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Definition: Adaptive Dose-

Response Trials (AD-RT)

• Designs with prospectively defined dose-

adapting plans.

• Controlled multi-arm clinical trials

• Planned interim analyses at selected times 

• Outcomes at each interim:

– Early stopping:

• Futility

• Efficacy

– Adapt treatment allocation in next cohort



Adaptive design process map



Advantages and Challenges 

Challenges

• Statistical

– Multiplicity/ Control of error 

rates

– Predictions

• Trial Logistics

– Access to data (EDC)

– Drug Supply

• Feasibility

– Recruitment rate slow 

relative to time to 

response.

Advantages

• Test more treatments/ 

doses

– Fewer retained at the end

• Early decisions

– Ethical benefit

– Accelerated development

• Limit risks of failed trials



Bayesian adaptive design

• Relies Bayes theorem to summary treatment effects at 

any time:

• Mix of study data and prior information

– Weight of likelihood increases with sample size

• Decisions based on :

– Posterior probability of success/failure
• intuitive and interpretable risk estimators

– Posterior predictive distributions

• E.g., Predictive power at final analysis.

– Utility functions
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Decisions

• Posterior distribution:

– Examples: g(θ) = drug effect vs pbo

• Efficacy decision if 

Pr[g(θ)>ε|Y] is large (eg, >95%)

• Futility decision if 

Pr[g(θ)>ε|Y] is low (eg, <5%)
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• Posterior predictive distribution

– Decisions based on predictions

– Distribution of future responses:

• Given current data, and 

• Unconditionally to any fixed parameter value.

– Example: proportion of future patients with a 

response high enough should be large

Decisions
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• Predictive power for a test at study 

completion

– Interim data = Y

– Sample size at completion = N

– α is the type I error rate for the test

– β(θ0) is the type II error rate for the test at

θ=θ0

– Then, predictive power is

Decisions
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Adaptive allocator

• Utility-based

• Enrolment in cohorts

– Flexible treatment arms : N patients among x arms

– Fixed treatments (N/arm)

• Utility of flexible arms computed after each interim 

analysis (larger is better). 

– Examples

• Variance of a parameter

• Cost/Benefit ratio for dose

• Randomise proportionally to utility values. 
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ILLUSTRATIONS IN:

- PHASE I (SAFETY)

- PHASE II (EFFICACY)



ADAPTIVE DESIGN IN PHASE I

Dose-escalation methods:

• CRM : O’Quigley et al. (1990), Chevret (1993), Faries (1994), 

Goodman et al. (1995)…

• EWOC: Babb et al. (1998), Zacks et al (1998), Shih et al. (1999), 

Tighiouart et al (2005),…



First Human Dose

• First-in-man, single dose escalation trial of a cancer 

product

• Low dose tested before escalating up

• Cohort of 3 patients/dose

• Interim safety review drives dose escalation & trial 

termination

• Dose-limiting toxicity (DLT)

– Overall summary of subject’s tolerability evaluation

– Binary response (No DLT/ DLT) per subject.

• Goal of study: 

– To identify the maximum tolerated dose (MTD)

– Dose at which DLT rate is not too large: 20 to 30%.



Dose-response model

Logistic regression:

• Response = Yes/No

2 parameters:

• α : logit score under placebo (α=0  p=50%)

• β : log-odds ratio for a change with dose. Monotonic 

increase with dose when β>0.
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Bayesian inference - Priors

Prior distribution of model parameters:

• Before study starts, elicitation of 

– α: Non-tolerability rate under placebo
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Bayesian inference - Priors

– Exp(β): change in NT odds ratio when 

increasing dose by 1 unit. 
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Convenient reparameterization

• Dose in [Xmin, Xmax]

– ρ = Pr[DLT|dose=Xmin]

– γ = MTD

• Then,
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Bayesian Posterior Update

• Starts out of full conditionals of model parameters:

• If not analytical form available, use known distribution & 

accept/reject samples (e.g., Metropolis/Hastings 

algorithm).

• Then, iterate on the following sampling scheme:

• The chain converges when k is large to a random 

sample  
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Model implementation in 

Winbugs

model{

# loop across subjects

for(i in 1:N) {         

logit(p[i]) <- alpha + beta*d[i]

y[i] ~ dbern(p[i], n[i])

}

alpha ~ dnorm(-4,0.25)

beta ~ dnorm(0.3,44)

}



Trial Objective: MTD

• The objective of the trial is:

– To estimate precisely the MTD

– Stop enrolment when:

CV(MTD)<20%
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Prediction

• Predicting future DLT rate in next cohort of 

3 patients at a dose:

• MCMC estimation
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Adaptive Allocator

• Enroll subjects in cohorts of size=3

• Start with lowest dose possible

• Pre-specify list of admissible doses:

– Xmin, X2, X3, …,Xmax.

• Adaptive allocator = posterior probability

that dose xi is the MTD.

• Randomizer = All 3 subjects to dose with

highest probability.



Overdose control (EWOC)

• Ethically, one cannot assign unsafe doses.

• Do not test too high doses if lower safe 

doses have not been administered 

beforehand.

• Admissible doses dj :

– dj < low quantile of MTD distribution

– Or so that Pr[pj>30%|Y] is low

• Practical limit:

– No more than doubling the maximum 

administered dose.



How does the CRM allocator work?

Posterior logistic model 

(N=3 @ dose=1; No DLT). Pr[Dose=MTD] & Allocator



Trial Simulations

• To assess operational characteristics of an 

adaptive design

• Example: 10 dose levels – DLT rate:

• True MTD = 7.17mg

• N=3/dose – Max size =60 (20 cohorts).
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Simulation Results (100 sims)- Size

Pr[Stop before cap]=66% E[size]=40



Simulation Results - MTD

MTD estimate => 7.13 mg Pr[DLT] vs dose 



Simulation results - Doses



Summary: Adaptive design in 

Phase I

• Goal is to estimate the MTD

• Bayesian method provides a probability measure that 

each dose is the MTD.

• Ethical benefit:

– Stop when precision is sufficient

• Mix of statistical methodology, expert input and practical 

constraints

• Trial simulations help to predict future trial performance

• Several methods (CRM, EWOC,…) around a similar

concept

• Multivariate/Mixed model extensions.
– Several endpoints (efficacy/safety)

– Several patient populations



ADAPTIVE DESIGN IN PHASE II

Hybrid Bayesian/Frequentist Analysis

Two part efficacy study:

1. Proof of concept : MTD vs placebo

2. Dose-ranging



Phase II Clinical Trial

• Neuropathic Pain Compound

• Change in VAS after 12 weeks.

• Doses of 0, 14, 28, 42, 70, 98, 140mg

• 2 Parts study:

– POC : 
• N=20/arm – Pbo vs 140mg

• T-test at ½ study part (interim) and at completion

– Dose-ranging if POC successful
• N=12 subjects/cohort; 1 pbo & 11 active

• Maximum of 10 cohort in total (including POC): N<=136.

• Goal: Find ED50 = dose producing 50% of the maximum effect at 

140mg.



Normal Dynamic Linear Model 

(NDLM) 

• Semi-parametric regression for normal responses

• W is the variance inflation factor. It  determines the 

extend of smoothing in D-R curve:

– W => 0: rigid fit => linear regression

– W => ANOVA

The model is as follows: 

,  

where  is the residual precision (i.e., the inverse variance), and for j>1: 
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• Quantile q=50%  

Quantile variance allocator
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• Randomizer : Biased-coin proportional to utility value.



Stopping rules

• POC : Frequentist test p<0.05 one-sided

• Dose response:

– Efficacy: N=30 patients at any single dose

– Trial failure : 10 cohorts enrolled.



Decimaker Software

• Developed by ClinBAY

• Adaptive design & Bayesian analysis software

– Trial simulations

– Inference

• Main Features

– CRM method

– NDLM

– Models for normal & binary data

– Frequentist & Bayesian tests

– D- & C-optimal designs

• Interactive & batch-mode execution. 35



Decimaker Architecture

Uses R and Winbugs for computation
R/Dcom server link to GUI

Versatile

 Powerful

Graphical interface in .NET
 Microsoft GUI

 Nicer, dynamic graphics

 Inter-operational with MS products

Clinical trial oriented
Support, validation, audit trails,..
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Software components

Data simulator

Trial Simulation Plan

Data loader

Simulation mode Analysis mode
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Estimation model

Allocation rules

Decision rules



• Phase II – 2 Part Study

– Simulation results

Demo

38



Summary: Adaptive design in 

phase II
• Mixed Bayesian/Frequentist Inference possible

– Extensions: Group-sequential methods, predictive

power

• Semi-parametric regression for dose-response:

– Weaker assumptions than model-based

– Slight loss of efficiency

– Worst case scenario reverts to ANOVA

• Multi-Part/Seamless Phase trials:

– « Keep the ball rolling »

– Pre-planning of resources is more demanding. 



Conclusions

• Bayesian adaptive designs permit to:

– Design studies based on quantitative 

measures of risks/benefits 

– Modify designs in real-time to optimize these 

measures.

• This requires specialized skills and 

software:

Modeling 
and 

simulations

Software 
tools

Bayesia
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ANY QUESTION?

Thank you!

A job with us? See www.clinbay.com/-Career-.html
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