
Verification of the CD2RDBMS Transformation
Case in Flora-2.

Muzaffar Igamberdiev, Georg Grossmann, and Markus Stumptner

Advanced Computing Research Centre, School of IT and Mathematical Sciences
University of South Australia, Mawson Lakes, SA 5095, Australia

{firstname.lastname}@unisa.edu.au

Abstract. Model transformations play a key role in model-driven devel-
opment. They are used to generate, refactor, synthesize, reverse engineer
and simplify models among others. The accuracy of transformations will
impact not only transformations themselves, but also the models, the first
class entities of MDE. Verification of correctness properties ensures the
quality of both transformations and models. VOLT workshop has been
addressing this important research area for several years. As a solution
for the VOLT-2015 case on transformation between class diagrams and
RDBMS models, we provide a verification approach, namely MOTIF, in
Flora-2 language. By specifying models, transformations and verification
in the same language, we aim at closing the research gap between models
and verification formalism.

Keywords: model transformation, verification, Flora-2

1 Introduction

Model transformations are means that connect abstract models to concrete
(synthesis and reverse engineering), complex models to simplified (simplification
and normalization), models written in one language to another (migration),
models with certain operational quality to improved ones (optimization) and
many more [12]. These means can serve as bridges when the source and target
models reside in different technical spaces. The impact of transformations is
critically important within the context of models, which was experienced in
Model Driven Engineering (MDE) world in the last decade.

Consequently, transformation languages and tools are success factors of model
transformations. Verification of model transformation is one of the success criteria
of these languages and tools [12]. Verifying a transformation is more complex
than verifying a model [8]. The Verification of Model Transformation Workshop
(VOLT) has been addressing the verification from different perspectives. Within
this year’s VOLT 2015, we introduce a different verification approach for one of
the specified cases using Flora-2, a dialect of F-Logic with numerous extensions. It
is a single language framework for all artifacts involved in model transformation,
namely models, transformations and verification properties.

The benefits of a single language framework are: (1) integration of modeling
and verification formalism, (2) a smooth learning curve for users, (3) a benefit

from reasoning features by transforming existing models into Flora-2, (4) a
direct verification feedback to users, (5) a single language transparency for users
in a sense that they can see through models, transformations and verification
properties from the perspective of the same language, (6) the easier tool support,
since modeling and verification are performed in the same framework, without a
need for transformations and verification extensions (e.g. plugin, add-ons) for
modeling language/environment [6,9].

Two verification options are provided based on: (1) both the source and
target model properties, and (2) model transformation rules in transformation
specification. The approach is called Model Transformation Verification in Flora-
2 (MOTIF). Besides verifying correctness properties [13], MOTIF provides a
flexible rule writing mechanism to address custom and domain specific verification
properties.

Due to lack of space, we provide main arguments in this paper and a detailed
discussion can be found in the relevant technical report [9]. The paper is organized
as follows. Section 2 introduces the modeling of the UML Class Diagrams to
Relational Database Management System (CD2RDBMS) transformation case
in Flora-2. The framework of transformation, verification rules and verification
options are discussed in Section 3. The properties for the provided cases are
verified in Section 4. Related work on verification of model transformation is
analyzed in Section 5. Finally, Section 6 concludes and highlights future research.

2 The CD2RDBMS transformation case

The transformation case considers the classical model transformation between
UML class diagrams and relational database schemata. Three properties should be
verified with respect to the correspondences between the two modeling languages:

1. Non-persistent classes and non-top classes must not be transformed into a
corresponding table.

2. All persistent top classes must be transformed into a corresponding table
3. Column duplicates are forbidden in the output models, i.e., there should not

be two columns with the same name in one table.

These properties will be verified by relevant verification rules in Section 4.
Additionally, MOTIF verifies different correctness properties other than the
provided ones. The interested reader can refer to the example verification rules [9].
The source and target meta-models for the case are displayed in Figure 1.
The uniqueness of table names is assumed and verified [9]. The multiplicity is
represented with asterisk (*) symbol in Figure 1. We represent the meta-models
in Flora-2.

Flora-2 stands for F-Logic Translator and is a dialect of F-Logic knowledge
representation and ontology language [10], which has simple and expressive syntax
with well-defined declarative and object-oriented frame-based semantics. These
characteristics make it practical to apply on model transformations. The knowl-
edge base is formed from facts that are represented as a[prop{min:max}*=>b].

Fig. 1: Class and RDBMS meta-model [2]

It means an object ‘a’ has an inheritable (denoted by *=>) property ‘prop’ with
value ‘b’. The cardinality constraints of a property can be defined in property
signature between lower (min) and an upper (max) bounds. The operators :: and
: represent generalization and classification relationships respectively.

1 C l a s s i f i e r [name∗=> s t r i n g] .
2 PrimitiveDataType : : C l a s s i f i e r .
3 Class : : C l a s s i f i e r .
4 As soc i a t i on [name∗=> s t r i n g] .
5 As soc i a t i on [s r c∗=>Class] .
6 As soc i a t i on [dest∗=>Class] .
7 Class [i s p e r s i s t e n t∗=> boo lean] .
8 Class [parent∗=>Class] .
9 Class [a t t r s {0:∗}∗=>Attr ibute] .

10 Att r ibute [i s p r imary : boo lean] .
11 Att r ibute [name∗=> s t r i n g] .
12 Att r ibute [type∗=>PrimitiveDataType] .

Listing 1: Class meta-model in Flora-2

1 Table [name∗=> s t r i n g] .
2 Table [f k eys {0:∗}∗=>FKey] .
3 Table [pkey{0:∗}∗=>Column] .
4 Table [c o l s {0:∗}∗=>Column] .
5 FKey [r e f e r e n c e s∗=>Table] .
6 FKey [c o l s {0:∗}∗=>Column] .
7 Column [type∗=> s t r i n g] .
8 Column [name∗=> s t r i n g] .

Listing 2: RDBMS meta-model in Flora-2

The meta-models have been represented as Flora-2 knowledgebases, shown in
Listings 1 and 2 respectively 1

1 The primitive datatypes (e.g. boolean) are defined with prefixed underscore symbol
in Flora-2.

3 Transformation and verification rules

This section introduces transformation and verification rules in Flora-2. First, we
present a framework to design transformation and verification rules. Later, we
consider verification options for model transformations.

3.1 A model transformation and verification framework

A framework for model transformation consists of a transformation engine that
executes a rule at a time from a set of transformation (verification) rules, i.e. trans-
formation specification. All aspects of transformation (models, transformation
specification/rules and their execution) are specified within MOTIF.

A transformation rule is composed of three building blocks: pre-conditions,
target manipulation and post-conditions. The pre-conditions and patterns that
should be matched in a source model are addressed in the source model section.
The facts that should be added to the target model, as a result of match in the
source model, take place in the target model section, while the post-condition
section contains the conditions that should be satisfied after the rule’s application.

Syntactically, a rule in Flora-2 consists of head :- body. statements, which
means if the body is true then the head is true as well. The predicates at the
head section can take an arbitrary number of parameters. These parameters are
used to pass values to the body to assess certain conditions. The body can have
conditions to verify a property.

1 %TransformClass2Table (?CLASS, ?TABLE, ?SrcModule , ?TargetModule) :−
2 ((?CLASS[i s p e r s i s t e n t −>true , name−>? NAME] : c lass@ ?SrcModule ;
3 \+(?CLASS : : ? Y))) ,
4 i n s e r t {(?TABLE[name−>? NAME] : t ab l e)@?TargetModule } .

Listing 3: Class2Table transformation rule

Listing 3 illustrates a transformation rule to transform a Class to a Table.
The rule head is a predicate with four arguments. The first two are for the
source and target model elements, Class and Table respectively. The last two
indicates the source and target modules; modules are used to separate models in
Flora-2. Variables are indicated by being prefixed with a question mark, while
the percentage prefix on the predicate name disables the cashing of results of the
rule since the rule body modifies the knowledge base. When the rule is executed,
it queries for classes in the source module that are persistent and top. It then
retrieves the name of the class and inserts a table into the target module with
the same name. The result of calling the rule through the predicate in the head
is all the class objects that satisfied the query and the new table objects that
were created.

Similarly, verification rules are also built using the same framework. The
difference is that a verification rule has no target model manipulation section,
their pre-conditions and post-conditions are merged, and their scope covers both
models and transformation specification.

3.2 Verification options

Transformation process involves three artifacts: the source (meta-)model, the
target (meta-)model and the transformation specification itself. Verification con-
siders the information received from these artifacts. In this sense, transformation
can be verified in two ways: (1) based on (the information of) the properties of
the source and target model and (2) based on (the information obtained from) the
transformation specification, particularly on the transformation rules. Specifically
in our case, for example, the former option can be used to verify whether the
target model contains a table with the same name as a persistent class in the
source model. The latter option can be used to query the transformation rule
within the transformation specification, to check whether it contains a mapping
from a persistent class to a table. Both options are supported by MOTIF.

4 Implementation of the verification rules in Flora-2

We will demonstrate both verification options in the context of the three rules.
First, we illustrate verification rules that use the source and target models to
verify the properties. Afterwards, we will give an example for verification based
on transformation rules. All rules return violations of the properties.

Property rule 1. Non-persistent classes and non-top classes must
not be transformed into a corresponding table.

The rule accepts four parameters for class and table instances and the source
and target modules respectively (Listing 4). A particular model element of class
or table can be provided as a parameter to verify against the property. All existing
violations for any class and table will be retrieved if first two parameters are not
provided. This feature makes Flora-2 beneficial to use a single rule to verify all
model elements in the knowledge base.

1 n o n p e r s i s t e n t n o n t o p c l a s s e s (?C, ?T, ?SrcM , ?TargetM):−
2 ?C[i s p e r s i s t e n t −>f a l s e] : Class@?SrcM ,
3 ?C[parent−>? Y]@?SrcM ,
4 ?C[name−>? CNAME]@?SrcM ,
5 ?T[name−>? CNAME] : Table@?TargetM ,

Listing 4: A verification rule for property 1.

First, the rule retrieves non-persistent (line 2) and non-top (line 3) instances
of class. Line 3 indicates whether ?C has any parent (? Y) model element, which
means ?C is a non-top element. As a next step, the rule checks whether name

properties of both class and table instance (?C and ?T respectively) are bound to
the same variable (? CNAME), which triggers the violation

Property rule 2. All persistent top classes must be transformed
into a corresponding table

Similarly, the rule 2 uses the similar body structure with a few differences
in Listing 5. The rule fetches persistent classes (line 2 in Listing 5), which are
top elements (line 3). Afterwards, lines 4 and 5 indicate that if the class name
(? CNAME) does not match with any name of table instances (forall(? T)) then
the rule reports a violation with the name of the unmatched class (? CNAME).

1 p e r s i s t e n t t o p c l a s s e s (?C, ?SrcM , ?TargetM) :−
2 ?C[i s p e r s i s t e n t −>t rue] : Class@?SrcM ,
3 \+(?C[parent−>? Y])@?SrcM ,
4 ?C[name−>? CNAME]@?SrcM ,
5 f o r a l l (? T)ˆ(\+(? T [name−>? CNAME]) : Table@?TargetM) .

Listing 5: A verification rule for property 2.

Property rule 3. Column duplicates are forbidden in the output
models, i.e., there should not be two columns with the same name in
one table.

This verification rule checks for column duplicates, which is demonstrated in
Listing 6. It has the simpler condition than the previous ones.

1 no co lumn dupl i ca te s (?T, ? TargetModule) :−
2 ?T : Table [co l s−>?COL1, co l s−>?COL2]@?TargetModule ,
3 ?COL1 \= COL2,
4 ?COL1[name−>? C1]@?TargetModule ,
5 ?COL2[name−>? C1]@?TargetModule .

Listing 6: A verification rule for property 3.

Similarly, it starts with its name and two arguments for table instance and
the target module (line 1, Listing 6). It only queries target RDBMS model, since
we don’t need any information from the source model to verify this property. It
fetches two different (line 3) columns from an instance of table (line 2) and then
checks whether they are not equal (lines 4 and 5).

Listing 7 demonstrates a query (not a rule like in previous three listings),
which enables the possibility of verification based on transformation rules.

1 ?− c l au s e{%TransClass2Table (? , ?) , ((? : Class@? , ?X) , ?Y)} .
2
3 ?X = (${? h5888 [i s p e r s i s t e n t −>t rue] @ h5886 } ,
4 ${? h5888 [name−>? h5913] @ h5886 })
5 ?Y = ${ i n s e r t {? h5940 [name−>? h5913] @ h5938? h5940 : Table@ h5938}}
6
7 1 s o l u t i o n (s) in 0 .0000 seconds

Listing 7: Querying the Class2Table transformation rule

The rule base of Flora-2 can be queried by means of clause(head,body)

statement as illustrated in Listing 7. Line 1 represents a query and the rest (lines
3-7) show the result of the query. The head and body uses variables and patterns
to match the verification rule (line 1). We query for the transformation rule which
was demonstrated in the previous section (see Listing 3). The transformation rule
(from Class to Table) is queried to find out whether the persistent classes (lines
3-4) are transformed to relevant tables (line 5). The name variable ? h5913 (lines
4-5) is used for both class instance (line 4) and table instance (line 5), which
indicates a (persistent) class instance will be transformed to a table instance
with the same name.

5 Related work

Different criteria, such as language, transformation related properties, level of
formality, tooling, transformation languages, verification formalism, have been

explored to categorize model transformation properties and verification techniques
[13,5]. In our case, verification of model transformations has been analyzed
from four perspectives (see Table 1): properties, model transformation language,
verification approach/language and support for a single language framework,
where at least transformation and verification are performed in the same language.

Approach Correctness proper-
ties

MT language Verification ap-
proach /language

A single
language

framework

UMLtoCSP con-
straint program-
ming [4,3]

satisfiability, lack of con-
straint redundancies &
subsumptions, liveliness

UML/OCL to Con-
straint Satisfaction
Problem (CSP)

ECLiPSe constraint
programming sys-
tem

NO

UML/OCL
Boolean satisfia-
bility [15]

consistency of system
states & redundancy of
OCL constraints

UML models, OCL
>SAT instances

SAT solver NO

CARE [14] conformance Xtend Answer Set Pro-
gramming(ASP)

NO

Language inde-
pendent MT ver-
ification [11]

termination, single in-
heritance, name conflicts
and others

Transformation spec
meta-model is ap-
plied on ATL

an intermediate rep-
resent, lang indepen-
dent framework

NO

UML/OCL Val-
idator [7]

transf model consistency,
property preservation

transformation mod-
els

USE model valida-
tor

NO

MOTIF conformance, complete-
ness & inconsistencies

Flora-2 Flora-2 YES

Table 1: Model transformation verification approaches

As shown in Table 1, some approaches use transformations to transform
a model to a formalism where solvers and constraint checkers can be used to
verify correctness properties. UMLtoCSP [4], UML/OCL to SAT encoding [15]
and Xtend [14] are examples for such transformations. Similarly existing models
in other modeling languages (such as UML and EXPRESS) can benefit from
reasoning features of Flora-2. The language independent framework [11] uses an
interesting approach to define a common transformation meta-model, which can
be used to verify different model transformation properties. Another approach
[7] uses transformation models [1] for transformations and to check properties
by applying USE model validator. These verification approaches (Table 1) use
different languages for modeling and verification. On the other hand, MOTIF
uses the same Flora-2 language for modeling, transformation and verification. It
is a single language framework, where models and transformations can be built,
transformed and verified, as illustrated in the last column of Table 1.

6 Conclusion and Future work

In this paper we introduced a novel approach, namely MOTIF, to verify model
transformation properties in the context of the CD2RDBMS case in Flora-2
language. Two verification options were considered and implemented. The added
value behind this proposal is two-fold. Firstly, it uses a single language framework
for modeling, transformation, querying and verification, which addresses the gap
between models and verification formalism. Secondly, it allows to query transfor-
mation rules to verify the properties, which enables (design-time) verification of

transformation before their actual execution. This research will serve as a base
for future work to apply verification rules on larger industry models, such as the
ISO 15926 standard from the engineering domain.

Acknowledgments This research was partially funded by the Data to Deci-
sions Cooperative Research Centre (D2D CRC).

References

1. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? Transformation Models! In: Proc. MODELS 2006. pp. 440–453.
Springer (2006)

2. Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: Model transformations in practice
workshop. In: Satellite Events at MoDELS 2005. pp. 120–127. Springer (2006)

3. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: A tool for the formal verification of
UML/OCL models using constraint programming. In: Proc. ASE ’07. pp. 547–548.
ACM (2007)

4. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL class diagrams
using constraint programming. Journal of Systems and Software 93, 1–23 (2014)

5. Calegari, D., Szasz, N.: Verification of model transformations: a survey of the
state-of-the-art. ENTCS 292, 5–25 (2013)

6. Dubois, C., Famelis, M., Gogolla, M., Nobrega, L., Ober, I., Seidl, M., Völter, M.:
Research questions for validation and verification in the context of model-based
engineering. In: MoDeVVa@ MoDELS. pp. 67–76 (2013)

7. Gogolla, M., Hamann, L., Hilken, F.: Checking transformation model properties
with a UML and OCL model validator. In: Proc. VOLT’14 (2014)

8. Goos, G.: Compiler verification and compiler architecture. ENTCS 65(2), 1 (2002)
9. Igamberdiev, M., Grossmann, G., Stumptner, M.: Verification of the CD2RDBMS

transformation case in Flora-2: VOLT 2015 case study technical report. Tech. rep.,
Knowledge and Software Engineering Lab, University of South Australia (2015)

10. Kifer, M., Yang, G., Wan, H., Zhao, C., Kuznetsova, P., Liang, S.: Flora-2: User’s
Manual (2013)

11. Lano, K., Kolahdouz-Rahimi, S., Clark, T.: Language-Independent Model Transfor-
mation Verification. In: Proc. VOLT’14 (2014)

12. Mens, T., Gorp, P.V.: A taxonomy of model transformation. In: GraMoT 2005. pp.
125–142. ENTCS 152 (2006)

13. Rahim, L.A., Whittle, J.: A survey of approaches for verifying model transformations.
SoSyM 14(2), 1003–1028 (2013)

14. Schönböck, J., Kusel, A., Etzlstorfer, J., Kapsammer, E., Schwinger, W., Wimmer,
M., Wischenbart, M.: CARE – a constraint-based approach for re-establishing
conformance relationships. In: APCCM 2014. pp. 19–28. ACS (2014)

15. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drechsler, R.: Verifying UM-
L/OCL models using boolean satisfiability. In: Proc. DATE 2010. pp. 1341–1344

	Verification of the CD2RDBMS Transformation Case in Flora-2.
	Introduction
	The CD2RDBMS transformation case
	Transformation and verification rules
	A model transformation and verification framework
	Verification options

	Implementation of the verification rules in Flora-2
	Related work
	Conclusion and Future work

