

Using SQL for cross-platform statistical

programming (for SAS, R and more)

ClinBAY Solution Series

 Christos Stylianou, PhD

 November 2020

ClinBAY Ltd

182 Agias Fylaxeos street

Office 101, Kofteros Business center

3083 Limassol, Cyprus

2 Using SQL for cross-platform statistical programming

Table of Contents

Introduction 3

Methodology 4 - 5

Conclusion 6

 Key Takeaways

Appendix 1: Sample SQL Code to generate an AE table from AdaM data 7 - 9

Appendix 2: R Code snipet to run the Advense events SQL code above 10 - 11

3 Using SQL for cross-platform statistical programming

Introduction

Despite the different advantages and capabilities offered by different statistical software,

clinical trials are usually reported using one package, this is done to ensure a consistent

presentation and to ease the review. Our company has used SAS for statistical reporting

since our conception, but has used a number of other software like R for a similar duration

for different purposes like complex Bayesian models or analyses not available in SAS or

for Shiny applications. We have also created and maintain our own Data visualization tool

Datasly, that cannot be used for reporting, but is used extensively for QC purposes and

data exploration. We also use LINQPad, a free, lightweight and powerful tool to execute

SQL query on databases.

As one can imagine, maintaining code for 4 different software can be a burden for the

statistical programming team. This issue was also further increased with the preparation of

modules to fully analyze and report a study using R instead of SAS. This white paper

presents the path explored to reduce the development time.

The proposed solution presented in this paper is to use SQL as a cross-software statistical

language, by reusing validated SQL programs with no changes in the 4 software presented.

4 Using SQL for cross-platform statistical programming

Methodology

The vast majority of the programming activities for any project are the data manipulation

aspects. Whilst working on generating QC code within Datasly’s SQL package, our

programming team has spotted that most of the code could be made to work in SAS using

PROC SQL with little to no edits. When the preparation of the R modules started, the

complexity of the task to perform the analysis in R native coding was explored but was

deemed as a huge task. With the SQLite code already available for Datasly, the task in R

was therefore quickly switched to identifying a working SQL package. After a thorough

investigation the “sqldf” library was selected in R due to its simplicity.

Transferring the code between the packages was quite straight forward in all tests. Almost

the whole code worked without any issue, with some notable exceptions:

• Different operators used: SAS especially enables the use of its own operators like

“ne” but these needed to be replaced in other packages with their correct operators.

• Converting of data types (Cast function): Different data types were allowed

between SAS and SQLite (R and Datasly)

• Different mathematical functions: When generating summary statistics (e.g.

mean, standard deviation etc) directly from SQL code, although some statements

like COUNT were accepted for all of them, some others had different naming and

some were not available for all packages.

It is noted though that individual SQL statements on large datasets were over 20% more

time consuming in both SAS and R, compared to native functions. An example was the

calculation of estimating the average value for each patient at each timepoint for each

parameter, where PROC SQL required 20% more time than PROC MEANS in SAS and in

R the dbSendQuery required 25% more time than using the aggregate function. Therefore,

5 Using SQL for cross-platform statistical programming

using SQL could cause considerable delays in extremely large datasets when compared to

native functions. Finally, it is note that in R there is also the extra step(s) to load the datasets

into the database, which could add some time in the execution.

An example of SQL code for adverse events that can be used with no edits in SAS, R and

Datasly is included in Appendix 1. The code can then be reported with either PROC

REPORT in SAS or in R using Markdown or whatever library is preferred. Some steps for

converting numeric to test formats and combining columns could have been performed as

well in SQL, as these steps required editing across software they were omitted. Appendix

2 has a snippet of how the code SQL can be used in R.

6 Using SQL for cross-platform statistical programming

Conclusion

This project demonstrated the potential to use SQL code to reduce the development time

by using the same data manipulation code across different statistical software. Using this

approach a huge time saving in development time was observed for our Shiny applications

and our reporting in R, by allowing us to borrow validated SQL code already generated for

Datasly and SAS and simply updating the reporting coding.

Key Takeaways

1. Using SQL in lieu of native functions can decrease considerably the development

time of code in a new software.

2. More time is needed the execution of SQL code than native functions in both SAS

and R, this could be a burden for considerably large datasets, if a number of data

manipulations are needed.

3. In most cases tested the minor delays in execution were out-weighted by the

considerable decrease in development time.

ClinBAY is a company that provides biometrics solutions to decision makers. Feel free to

contact us (info@clinbay.com) if you are interested in our services or products.

mailto:info@clinbay.com

7 Using SQL for cross-platform statistical programming

Appendix 1: Sample SQL Code to generate an AE

table from ADaM data

/*Load the ADSL data with the subset*/

 create table tempadsl as

 select *

 from adsl where SAFFL='Y';

 /*Load the AE data with the subset */

 create table tempads as

 select *

 from ADAE where SAFFL='Y';

 /*Add a total column in ADSL*/

 create table adsl2 as

 SELECT USUBJID,'Total' as TRT01P,99 as TRT01PN FROM

tempadsl

 UNION

 SELECT USUBJID,TRT01P,TRT01PN FROM tempadsl;

 /*Calculate N from ADSL*/

 create table bigN as

 select count(USUBJID) as bigN, TRT01P,TRT01PN

 from adsl2

 group by TRT01P,TRT01PN;

 /*Add total SOC in AE dataset*/

8 Using SQL for cross-platform statistical programming

 create table tempads2 as

 SELECT USUBJID, 'Total' as AESOC,TRT01P,TRT01PN FROM

tempads

 UNION

 SELECT USUBJID, AESOC, TRT01P,TRT01PN FROM tempads;

 /*Add total treatment in AE dataset*/

 create table adsall as

 SELECT USUBJID, AESOC,'Total' as TRT01P,99 as TRT01PN FROM

tempads2

 UNION

 SELECT USUBJID, AESOC, TRT01P,TRT01PN FROM tempads2;

 /*Obtain unique SoC AE's within each subject*/

 create table ads as

 select distinct USUBJID, AESOC, TRT01P,TRT01PN

 from adsall

 group by USUBJID,AESOC,TRT01P,TRT01PN;

 /*Calculate the unique AE count*/

 create table ads2 as

 select AESOC, TRT01P,TRT01PN,count(*) as count

 from ads

 group by AESOC,TRT01P,TRT01PN;

 /*Merge big N with AE count data*/

 CREATE TABLE ADS3 AS

 SELECT * FROM ADS2 as AE, bigN as bigN WHERE

AE.TRT01P=bigN.TRT01P ;

9 Using SQL for cross-platform statistical programming

 /*Calculate the proporions*/

 CREATE TABLE ADS4 AS

 select *, 100*COUNT/bigN as percent

 from ads3

 order by AESOC,TRT01P,TRT01PN;

10 Using SQL for cross-platform statistical programming

Appendix 2: R code snipet to run the Adverse

events SQL code above

library(sqldf)

#Open SQL database

db <- dbConnect(SQLite(), dbname=filename)

#load data into SQL database

dbWriteTable(db, "adae", ads);

dbWriteTable(db, "adsl", adsl);

#Run SQL code, each query needs to be sent separately in dbSendQuery,

they cant be run in bulk

#Load the ADSL data with the subset

dbSendQuery(conn = db,"create table tempadsl as select * from adsl

where SAFFL='Y' ;");

#Load the ADAE data with the subset

dbSendQuery(conn = db,"create table tempads as select * from ADAE

where SAFFL='Y' and TRTEMFL='Y';");

#Statements could be loaded instead one at a line from a text file

containing the SQL code rather than entering the code one query line

at a time

#con <- file("Adverse events by SOC.sql", "rt")

#for (i in 0:100) {dbSendQuery(conn = db,test[i]);}

…

11 Using SQL for cross-platform statistical programming

#read data from SQL database back to R

Ads4<-dbReadTable(db, "ads4");

#Close SQL database

dbDisconnect(db)

