistent
representation for all kind of emergencies, seeking for a gen-
eral pattern-matching description. In this regard, Othman and
Beydoun (2013) have built a Disaster Management
Metamodel to serve as a representational layer of DM exper-
tise. But providing such a comprehensive representational lay-
er, Ba unified view of common concepts and actions applied in
various disasters^ can be certainly taken as a first step, a useful
heuristics scheme, but it cannot be confused with a universally
shared and accepted DM core-ontology. The plurality and
heterogeneity of ontologies in this domain reveals both its
richness and the interoperability challenges ahead.

6 Conclusion

Current online tools enable online volunteers and organiza-
tions to offer a global response by allowing them to participate
in a number of tasks: social media monitoring, data collection,
data filtering, tagging, geolocation of events, etc. A central
component of these tools is the use of crowdsourcing to chan-
nel the contribution of large numbers of users.

Our motivation in developing a typology of crowdsourcing
roles and reviewing state-of-the-art platforms and applications

3 http://www.observedchange.com/moac/ns/
4 http://hxlstandard.org/
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dealing with disaster and crisis control management was to
stimulate new directions of research in the area of
crowdsourced social media information applied to crisis
events. While there is an emerging body of literature in this
direction, comparative research on the current state of the art
of tools and its functionalities is still scarce. In addition, we
have found little connection between platform development
and research in ontologies for disaster management, even if
there are some synergies than could be explored further.

In this paper we have focused on the identification of a set
of dimensions that we believe that characterize well the
domain and we have classified a representative set of tools
that are already available. Enriching platforms to structure
their content as usable and reusable knowledge is related to
contextual, ethical and legal problems that largely exceed the
scope of this paper. Likewise, we have not addressed further
limitations, such as the potential operational gaps that may
emerge when attempting to identify and match needs and
offers crowdsourced from social media. Purohit et al. (2013)
provide an illuminating example: in the aftermath of
Hurricane Sandy (2012) people used social media to both
request and offer help (shelter, clothes, volunteer work, blood
donations, etc.) that was critical for the response, but also
raised significant coordination challenges. Lack of resources
in adequately and rapidly matching these crowdsourced re-
quests and offers may result in a ‘second disaster’ for response
organisations (Purohit et al. 2013). Adequately matching rel-
evant crowd-generated information with the help of computer-
assisted techniques (such as natural language processing
(NLP) algorithms and machine learning could be critical to
support logistic operations.

We have shown that empowering online volunteers and
organizations to offer a global response means including citi-
zens as main players triggering such a response. This is shown
in Fig. 1 with the degree of users’ involvement on the infor-
mation analysis process. An example of use can be found in
Garcia-Santa et al. (2016) where a modification of the plat-
form Ushahidi was used to detect needs on real time using the
information provided by end-users and volunteers acting as
sensors. While none of the reviewed tools includes all the
functionalities we have prioritised in this paper, there are a
few of them that should be considered as a first option due
to its openness, modularity, and versatility. Thus, open-source
tools such as Usahidi, Sahana or SwiftRiver allow the inclu-
sion of third party modules and self-implemented algorithms
improving its performance (both tools are open source).
Ultimately, nevertheless, the choice will depend both on the
contextual needs of the users and the capabilities at hand.

However, since there are no panaceas against natural disas-
ters (Ostrom et al. 2007; Ostrom 2010), crowdsourcing, citi-
zen participation and digital neighborhood might be
considered as complementary mechanisms to give an
appropriate and sustainable response. But this does not come

without problems. Collier et al. (2009) stressed that in devel-
oping societies the practitioners’ point of view might divert
from the experts’ point of view, for as Bbehavioural changes at
the micro level in response to increasing income may lead to a
nonlinear relationship between aggregating incomes and di-
saster damages, where risks increase with income before they
decrease^. In other words, economic development may raise
more obstacles for appropriate responses to natural disasters.
Flooding, landslides, windstorms, extreme temperature events
and earthquakes can be perceived only as unavoidable and
Bnatural^, darkening the social and institutional side of lack
of prevention. Collier et al. proposed two mechanisms for
transformative change to link the fields of climate change
adaptation and disaster risk reduction: (1) the use of iterative
risk management as a primary instrument for adaptive deci-
sion making, and (2) the establishment of ‘boundary organi-
zations’ and institutional changes that increase the transfer of
knowledge between not only science and policy, but also sci-
ence, policy and practice (Collier et al. 2009).

BBoundary organizations^ are important, but the other side
of this threefold cooperation should be the construction of
institutions specifically designed to enhance self-
organization and crowdsourced mechanisms.

This faces new regulatory challenges in an emerging field.
Privacy, data protection and security matter when we realize
that accidents, earthquakes or bushfires hit people in states
with a great diversity of legal and political systems.
Principles, values and norms to be applied to platforms, and
the processing of the information provided bottom-up by vol-
unteers can be analysed to the light of the relational perspec-
tive on law (Casanovas and Poblet 2008) and justice
(Casanovas 2009) aiming at fostering, empowering, and
protecting citizens’ participation and not only legal compli-
ance. But liability in social media monitoring, tagging and
filtering events cannot be ignored either (Poblet et al. 2012).
Future research will further develop in greater detail the emer-
gence of crowdsourcing typologies and types of regulation as
they are currently being enabled by the new generation of
mobile technology tools.
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