Asymmetric Total Synthesis and Biosynthetic Implications of Perovskones, Hydrangenone, and Hydrangenone B

Baochao Yang, Guoen Wen, Quan Zhang, Min Hou, Haibing He, and Shuanhu Gao*

*J. Am. Chem. Soc. 2021, 143, 6370–6375

OMe

OMe

OMe

OMe

a-d

OMe

OMe

OMe

OMe

a. MgCl then TFAA

b. t-BuLi then toluene, 70 °C

c. NaH, Mel

d. SnCl₄, Cl₂CHOME

Ar

Ar

OH

Ar

OH

Ar

OH

Ligand 1

1. *hv* (366 nm), Ti(O-i-Pr)₄, Ligand 1
2. IBX
3. PdCl₂, H₂
4. Li(tBuO)₃AlH
5. PhP₃, I₂, quinoline
6. AIBN, Bu₃SnH
7. Li, NH₃/THF
8. DDQ
9. AgO, dioxane/HNO₃

Step 1:
Draw A with correct stereochemistry
Hint:
This reaction is called “photoenolization/Diels–Alder”.
Check the natural product for the stereochemistry outcome of this reaction

Step 4:
hint: It’s a bulky reducing agent
Step 5: Name the reaction
Step 10:
Endo or exo?
This is a biomimetic reaction, suggest any other reaction conditions you may want to try when you do this reaction?

Step 11:
This is also a biomimetic reaction, the mechanism? Which named reaction it would possibly be?
step b: Moore rearrangement

Step 5: Appel reaction

Step 10: endo
Most of the biomimetic DA reaction are endo selectivity.
Other conditions: heating in toluene or xylene or neat, high pressure, heating in aqueous LiClO₄

Step 11
Prins reaction