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Abstract

This project examines air flowing over a flat, horizontal stream-wise plate and the development of the

boundary layer using ANSYS FLUENT commercial CFD code. Cases of laminar and turbulent flow were

studied and compared to determine the behavior of boundary layer in different flow regimes. Furthermore,

the FLUENT results were compared to theoretical results from the Blasius Similarity Solution and the

one-seventh-power law. Result comparisons showed that commercial CFD code producing numerical

solutions to the Navier-Stokes equations can show fluid behaviors not predicted by Blasius’ solution and

empirical equations, including a velocity “overshoot” near the edge of the boundary layer. Additionally,

it was found that the Blasius solution provided many inaccuracies, especially near the beginning of the

plate.
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Nomenclature

CD Drag Coefficient

Cf Skin Friction Coefficient

I Turbulence Intensity

Re Reynolds Number

Uo Inlet Velocity [m s−1]

UL Laminar Inlet Velocity [m s−1]

UT Turbulent Inlet Velocity [m s−1]

δ Boundary Layer Thickness [m]

µ Dynamic Viscosity [kg m−1 s−1]

ρ Fluid Density [kg m−3]

1 Introduction

Boundary layer flow refers to the layer of fluid found in close proximity to bounding surfaces in a flow. The

presence of a boundary layer is due to the viscous forces in a flow, where, for example, the fluid “sticks” to

a wall or other surface due to the no-slip condition. The concept of boundary layer flow was first discovered

by Ludwig Prandtl in 1904 and has been developed extensively since [1]. However, no analytical solution to

boundary layer equations are available. The first numerical solution was found in 1908 by P. R. Heinrich

Blasius, which became known as the Blasius Similarity Solution [1].

In the present work, this so-called boundary layer that is created by fluid flowing over a flat plate is

examined for different flow regimes using commercial CFD code, namely ANSYS FLUENT. The calculated

results are also compared to Blasius’ solution and empirical equations for turbulent boundary layer flow.

Friction coefficients along the plate were also investigated and compared to determine the validity of analytical

and empirical equations.

2 Experimental Setup

The analysis for this project was completed in two dimensions with a rectangular domain that was 30

centimeters tall by 1 meter long. The left edge of the domain was a velocity inlet where the flow entered

normal to the edge, while the bottom edge was a no-slip flat plate (wall). The remaining top and right edges

were pressure outlets. The problem domain is illustrated in Figure 1. A laminar case and turbulent case

were studied, for which the inlet velocity was 0.02 m s−1 and 2 m s−1, respectively.

Figure 1: Problem domain with boundary conditions and dimensions.
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The working fluid for the experiment was air modeled as an incompressible fluid with a density of

1.225 kg m−3 and a dynamic viscosity of 1.7894× 10−5 kg m−1 s−1.

2.1 Numerical Solution Methodology

ANSYS FLUENT was used as the computational fluid dynamics (CFD) solver to obtain a numerical solution.

After creating the 2D geometry, a mesh with quadrilateral faces was generated using an element size of

5× 10−3 m. To ensure solution accuracy and to obtain sufficient detail of the boundary layer created due to

the flat plate, the mesh was refined near the plate in stages. The refined mesh is shown in Figure 2.

Figure 2: Mesh with staged refinements near the bottom edge.

The first refinement stage doubled the number of mesh elements up to 0.1 meters from the plate. The

second stage doubled the number of elements again up to 0.05 meters from the wall, while the final stage

doubled the elements a final time 0.025 meters from the wall. The resulting element sizes are reported in

Table 1.

Table 1: Refined mesh element sizes.

Height Above Plate [m] Element Size [m]

0.000 ≤ y < 0.025 6.25× 10−4

0.025 ≤ y < 0.050 1.25× 10−3

0.050 ≤ y < 0.100 2.50× 10−3

0.100 ≤ y 5.00× 10−3

2.1.1 Laminar

The laminar inlet velocity UL was 0.02 m s−1. To be sure that the flow was in the laminar regime, the

Reynolds number was calculated using

Re =
ρUL

µ
(1)

where ρ is the fluid density, U is the flow velocity, L is the characteristic length scale of the geometry, and

µ is the dynamic viscosity of the fluid. In the case of a flat plate, the characteristic length scale is the plate

length. The Reynolds number was calculated to be 1369.2, confirming the flow to be in the laminar regime.1

1A flow is defined to be laminar if Re < Rex,crit where Rex,crit ≈ 105[1].
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For the solution method in FLUENT, the pressure-velocity coupling scheme was set to SIMPLE with

a standard spatial discretization method for pressure. The convergence monitors were also turned off, the

solution took a standard initialization from the inlet properties, and the number of iterations was set to

3,000. The remaining FLUENT settings were left at their default values.

2.1.2 Turbulent

The solution methodology for the turbulent flow was duplicated from the laminar case. However, the inlet

velocity UT was 2.00 m s−1. The Reynolds number was again calculated using (1), which yielded a Reynolds

number of 1.3692× 105, categorizing the flow as transitional. Due to the transitional nature, the standard

k-ε turbulent model was used. Additionally, the Turbulent Kinetic Energy and Turbulent Dissipation Rate

were second order upwind. The specification method for the inlet velocity was also changed to “Intensity

and Length Scale”, where the turbulence intensity I of the flow was calculated using

I = 0.16Re−1/8 (2)

where Re is the Reynolds Number and the length scale was the plate length. Using the properties of the

working fluid, the intensity was calculated to be

I = 0.16×
(
1.3692× 105

)−1/8
= 0.03648 (3)

or 3.648%. Finally, the solution was set to calculate for 5,000 iterations.

2.2 Theoretical Solution Methodology

The theoretical solution to determine the boundary layer over the posed flat plate was also calculated using

the Blasius similarity solution for the laminar flow and two variations of the one-seventh-power law for the

turbulent flow. The equations and MATLAB code for the boundary layer thickness, skin friction coefficient,

and drag coefficient are detailed in Appendix B.

3 Results and Discussion

3.1 Solution Convergence

The refined mesh near the bottom of the domain caused both the laminar and turbulent solutions to have

relatively slow convergence rates. For the laminar flow, the residual plot from FLUENT indicated that, after

3,000 iterations, the solutions for the x and y velocities only converged enough to lower the magnitude of

the residuals to approximately 5× 10−3. The continuity residuals, however, were only about 5× 10−7. The

turbulent flow solution converged further, yielding smaller residual values, as shown in Appendix A. The x

and y velocity solutions converged enough to only have residual magnitudes on the order of 1× 10−8 after

5,000 iterations. The residuals for k were on the order of 1× 10−10, while the residuals for continuity and ε

were on the order of 1× 10−12 and 1× 10−14, respectively.
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3.2 Boundary Layer Features

3.2.1 Velocity

The velocity contours of the laminar and turbulent cases are reported in Figure 3. The boundary layer is

visualized gradually grows across the length of the flat plate. The laminar flow contour of Figure 3a shows

a thicker, more gradual boundary layer than that of the turbulent flow case in Figure 3b. This discrepancy

is primarily due to the slower velocity of the laminar flow, where the no-slip condition and viscous forces on

the flat plate have a more significant effect.

(a)

(b)

Figure 3: Velocity magnitude contours for laminar flow (a) and turbulent flow (b).

The difference in graduality between the laminar and turbulent boundary layers is shown further in

Figure 4. In Figure 4a the height of the boundary layer is increasing across the plate, with a gradual

transition at the top edge of the boundary layer back to the initial flow velocity. However, in Figure 4b

the top-edge transition of the boundary layer is sharper, correlating to a more instantaneous transition and

defined boundary layer.
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(a) (b)

Figure 4: Velocity profiles along the length of the flat plate for laminar (a) and turbulent flow (b).

Figure 5: Outlet velocity for laminar, turbulent, and

theoretical (Blasius) flows.

The boundary layer velocities at the end of

the plate were also compared to the laminar

Blasius Similarity Solution. The results of this

comparison are reported in Figure 5, where the

Blasius outlet velocity was plotted using values

from the similarity solution which was solved

using the Runge-Kutta numerical technique. The

FLUENT solutions both shared an “overshoot”

of the inlet velocity, where the maximum

laminar velocity was 1.063UL and the maximum

turbulent velocity was 1.011UT . Compared to

the Blasius approximation, this characteristic of

the FLUENT solutions is unique. However, the

discrepancy arises due to FLUENT numerically

solving the full Navier-Stokes equations, whereas

the Blasius solution is an approximation with

neglected terms.

3.2.2 Thickness

The boundary layer thickness is defined as 0.99Uo, where Uo is the inlet velocity. To obtain boundary

layer height contours in FLUENT, the velocity magnitude was plotted between 0.985Uo and 0.995Uo. The

resulting contours are shown in Figure 6. Additionally, the laminar Blasius similarity solution boundary

layer thickness is plotted alongside the approximate turbulent boundary layer solutions of (5) and (6).
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(a)

(b)

(c)

Figure 6: Boundary layer contours for laminar (a), turbulent (b), and theoretical laminar and turbulent flow

(c).

Comparing the graphical results shows that, for a flat plate, the Blasius solution and the one-seventh-power

laws are decent approximations of the flow. However, to determine the true boundary layer thickness, the

previous results were interpolated to find the approximate height above the plate at which δ became 0.99Uo

for each case. The findings of which are reported and compared in Table 2. The percent-difference between

the Blasius approximation and CFD calculated values verified the observation visible in examining Figure 6
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— the Blasius solution is not exact, but is within 56% of the exact value. The one-seventh-power law

for turbulent flow is closer to the CFD value, coming within 7% of the calculated value. Equation 6 was

developed using the one-seventh law in conjunction with empirical data. However, the empirical data used

was from turbulent flow through smooth pipes [1], not over a flat plate, which is likely where the higher

inaccuracy compared to the standard one-seventh law is developed from.

Table 2: Boundary layer thickness results.

Position (x)
Laminar B.L. Thickness [cm] Turbulent B.L. Thickness [cm]

CFD Blasius Difference CFD 1/7th Law2 Difference 1/7th Law+3 Difference

0.01 1.871 4.196 55.4% 0.5265 0.5656 6.91% 0.4104 28.3%

0.25 3.332 6.635 49.8% 1.095 1.177 6.97% 0.9001 21.7%

0.50 5.167 9.383 44.9% 1.943 2.050 5.22% 1.630 19.2%

0.75 6.665 11.49 42.0% 2.748 2.835 3.07% 2.308 19.1%

1.00 7.990 13.27 39.8% 3.521 3.569 1.34% 2.954 19.2%

3.3 Friction and Drag

Figure 7: Skin friction coefficient for laminar and

turbulent flows.

The skin friction coefficient (Cf ) for the laminar

and turbulent FLUENT results, as well as

theoretical values, is reported in Figure 7.

The Blasius solution underestimated the laminar

CFD solution by an average of 3.091× 10−2,

while the one-seventh law and the semi-empirical

one-seventh law underestimated the turbulent

CFD solution by an average of 5.774× 10−3

and 4.673× 10−3, respectively. The converged

Cf and drag coefficient (CD) values present

at the end of the flat plate are reported in

Table 3. The percentage-difference between the

CFD and theoretical friction coefficients is greater

than the percent-difference of the boundary layer

thickness. As the friction coefficient equations

are also derived from the Blasius solution and the

one-seventh law, this is to be expected.

Table 3: Converged friction coefficients.

Coefficient
Laminar Turbulent

CFD Blasius Difference CFD 1/7th Law Difference 1/7th Law+ Difference

Friction (Cf ) 0.02564 0.01740 47.4% 0.008648 0.004984 73.5% 0.005541 56.1%

Drag (CD) 0.06358 0.03589 77.2% 0.011570 0.006949 66.5% 0.005722 102%

2Standard one-seventh-power law.
3One-seventh-power law equation developed from the standard equation and empirical data.
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4 Conclusions

Commercial CFD code was used to analyze the

boundary layer flow over a flat plate and compared to approximate solutions. Though Prandtl’s boundary

layer approximation was a major breakthrough in the early 1900s and Blasius’ similarity solution allowed for

an early approximation of boundary layer flow, the progression of technology has allowed for more accurate

solutions. Results showed that CFD code such as ANSYS FLUENT numerically solving the Navier-Stokes

equations provide more accurate solutions to the boundary layer phenomenon. This was especially evident in

the velocity profiles, where the numerical Navier-Stokes solutions presented a velocity “overshoot” where the

boundary layer fluid velocity exceeded the inlet velocity, which was not present in the theoretical solutions.

Prandtl’s approximations assumed several terms in the Navier-Stokes equations that are important at

the beginning of the boundary layer to be negligible, which causes inaccuracies in the Blasius solution near

the beginning of the plate. However, near the end of the plate Blasius’ solution came within 40% of the

CFD value for the boundary layer thickness. The turbulent boundary layer equations were among the most

accurate theoretical equations for boundary layer thickness, which were within 2% of the CFD value at the

end of the plate. The theoretical friction coefficients were found to be fairly inaccurate, ranging in percent

difference of 47.4% to 102%. However, the turbulent flow Reynolds Number is just inside the transitional

flow region, which could cause inaccuracies using equations for fully turbulent flows.
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A Appendix: ANSYS FLUENT Residuals

Figure 8: Numerical calculation residuals for laminar flow over a flat plate from ANSYS FLUENT.

Figure 9: Numerical calculation residuals for turbulent flow over a flat plate from ANSYS FLUENT.
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B Appendix: Theoretical Boundary Layer Solution

The Blasius solution defines the laminar boundary layer thickness, δL, as

δL =
4.91x√
Rex

(4)

For turbulent flow, the one-seventh power law defines the approximate boundary layer thickness as

δT1 ≈
0.16x

(Rex)1/7
(5)

and the one-seventh power law combined with empirical data approximates the thickness as

δT2 ≈
0.38x

(Rex)1/5
(6)

These equations were then solved over the problem domain. Definitions for the laminar friction coefficient

Cf,L =
0.644√
ReL

(7)

and the turbulent friction coefficient using the one-seventh-power law

Cf,T1 ≈
0.027

Re
1/7
T

(8)

and the empirical one-seventh-power law

Cf,T2 ≈
0.059

Re
1/5
T

(9)

were also used for the theoretical solution. One additional parameter, the coefficient of drag, was also of

interest and defined as

CD,L =
1.328√
ReL

(10)

for laminar flow and

CD,T1 ≈
0.031

Re
1/7
T

(11)

and

CD,T2 ≈
0.074

Re
1/5
T

(12)

for turbulent flow.

The above equations were then defined as functions in a MATLAB script, which allowed them to be

plotted over the problem domain and compared to the CFD results. Further, using Blasius’ similarity

solution,

η = y

√
U

νx
(13)

where η is the similarity variable, y is the height above the plate, U is the fluid velocity, ν is the kinematic

viscosity, and x is the distance along the plate, and solving for y, it was found that

y =
η√

UL/(νL)
(14)

Finally, the numerically solved similarity values for

f ′ =
u

U
(15)

were used to plot the non-dimensional velocity of the Blasius solution. A high-level overview of the MATLAB

code and similarity solution values are shown in Listing 1.
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1 %% Theoretical Functions

2 % Reynolds number

3 ReL = @(x) rho*U_L.*x/mu;

4 ReT = @(x) rho*U_T.*x/mu;

5

6 % Boundary layer thickness [m]

7 BLT_L = @(x) 4.91.*x./sqrt(ReL(x));

8 BLT_T1 = @(x) 0.38.*x./ReT(x).^(1/5);

9 BLT_T2 = @(x) 0.16.*x./ReT(x).^(1/7);

10

11 % Skin friction coefficient

12 C_fL = @(x) 0.644./ sqrt(ReL(x));

13 C_fT1 = @(x) 0.027./ ReT(x).^(1/7);

14 C_fT2 = @(x) 0.059./ ReT(x).^(1/5);

15

16 % Drag coefficient

17 C_DL = @(x) 1.328./ sqrt(ReL(x));

18 C_DT1 = @(x) 0.074./ ReT(x).^(1/5);

19 C_DT2 = @(x) 0.031./ ReT(x).^(1/7);

20

21 %% Blasius Solution Velocity Profile

22 % f Prime Values

23 Blasius_fp = [0 0.16589 0.32978 0.51676 0.62977 0.77245 0.84604 0.91304...

24 0.95552 0.97951 0.99154 0.99688 0.99897 0.99970 0.99992...

25 1.00000 1.00000 1.00000];

26 % Similarity Variable Values

27 Blasius_eta = [0 0.5 1 1.6 2.0 2.6 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 8.0 9.0 10.0];

28 % Height Values

29 Blasius_y = Blasius_eta/sqrt(U_L/(nu*L));

Listing 1: Sample MATLAB Code

12


	Nomenclature
	Introduction
	Experimental Setup
	Numerical Solution Methodology
	Laminar
	Turbulent

	Theoretical Solution Methodology

	Results and Discussion
	Solution Convergence
	Boundary Layer Features
	Velocity
	Thickness

	Friction and Drag

	Conclusions
	Appendix: ANSYS FLUENT Residuals
	Appendix: Theoretical Boundary Layer Solution

