Statistical evaluation of QT/QTc prolongation and proarrhythmic potential for non-antiarrhythmic drugs

Christos Stylianou

CLINBAY

ClinBAY - 30 rue Bon Air, B-1470 Genappe Belgium - christos@clinbay.com - www.clinbay.com

Introduction

Delay in cardiac repolarization may trigger potentially life-threatening torsade de pointes arrhythmias. The QT/QTc interval is used as indicator for the duration of cardiac repolarization. As a result thorough clinical QT/QTc evaluation is mandated by the ICH E14 guideline to support marketing authorization and labeling information for non-antiarrhythmic drugs.

Study design

Crossover design:

- Require smaller number of subjects than parallel
- Four period crossover design can be used to compare two dosing schemes (therapeutic and supra-therapeutic), positive control (assay sensitivity) and control (placebo).
- Williams design can be used (Figure 1)

Figure 3: Power and sample size calculation for the minimum effect size observed in our study

Parallel design:

- One-sided two-sample t-test on change from baseline in QTc.
- Time-matched baseline (preferred) or mean baseline can be used.

Analysis of Historical study

- Study was analyzed using paired-test (Table 3)
- All p-values where below the 0.0125

Times	Mean difference (sd)	P-value
1h	11.77 (10.70)	<0.001
2h	11.49 (9.31)	<0.001
3h	12.62(9.81)	<0.001
4h	11 79(0 96)	<0.001

Figure 1: Williams design for 3 way (left) and 4 way (right) crossover studies.

Parallel design:

- Can be used for drugs with long elimination half-lives or other carryover effects
- Up-titration from therapeutic to supra-therapeutic doses is a possibility for the investigational product
- The below design can be used (Table 1)

Screening	Baseline	Part 1	Part (Optional)
		Treatment therapeutic	
No drug	Placebo	dose	Treatment Supra-therapeutic dose
No drug	Placebo	Placebo	Placebo
No drug	Placebo	Active control	Active control
	Screening No drug No drug No drug	ScreeningBaselineNo drugPlaceboNo drugPlaceboNo drugPlacebo	ScreeningBaselinePart 1No drugPlacebodoseNo drugPlaceboPlaceboNo drugPlaceboPlaceboNo drugPlaceboActive control

Table 1: Design for parallel design study.

Assay sensitivity

- Assay sensitivity is suggested by ICH E14 to validate the study
- Positive control should have an effect on the mean QTc interval of about 5ms
- Positive control is Moxifloxacin.
- QTc assessments at 1, 2, 3 and 4h after a single 400mg dose.

Moxifloxacin

- Moxifloxacin is a commonly used positive control
- Figure 2 illustrates Pooled analysis of moxifloxacin-induced QTc effect

Sample size

- Minimum effect size for change from Time-matched baseline: d=1.1
- Minimum effect size for change from Mean baseline: d=1.28
- Figure 4 illustrates power needed for the two respective baselines

Figure 4: Power and per group sample size relationship for the Time-matched and mean baselines observed in our study

Conclusion – Assay sensitivity

- Crossover is somewhat more efficient than parallel designs for assay sensitivity
 - If crossover study design is chosen 25 subjects are needed to reach 90% power for Assay sensitivity.
 - If parallel is considered, a total of 30 subjects are required under Moxifloxacin + Placebo to reach a comparable power for assay sensitivity.
- For parallel studies:
 - Additional subjects are required for the study drug but an unbalanced randomization can be used.
 - From one historical trial, mean baseline appears to be more efficient than timematched baseline, however ICH E14 recommends time-matched baseline to be

Confidence interval at 1, 2, 3 and 4h is above 5ms

Figure 2: Pooled analysis of moxifloxacin-induced QTc effect by time. Data taken from Yan et al (2010)

Analysis of assay sensitivity

Hypothesis:

 $H_0^P : \bigcap \{ (\mu_{Moxifloxacin(t_i)}^P - \mu_{placebo(t_i)}) \le 0 \}, i = 1, 2, 3, 4$, versus

 $H_1^P: \bigcup \{ (\mu_{Moxifloxacin(t_i)}^P - \mu_{placebo(t_i)}) > 0 \}, i = 1, 2, 3, 4$

 $\mu^{P}_{Moxifloxacin(t_i)}$ and $\mu_{Placebo(t_i)}$ are the mean change from baseline of QTcF respectively at timepoint t_i . If any of the p-values is less than 0.0125 (Bonferroni correction) then assaysensitivity is claimed.

Assay Sensitivity in Crossover Studies Statistical methods:

- Paired t-test on dQTc,
- Mixed model on dQTc suitable for crossover design
- or one-sample t-test on ddQTc

Crossover studies allow the calculation of ddQTc which is the difference Treatment-placebo for change from baseline in QTc

used.

Study drug

- Endpoint is change from baseline in QTc.
- Compared vs placebo using one-sided t-tests at the level of α =0.05.
- Upper bound of two-sided 90% CI must be lower than 10ms for all points
- Number of points varies between 7-10

Useful graphical presentation

QTc analysis

All the two-sided 90% must not include values ≥10ms. This procedure is conservative as the Type 1 error might be smaller than the intended 0.05 level (Zhang and Machado, 2008)

Figure 5: Estimated mean difference to Placebo and 90% CI for change from baseline in QTcF by time-point

PK/PD analysis

- Recommended by ICH E14 to assess relationship between change from baseline in QTcF and the investigated drug concentration in plasma.
- The two-sided 90% CI must be below 10ms

Analysis of one historical study

- dQTC was analyzed using paired-test (Table 2)
- All the one-sided p-values were below the significance level of 0.0125

Times	Mean ddQTc (sd)	P-value
1h	11.59 (9.84)	<0.001
2h	9.54 (7.34)	<0.001
3h	12.64 (7.37)	<0.001
4h	11.45 (7.45)	<0.001

Table 2: Analysis of a study using paired-test

Sample size calculation

- Minimum effect size observed: d=1.17
- Figure 3 illustrates sample size for assay sensitivity in a cross-over

Figure 6: Concentration Response for change from time-matched baseline in QTcF (the predictions and their CI are pointwise not continues).

Other useful outputs

An outlier analysis is also recommended by the ICH E14

		Moxifloxacin (N=92) n/m (%)	Placebo (N=92) n/m (%)	Investigated drug (N=92) n/m (%)	Total (N=276) n/m (%)
Variable					
QTcF (ms)	Increase >30ms	3 / 92 (5%)	1 / 92 (1%)	0 / 92 (0%)	2 / 276 (2%)
	Increase >60ms	0 / 92 (0%)	0 / 92 (0%)	0 / 92 (0%)	0 / 276 (0%)
	New >450ms	1 / 92 (2%)	0 / 92 (0%)	0 / 92 (0%)	1 / 276 (1%)
	New >480ms	0 / 92 (0%)	0 / 92 (0%)	0 / 92 (0%)	0 / 276 (0%)
	New >500ms	0 / 92 (0%)	0 / 92 (0%)	0 / 92 (0%)	0 / 276 (0%)
	11011 > 5001113	0, 32 (0/0)	0, 52 (0/0)	07 92 (070)	0,2,0(0,0)

Table 4: Number and percentage of subjects meeting or exceeding clinical noteworthy QTcF interval changes (outlier analysis)

Reference list:

-ICH E14 (2005) Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs; October.

- -Yan LK, Zhang J, Ng MJ, et al, (2010) Statistical characteristics of moxifloxacin-induced QTc effect. J Biopharm Stat. May; 20(3):497-507.
- -Zhang J, Machado S (2008). Statistical issues including design and sample size calculation in thorough QT/QTc studies. Journal of Biopharmaceutical Statistics; 18:451-467.

Conclusion

- We recently analyzed several parallel and cross-over thorough QT trials.
- We have shared some insights on the statistical inference, PK/PD methods and presentation of key results.
- This experience will be useful to better design and power future thorough QT studies for our pharmaceutical partners.