

Large-Scale Log Management Deployment
Prepared by: Juraj Kosik, Infrastructure Security Technical Lead, DT Pan-Net
13 June 2018

SUMMARY

Objective

Document describes hands-on journey of building large-scale log management system in the cloud
environment.

Goals
Goal is to share experience in DevOps project based on Open Source technologies. Document is about to
provide insights into real world problems when implementing and operating log management platform in large-
scale touching also some additional technologies as containers, message streaming platform, own
development and guidance how to put it all together in an efficient manner.

Environment

Described use case refers to the deployment of log management system in pan-European company with
capability to consume load from multiple data centres exceeding 1 TB / day.

Summary 2
Intro 4
Design 5
Lessons Learned 8
Final Words 31

INTRO

Starting the Project…

Log management & SIEM systems have a reputation of mandatory element in every organisation with
problematic business case and high complexity introduced by a need to be always ready to consume
unpredictable amount of data and evaluate it in real-time in a meaningful manner.
By following this goal we had to fulfil several additional conditions due to nature of the target environment –
large-scale cloud company operating in DevOps mode using Open Source platforms.

Selecting Deployment Approach
Before selecting technology it is important to define development and operational model (DOs and DON’Ts).
Changing such fundamental base attributes later on might lead to complete reshaping of the platform and
processes around.

We decided for the following in the very beginning:
• All components to be virtualized or containerized in the Openstack cloud
• Open Source used as much as possible
• DevOps
• CICD
• Infrastructure as a Code (IaaC)

Above-mentioned principles are widely used within the company and necessary toolset was already at our
disposal, e.g. Gitlab and Gitlab Runners for running CICD jobs and wide adoption of Ansible and Openstack
Heat.

Infrastructure as a Code approach is always recommended when you expect your environment to be dynamic,
i.e. you plan repetitive re-deployments and migrations of your platform. In fact, being in multi data centre cloud
there is no other option.
Every change of the system should be defined as a code avoiding manual ssh sessions to any components.
IaaC results into clean and traceable system maintenance, easy collaboration and supports CICD.

For creating virtual resources there are several options we have been considering – Openstack Heat, Ansible,
Python modules for Openstack, Terraform. We use Openstack Heat since it is a native component of the
underlying Cloud OS. However also other options may fit as well.
For platform configuration we use exclusively Ansible reaching one-click deployment.

DESIGN

Selecting Technology
Open Source community is providing various options for Log management & SIEM platforms. Frequently used
options are ELK Stack and Graylog. There are also several other nice and powerful alternatives. All the options
have certain pros and cons. But decision has to be made in one point in time. We have selected Graylog.

Graylog offers multiple installation methods with descriptive and well organized documentation. Installation is
possible as:

• Virtual Machine Appliance
• Operating System Packages

• Ubuntu installation
• Debian installation
• CentOS installation
• SLES installation

• Chef, Puppet, Ansible
• Docker
• Vagrant
• OpenStack
• Amazon Web Services
• Microsoft Windows
• Manual Setup

Openstack and Ansible installation methods looked very appealing for our use-case. We decided to utilize
available Openstack images for Graylog. However we developed Ansible playbooks and Ansible roles from
scratch to fit to our setup, to have better flexibility later on and to really understand what is going on under the
hood.

We have been considering also Docker installation option. There were doubts about benefits, since in our
scale the container would fill in the whole VM (container host) with a single Graylog node. It means that scaling
of containerized Graylog or Elasticsearch node would need scaling of the container infrastructure first. We
might get benefits out of container orchestration platform, e.g. Docker Swarm or Kubernetes in terms of
scaling and auto-healing. However our experience with Elasticsearch is that when you need to restore
corrupted node you already have a problem with data indexing or other internal issue which would be needed
to fix apart of node recovery anyhow. Reallocating tens or hundreds of shards can be a real issue. For smaller
installation Docker might fit very well though. We are operating container orchestration platform and we already
use this layer for smaller components as load balancers, application firewalls or performance monitoring
systems and we recognized its indisputable powers. You should definitely not ignore this alternative.

Architecture

Prior sizing the VMs properly lets elaborate more on Graylog components. The whole functionality consists of
several services:

• Graylog application
• Nginx web server for UI
• Etcd – service discovery for cluster setup
• MongoDB – configuration DB

• Elasticsearch – data storage for logs

All components can reside on the same machine or can be split to separate VMs. Our approach was to keep
Elasticsearch on dedicated “Data Nodes” due to its specific role and different usage of virtual resources as
external Cinder volumes. Everything rest was deployed on “Application Nodes”. It could be possible to push
also MongoDB to separate nodes, however benefits are questionable and always at the expense of design
simplicity. We never identified to be a problem to have MongoDB and Graylog application on the same nodes.

Platform Sizing

In the beginning it is difficult to estimate the future load and proper platform sizing can be difficult. Nevertheless
the most efficient way is empiric experience. There are too many variables in the matrix to find one calculation
to fit all. Most relevant factors which can distort any rigid formula are as follows:

• Virtualization
• Hypervisor sizing
• Type of backend storage
• The amount of logic implemented in Graylog – extractors, pipelines, external plugins…
• Incoming data load
• Splitting the Graylog components on separate nodes

Do not be worried to resize the platform later on if you find a need for that. We went from a single-node
through 1+3, 3+3 and 5+5 node cluster to final setup of 5+10 node cluster (5 Application Nodes, 10 Data
Nodes). Provisioning automation using Infrastructure as a Code makes it very easy to redeploy all
components. We built also playbooks for adding/removing application and data nodes on ad hoc basis. As the
data load went up we resisted temptation to include more and more nodes. On contrary, we decided to
increase processing efficiency a) by using log aggregation layer in front of the Graylog, b) via optimization of
Graylog extractors (parsers), c) using smart integrations with external data sources, etc.
Our empiric experience led us to the following sizing:

Several dependencies has to be taken into consideration. Elasticsearch Index size should not exceed half of
vRAM size. Mind this recommendation when doing your math. Also mind hypervisor sizing when planning the
resources. Too much of vCPUs or vRAM might simply not fit or could even slow down the operation. In our
setup we could not afford to allocate more than 32 GB of vRAM per VM, that is why we had to stick to
maximum of 16 GB of Elasticsearch Index size and rather customize Index count, Shard count and Shard
replica count to optimize performance. We tried having 64GB of vRAM per Data Node, but Openstack/
hypervisors had several issues with such high sizing and scheduling.

Application Node Data Node

vCPU 16x 8x

vRAM 32 GB 32 GB

vHDD 100 GB 100 GB

External Volume - 1 TB

As the traffic grows find your own scale-out limit and if the platform is still not performing well consider
implementing log preprocessing layer. Log preprocessing layer acts as a shock absorber protecting the
Graylog application against overloading. This functionality can be delivered by various pub/sub (publish/
subscribe) message brokers – we selected Kafka for that functionality. The overall architecture looks as
follows. Details and lessons learned to be explained in the next chapters:

LESSONS LEARNED

Issue #1 CICD
CICD process requires multiple environments to be in place to allow Development (DEV), execution of Staging
tests (STAGE) and customer-facing Production (PROD). Environments represent Graylog clusters in dedicated
Openstack tenants, sometimes event in different data centres.

When speaking “Development” (executed in DEV environment), we mean:
• building the internal SIEM logic inside Graylog application,
• introducing new plugins,
• building log parsers,
• data processing pipelines,
• managing alerting and notifications,
• including external data sources for log correlations,
• etc.

We follow the rule to do all admin-level changes on DEV environment only and propagate changes to PROD
via CICD cycles to keep consistency within all environments.

DEV
Changes from DEV will be propagated through STAGE to PROD. i.e. all environments should be eventually
equal from configuration perspective in certain points in time. Different sizing is allowed and makes sense in
larger deployments to save on resources. Our DEV environment is just a singlenode VM with several
adjustment comparing to PROD as retention policies or Index size. All adjusted parameters are automatically
changed back during CICD run to fit to PROD needs. These changes can be executed directly in MongoDB,
or using Ansible module for MongoDB management or using Ansible raw commands against MongoDB via
CLI MongoDB client on Graylog nodes. Idempotency of MongoDB changes can be in some cases reached
also without Ansible. In most of the cases repetitive MongoDB CLI calls do not append anything to the
configuration which would violate idempotency - you can change retention policy n-times and it will just stay as
originally.

STAGE
Staging environment is used for running staging tests to verify that newly introduced DEV changes will not
have negative impact on PROD environment. It happened to us that misconfigurations were not detected in
DEV due to limited amount of incoming logs. However PROD environment consumes real production load and
misconfigurations may pop up unexpectedly.

PROD
PROD environment is basically a replica of STAGE with enabled user access. Changes are pushed from
STAGE to PROD after all staging tests pass.

Implemented CICD helps also to keep up with Graylog release cycles in an easy way to avoid surprises when
upgrading across multiple versions. Propagation of changes from DEV to STAGE to PROD is implemented
within Gitlab Pipelines and run via Gitlab Runners.

Issue #2 Data Replication across Environments

For building a SIEM logic (e.g. aggregation rules, alerting, parsing) in DEV it is needed to have the real data
(logs) in DEV as well. This is a challenge when you are using standard UDP or TCP Inputs for log reception -
push method. Logs use to arrive to the load balancers in front of PROD cluster and subsequently to defined
backend Graylog cluster. Sending the same data to multiple backends (e.g. DEV and PROD) is not a standard
task of a load balancer.
Load balancers in front of the infrastructure can still act as a point where we can replicate and fork incoming
logs to as many platforms as we need. We utilized this option using home-made scripts deployed on load
balancers. However it was rather tweaking than final solution. Logs coming to the load balancers were natively
delivered to the configured backend nodes (PROD cluster). Besides load balancing daemon there was an
additional service running tcpdump and subsequently udpreplay to e.g. DEV environment.

Forcing log producers to replicate data on their side and to send them to multiple clusters is a customer
unfriendly no-go.

Graylog allows sending data to other Graylog instances using Outputs - log forwarding. This approach is not
recommended for log replication among Graylog clusters due to:

• additional load on the sending cluster,

• many complications when having various Inputs methods/types. Output methods are limited comparing
to Input methods thus unwanted data transformations would be needed on receiving cluster. In such
situation we will have different Inputs across environments.

• loosing equal configuration on all environments.

Note: Load balancers can also be used as point where you can implement ingress throttling when your
infrastructure is overloaded. Iptables can suit this purpose very well and allows selective packet dropping
based on custom statistic rules. This approach is literally dropping the traffic and should be used only when no
other option is in place:

To enable throttling on LB (drops 50% of the traffic)
$ iptables -A INPUT -p udp -m statistic --mode random --probability 0.5 -j DROP

To disable throttling on LB
$ iptables -D INPUT -p udp -m statistic --mode random --probability 0.5 -j DROP

To cut specific data on LB
$ iptables -A INPUT -p udp --dport 5002 -j DROP

Our final design contains more intelligent log replication using message broker Apache Kafka (more on the
topic later on). Kafka message broker is pull-based and enables arbitrary amount of environments (consumers)
to pull simultaneously, even with different pace by using quotas and managing separate offsets per consumer.

Issue #3 Propagating Changes from DEV to PROD

CICD migrates changes from DEV environment to PROD. Changes introduced in DEV should be ideally
defined “as a code”, e.g. introducing all changes via repeatable API calls. Even though Graylog has very nice
API support which we use for various purposes, not everything is possible to do API-way. Sometimes it is
really needed to use GUI to introduce change using visual support, e.g. creating a dashboard or parser.
We propagate changes from DEV in multiple steps:

• Backup MongoDB on DEV and restore on STAGE. MongoDB contains the whole configuration of the
Graylog application.

• Replicate non-MongoDB changes, mainly OS level changes, e.g. installation of new plugins or setting
various application parameters. This part is done exclusively “as a code”.

• Final reset of various attributes due to different sizing of source and target environment, e.g. modifying
amount of Elasticsearch Shards or retention policies.

• After successful restoration in STAGE, we execute staging tests and repeat the workflow against PROD
environment.

All the steps are defined as a cicd deployment code run via Gitlab pipeline. Code is mainly Ansible and
Python-based.

MongoDB should be set on multi-node clusters as a Replica Set based on best practise. Backup of MongoDB
can be executed on any MongoDB Replica member. MongoDB restore must be done on MongoDB primary
node within the Replica set. When doing backup/restores, always check MongoDB Replica set setup to avoid
problems. This check can be executed easily on the target node using MongoDB CLI tools. Check can be run
via Ansible module for MongoDB or raw Ansible command using mongo binaries on the target system.

In ideal world we would need more than three (DEV, STAGE, PROD) environments. We need five environments
- SANDBOX, DEV, STAGE, PROD-A, PROD-B.
SANDBOX for raw testing, and PROD-A and PROD-B for blue-green deployment. It is necessary to always be
aware of which PROD cluster is at the moment active and which is idle. Otherwise you may push changes to
the active PROD by accident affecting users connected to the Graylog at that moment. We rather need to
propagate changes to the idle PROD and then do - what we call - “blue-green switch”, i.e. switching active
and idle PROD clusters between each other so that new users will seamlessly access the new cluster without
outage after next http request. There is no problem with user still connected to the PROD branch with became
idle, since the same data are on both PROD branches due to usage of message broker replicating data in
front of the Graylog.

For troubleshooting we are using Slack bots to verify which PROD branch is active and which is idle. ChatOps
approach is used also for other L1 and L2 task, e.g. checking actual load on the nodes, restarting the nodes
and so on.

Propagation of changes from DEV to PROD can be sumarized as following Gitlab pipeline stages:

• Detect - detect which PROD (A/B) is active to propagate changes to idle PROD only
• Backup - back up MongoDB on DEV
• Restore - restore MongoDB on STAGE and replicate non-MongoDB (OS level) changes on STAGE
• Staging - execute staging tests
• Push - push changes to idle PROD
• Switch - switch idle PROD cluster to active PROD cluster and vice versa
• E2E Tests - final tests

All pipeline stages run sequentially. The next stage runs only when the previous one pass. Each stage can
have 1-N jobs which run in parallel by default. In case you can run certain tasks in parallel and there are no
dependencies, just run them within the same stage - mostly suitable for parallel staging tests.
Example below shows failure on a specific staging test:

Pipeline stages at Gitlab UI:

Remaining part of the pipeline did not run due to failed staging test. I.e. issues have been correctly caught in
STAGE environment and not propagated to PROD:

Issue #4 Staging Tests

Staging tests are one of the core components of CICD. Without them you can not be sure that what you do in
DEV will work also in PROD.
Basic service checks are already part of Ansible playbooks and all service restart are followed by respective
wait_for clause (http://docs.ansible.com/ansible/latest/modules/wait_for_module.html). It is possible to do this
check at the end of every relevant tasks. Our preference is to do it immediately after service restarts to catch
the problem immediately.

It is recommended also to include application-level checks. Graylog APIs can help significantly and you can
build various tests that way. We use Graylog APIs also for various other purposes, e.g. to detect which cluster
is active at the moment or to quickly collect performance information. Graylog API is defined using Swagger
framework.

http://docs.ansible.com/ansible/latest/modules/wait_for_module.html

The goal is not to test API functionality itself, rather imply from API response what does work and what does
not on application level. Few examples follow:

Test1:
Send unique messages via API to all Graylog nodes, e.g. message1 => node1, message2 => node2, etc.
Search unique message across Graylog nodes, e.g. message1 on node2, message2 on node1.
Expected result:
Success means that all nodes can receive logs, process them and all have consistent view onto Elasticsearch
database.

Test2:
a) Create user on node1
b) List user on node2
c) Delete user on node3
d) Check user deletion on node4
Expected results:
Success means that MongoDB cluster is consistent and configuration changes are replicated within the
MongoDB Replica set properly.

Test3:
Identify amount of unprocessed messages.
Expected result:
Low number of unprocessed messages means healthy and sustainable operation.

Issue No. 5: Parsing
Most of the critical issues we have identified were related to the applied SIEM logic - log parsing or log
processing via Graylog Pipelines (not to confuse with Gitlab pipelines). Graylog Extractors are in fact log
parsers which can be applied in multiple ways as regex, Grok parsers, JSON parsers, etc. It is recommended
to invest time to get familiar with writing effective regular expression to avoid computation demanding regex-es
which might impact the infrastructure significantly, causing even a node failure.

Do not parse everything. Do not try to split every possible log message up to the lowest atomic item. Parse
only what you need for log analysis and for building alerting rules. Suboptimal regex syntax can lead to big
increase of log message processing time. This problem may be overlooked in low volume environment as DEV
and may have deadly impact in PROD where extractor execution time is multiplied by the factor of N
depending on the production load.

You can catch parsing problems in STAGE by collecting Graylog application metrics (e.g. Extractor execution
times). However this approach is still not fail proof since during staging test you may miss peaks in the load
which in PROD might do the difference. Another situation relates to special log messages as e.g. complex
multi-line logs or other types of logs that simply do not arrive within the staging test time frame. That is why we
also introduced continual metrics analysis on PROD besides ad-hoc checks during CICD staging phase. As a
tool we selected InfluxDB and Grafana as part of our monitoring ecosystem.
Besides performance impact log parsing can also introduce logical errors. Graylog tries to parse certain fields
automatically and expects certain data type at certain default fields.
E.g. JSON parser splits all the key-value pairs automatically. Multiple keys are transformed automatically to a
dedicated message fields. Based on the message fields you can then execute searches or set alerts within the
Graylog application. There are several custom fields as Message, Source, Facility, Level or Timestamp
detected directly by Graylog Extractors. Graylog allows you to create own message fields as part of the
parsing process or within pipeline processing.
Problem emerges when a message payload contains a string as a value when expecting numeric value for a
well-known key (or vice versa).
For example, when parsing Linux logs, the key “level” contains numeric value and JSON parser pick it up
properly and puts into respective field in Graylog/Elasticsearch. Windows logs may store to the same key a
string value. The JSON parser does its job, however Graylog identifies in its well-known field unexpected value
(string).

Raw message from Windows:
{"@timestamp":"2018-04-23T13:40:06.484Z","@metadata":
{"beat":"winlogbeat","type":"doc","version":"6.2.3","topic":"xxxxxxxxxxxxxx"},"
provider_guid":"{xxxxxxxxxxxxxx}","keywords":["Classic"],"thread_id":
16456,"source_name":"Service Control
Manager","level":"Information","type":"wineventlog","log_name":"System","comput
er_name":"xxxxxxxxxxxxxx","message":"The WMI Performance Adapter service
entered the stopped state.","process_id":840,"event_data":{"param1":"WMI
Performance
Adapter","param2":"stopped","Binary":"xxxxxxxxxxxxxx"},"record_number":"230181"

,"event_id":7036,"beat":
{"hostname":"xxxxxxxxxxxxxx","version":"6.2.3","name":"xxxxxxxxxxxxxx"}}

Indexer failures detected in Elasticsearch log:
43 minutes ago graylog_84 d3878612-46fb-11e8-b940-fa163eb446ac
{"type":"mapper_parsing_exception","reason":"failed to parse
[level]","caused_by":{"type":"number_format_exception","reason":"For input
string: \”Information\”"}}

Such issues have to be fixed using Extractor modifications:

Condition
• Will only attempt to run if the message includes the

string "type":"wineventlog"
Configuration
• replacement: "win_level":

• regex: "level":

Issue No. 6: Detailed Service Monitoring
Some parameters should be monitored continuously to have full visibility when having operational problems.
We decided to implement multiple monitoring tools to have detailed overview. We have not identified a single
tool which would serve all use cases.

Elasticsearch monitoring:
For detailed monitoring we use ElasticHQ and Cerebro. Cerebro (replaced Kopf which used to be part of
Openstack images for Graylog). Both are external tools connecting to Elasticsearch nodes on port 9200/tcp.
ElasticHQ provides more detailed statistics comparing to Cerebro.
However we use Cerebro more due to nice visualisation of Shard allocation per Elasticsearch node. This
overview helped us when recovering Elasticsearch nodes and checking how Shards are being reallocated.

This way we quickly identified the problem of having most of the Shards allocated on a single node.
Even after rotating the Active write Index we still had most of the Shards allocated to one specific node. We
had to rotate Active write Index multiple times, since Graylog has a limit of reallocating maximum of two
Shards in time by default when rotating the Index. Settings from Cerebro:

Based on behaviour detected in Cerebro we adjusted also several other parameters to prevent too many
Shard reallocations when not needed:

Recover Recover only after the given number of nodes have joined the cluster.
Can be seen as "minimum number of nodes to attempt recovery at all".
gateway.recover_after_nodes: 8
Time to wait for additional nodes after recover_after_nodes is met.
gateway.recover_after_time: 5m
Inform ElasticSearch how many nodes form a full cluster. If this number is
met, start up immediately.
gateway.expected_nodes: 10

Elasticsearch documentation might come in handy when fine tuning the setup: http://docs.graylog.org/en/2.4/
pages/configuration/elasticsearch.html#configuring-es

Performance monitoring:
There are many options for performance monitoring as Nagios, Prometheus, etc. Our setup is as follows:

a) Graylog/Elasticsearch		 =>	 Prometheus	 =>	 Grafana		 =>	 Slack
b) Graylog/Elasticsearch		 =>	 Prometheus	 =>	 PagerDuty	 =>	 Slack
c) Graylog/Elasticsearch		 =>	 Python	 scripts	 =>	 InfluxDB	 => 	 Grafana	

a) Graylog nodes run Prometheus Node Exporters and service-specific Exporters. Grafana is configured with
Prometheus as a Data Source and visualizes various metrics trends. Grafana can also provide notifications
to our main ChatOps communication system Slack including graph screenshots.

b) Alerts/notifications are being in parallel sent to PagerDuty system for central alert management.

Note: We identified several limitations of Prometheus plugin for Graylog. It was not possible to get only the
selected metrics, resulting in tons of data being sent to Prometheus and thus overloading it. We applied
countermeasure on Prometheus side. We scrape all the metrics and delete later on inside Prometheus to
minimise the impact.

c) Prometheus plugin for Graylog is able to scrape wide range of metrics. However these metrics do not
always provide human-readable format needed for further investigation. In our use case it relates mainly to
identification of Streams in descriptive format instead of Stream ID. Extractor and Stream monitoring is of
utmost importance to us, that is why we collect these information on top using custom scripts run against
Graylog APIs. We send these data to a time-series database InfluxDB.

http://docs.graylog.org/en/2.4/pages/configuration/elasticsearch.html#configuring-es
http://docs.graylog.org/en/2.4/pages/configuration/elasticsearch.html#configuring-es

Issue No. 7: Data Storage - CEPH

CEPH is a fault-tolerant distributed storage platform which we use within the Openstack deployment.

All the VMs may use:

• local disk space taken from Hypervisor nodes as part of VM flavor (not part of CEPH cluster),

• or VMs can use CEPH-based Cinder mounts. Cinder is a Block Storage service for Openstack.

Cinder-mounted volumes are in our case physically attached to SSD-based storage nodes and are part of a
CEPH cluster. Graylog application nodes are relying on local non-CEPH disks only. Elasticsearch nodes do
have attached Cinder volumes of 1 TB per node.

We experienced several problems with Graylog not being able to write to Elasticsearch DB running on CEPH
volumes. Problems were identified without any apparent cause since Graylog PROD cluster was not touched
in any way and load was also stable.

Later we correlated this incident to Openstack resource deletions (deleting large Heat stacks) when several
terabytes of data have been suddenly available for CEPH and CEPH was doing too many operations to
reallocate and rebalance own data and thus slowing down the Graylog performance. This problem would not
be detected on common systems with lower load. However busy systems as Graylog recognize every latency
increase immediately. By scaling the backend CEPH infrastructure the problem became less and less
significant.

Another problem we identified was CEPH not reclaiming unused blocks. As Graylog was filling data into the
Elasticsearch DB, CEPH disks got full despite Index rotation and retention policies properly set in Graylog.
Data areas that supposed to be considered unused were not properly reclaimed and were considered by
CEPH as stil used. In this situation CEPH continued to allocate new blocks in infinite loop exhausting all the
storage resources.

It was needed to fix this problem on VM side. When building or updating the VM image it is needed to modify
hw_scsi_model and hw_disk_bus within VM’s metadata in the Openstack:

$ glance image-create --name='graylog-2.4.3-1-virtio-scsi' --container-
format=bare --disk-format=qcow2 --property='hw_scsi_model=virtio-scsi' --
property='hw_disk_bus=scsi' --file graylog-2.4.3-1.qcow2

Additional condition has to be met as well. On OS level it is needed to mount volumes using discard flag in
the /etc/fstab:

/dev/sdb /var/opt/graylog/data auto defaults,nofail,discard 0 3

After modification of VM metadata, disk device changes from default /dev/vda to /dev/sda(b).

Another usable command is manual ad-hoc fstrim. It is used on a mounted filesystem to discard (or "trim")
blocks which are not in use by the filesystem. Real command usage is disputable due to very long runtime on
large data volumes.

$ sudo fstrim /var/opt/graylog/data

Ad-hoc volume remounting with modified discard/nodiscard option is possible as well:

$ mount -o remount,nodiscard <mountpoint>

To display actual mount option setting use:

$ cat /proc/mounts

Note: mount command is not fully precise and shows both discard and nodiscard options together when
remounted disk manually and provides ambiguous output.

Issue No. 8: Log Aggregation
Small Graylog instances or even small clusters are pretty fine with collecting logs directly from log producers
via e.g. direct syslog delivery to UDP or TCP Inputs in Graylog.
However, you can not be always sure that the amount of logs coming in is stable. Sometimes log producers
simply set log level to debug due to internal troubleshooting and your logging platform may end up in big
problems. Shock absorber is needed here and we selected Apache Kafka message broker for this purpose.
Message broker platform brings also several additional valuable functionalities as data replication, load
management, data preprocessing, long-term efficient archival, etc.

Data replication:
When it is needed to provide the same data/logs to various systems to keep them in sync, e.g. DEV, STAGE,
PROD environment.
Load management:
To throttle how much data can be pulled by specific consumers (e.g. Graylog) based on their performance
limits.
Data preprocessing:
To save resources on Graylog side and to do some heavy lifting on Kafka side, e.g. deleting unneeded data.
Long-term storage:
To store data in efficient manner with longer retention policies than Graylog sizing allows.

Graylog supports Kafka-based log delivery using native Kafka Input. Kafka Inputs can be set as any other
Inputs globally or per-node and thus pulling data from Kafka directly. Native Kafka Input provides limited
options and is suitable only for small deployments and simple use cases. We had to utilize external Kafka
plugin from the community and we included several custom improvements on a code level to fit to our needs.

Native Kafka plugin (image on the left below) does not support SSL, Bootstrap protocol and has hardcoded
several parameters which we needed to adjust, e.g. Client ID to apply quotas on Kafka side or Consumer
Group ID to enable parallel log consumption by separate Graylog clusters.

Our modified Kafka plugin (image on the right below) was enriched by SSL encryption and Bootstrap protocol
support. We added parametrization of Client ID, Consumer Group ID, Offset reset policies and SSL
authentication.
This way we reached a goal of reliable, controlled and secure log consumption.

The same CICD principles we use for Graylog are adopted for Kafka as well, i.e. one-click deployment via
Ansible and multi-environment setup. As we need to replicate data among Graylog clusters we need the same
for Kafka cluster. For this purpose we use Kafka’s native mirroring capability - MirrorMaker.

By having the same data on all Kafka environments we can safely apply blue-green setup and test changes in
Kafka DEV under data load.

However not every log producer can speak to Kafka directly via kafka module for rsyslog or Elastic Beats. To
collect logs from devices like firewalls, switches and routers it is needed to allow also simplest log delivery
method as a standard syslog-based UDP delivery.
One of the options is to create Syslog Inputs in Graylog besides Kafka Inputs for legacy producers. It creates a
need for a load balancer in front of Graylog nodes to balance the incoming (push-based) traffic and data
replication among multiple Graylog cluster would have to be solved.
More suitable option is to have Kafka Inputs in Graylog only to have homogeneous setup and to create
Syslog-to-Kafka transformation element for legacy systems. In our infrastructure we call this transformation
point Syslog proxy. From customer’s perspective it is a standard syslog endpoint exposed on 514/udp. Syslog
proxy acts simultaneously as a Kafka producer and all logs it gets are forwarded to a dedicated “syslog-proxy”
topic in Kafka. In the real operation there are multiple producers sending logs via Syslog proxy and we want
these data to be separated in Graylog.

Options as as follows:
a) To have multiple Syslog proxies for every log producer and sending data to producer-specific Kafka topic.
b) To have one Syslog proxy and to split data there and send them to multiple producer-specific Kafka

topics.
c) To have one Syslog proxy and one Kafka topic and splitting data using Graylog Streams inside Graylog.

d) One Syslog proxy and one main receiving Kafka topic (syslog-proxy topic) and splitting data in front of
Graylog in a preprocessing layer so that Graylog will receive prefiltered and properly split messages to
dedicated Inputs.

We decided for option d) to split syslog-proxy topic within preprocessing layer which splits Kafka topic into
multiple Kafka (sub)topics which are then consumed by separate Kafka Inputs on Graylog side. This is reached
using Kafka Streams which is elaborated more in next chapters. Kafka Streams provide API-based data
transformation and sorting capabilities. Even more complex use cases can be delivered by integrating Kafka to
Apache Spark, Apache Storm or Apache Beam.

Data Archival
Raw messages in Elasticsearch database occupy a lot of space and having a longer retention policy may be a
problem. For forensics and archival purposes we decided to set generous retention policies in Kafka, however
still having in mind platform resiliency for cases of Kafka node outage. Kafka is able to compress stored data
and act as an efficient long-term repository.
In case operator needs to get older data back to Graylog, it is just need to create Kafka Input with proper
Kafka topic selection and to set offset reset policy to Earliest. This Input configuration will pick up the whole
history of the specified Kafka topic. For this purpose we use a dedicated Graylog instance not to interfere with
PROD Graylog cluster.
Another option for log archival is offered by Graylog directly as part of Enterprise subscription.

Issue No. 9: Log Preprocessing
Kafka acts as a shock absorber, data archival engine and high performant message broker. On top of this
Kafka brings multiple integration options with external components for batch and stream data processing as
for example Apache Spark, Apache Storm, Apache Beam. Since Apache Kafka v0.10 additional functionality
has been added directly to Kafka - Kafka Streams.

Streams API allows us to process any Kafka topic and split it into multiple new topics based on our
preference. It is possible to apply whitelists and blacklists using regular expressions and forward the data from
source topic to custom (sub)topics. Graylog can then pull only needed data and not the whole data sets from
log producers.

To talk to Streams API we developed own application we call Streamer for managing the process
programatically.

Our lessons learned are as follows:
• Kafka Streams API before version 1.0.x has a buggy exception handling. Might be needed to

workaround on code level of the connected application.
• When Kafka is in rebalancing state (e.g. after restart or just as natural behaviour) it can cause a

shutdown of the application connected to Streams API. This has to be managed on a code level of the
application connected to Streams API.

• Streams API < 1.0.x multi-threading was not working for our Streamer - now it does up to 10 threads
for each cluster node.

• With new exception handling Streamer tries 10 times per partition to reconnect, if that fails (e.g. caused
by rebalancing or consumer group is marked as dead), it stops, revoke all partitions, restarts by itself
and rejoin with a fresh stream --> this "self healing" works with 1.0.1

• Implement input validation when accessing Streams API on application side to avoid problems on Kafka
and streaming application side.

Issue No. 10: Data Formatting

Data/Log producers may send data in various data formats. Elastic Beats might send JSON formatted data to
Kafka, rsyslog may prefer delimited text and so on. Kafka serializes everything it consumes and Kafka
consumers deserializes byte arrays back. When consumer (in our case Graylog) deserializes different types of
underlying messages back it is needed to apply particular parsing on a particular pulled topic to have uniform
data representation in Graylog. It has a load impact on the consuming system and possibly a certain un-
needed overhead for maintaining various parsing approaches.

Another shortcoming of heterogeneous data formats in Kafka emerges when we try to apply big data analytics
and want to use uniform parsing algorithms in stream or batch processing platforms which gets data from
Kafka. Unified data formats can be reached via formal procedures to instruct producers how to format data on
their side. In complex environment it is not the way to go to and we need an enforcement point - for example
Apache Avro.

In the time of writing this document we have started experimenting with Avro and also assessing capabilities of
our Streamer platform and extending its capabilities to use not only Streams API but also Connect API for
message formatting.

Issue No. 11: Load Balancing
Both Graylog and Kafka are multi-node clusters. Sending data in and also getting data out requires load
balancing.

Graylog:
Originally we have been sending data to Graylog via UDP-based syslog Inputs. That is why our platform of
choice was Nginx which balances UDP pretty well. User access via browser was a bit more complicated due
to complexity of Graylog graphical user interface. It is necessary to keep session persistence on GUI to avoid a
situation that every component of the web page will be server by a different Graylog node. It was not fully
efficient to use simple session persistence methods as ip_hash.
For advanced session persistence as sticky cookies you can go with paid Nginx Plus or HAProxy. We selected
HAProxy which resulted in having two separate LB technologies in place. We have not found this as a problem
since LB stack was rebuilt several times moving from VMs to Docker containers or considering to substitute
HAProxy for Traefik later on. Currently all our load balancers run as Docker containers in a dedicated Docker
infrastructure.

Kafka:
Log consumers are pulling data from Kafka directly that is why no load balancer was needed in front of the
Graylog for message delivery. All Graylog Inputs should be set as Global Inputs so that all Graylog nodes will
load balance data pulls on its own using various mechanisms embedded in the Kafka plugin for Graylog or in
Kafka directly:

• Multithreading on Input
• Throttling on Input
• Offset reset policy
• Offset retention set on Kafka side
• Quotas set on Kafka side using Client-IDs

It is strongly recommended to analyze all load balancing and throttling options on Kafka and Graylog side. This
area is quite complex and picking the right balance and configuration setting might be a challenge. Diving
deep into all possibilities is worth a separate case study.

Issue #12 Zero Downtime Operation

CICD cycle and propagation of DEV changes to PROD may require service restarts, i.e. downtimes. There are
techniques to avoid downtimes as for example rolling updates/upgrades. These can be heavily supported by
container platforms as Docker Swarm or Kubernetes where containers are restarted in a scheduled manner.
Another option (mainly for not containerized components) is Blue-Green setup.

Blue-Green setup simply means to have two identical environments (PROD-A and PROD-B). There is also
possibility to utilize STAGE environment as PROD-B in case we have some resource limitations.

One of the PROD environments is active and the other one is idle. CICD propagates changes to the idle one.
After CICD cycle runs successfully against idle cluster it is needed to switch operation from idle to active
PROD, e.g. from PROD-A to PROD-B.

Blue-Green switch can be provided on:
a) load balancer level by changing the backend configuration,
b) using DNS change when balancing the platform via DNS.

Load balancers should be configured in HA setup and backend configuration change is applied as rolling
update within LB couple.

DNS-based switch has several disadvantages - health-checks are not always included and configuration
change does not happen immediately due to TTL of the zone records. TTL can be lowered to zero, however
real TTL setting is mostly enforced by a DNS resolving client, e.g. browser which do not allow zero TTL and
fallbacks to 600 seconds, i.e. 5 minutes. There are several options how to mitigate shortcomings of DNS-
based approach, e.g. Amazon Route 53 or Hashicorp Consul. The advantage of DNS-based balancing is
simplicity and no need for additional component as load balancer.
DNS-based switch assumes having DNS records set in the DNS zone files for both PROD-A and PROD-B
cluster nodes. For the main service FQDN, e.g. graylog.mydomain.com there is a CNAME resource record
pointing either to A-nodes or B-nodes in DNS-balanced round-robin fashion. Switch in its essence modifies
CNAME resource record to point to the desired cluster. This can be automated by having API-based DNS
server or using service discovery platform.

http://graylog.mydomain.com

Within our data centres we use both options for various use cases. For Graylog we do blue-green switch for
user access on HAProxy load balancers. For Apache Kafka we adopted DNS based switch since load
balancing is managed by Kafka itself without need for dedicated LBs.

When switching between Blue and Green there are several options how to cope with active sessions. We can:
• enforce them to drop and reconnect,
• let them continue to work within reasonable time frame and naturally timeout or exit.

Issue No. 13: Geo-redundancy

Graylog, Elasticsearch and MongoDB set as clusters are pretty stable options. In case we want to provide
additional level of resiliency we must look beyond single-DC horizon. Even though cluster platform can be
resilient by itself, corrupted network in cloudified environment can affect everything deployed within a single
data centre. Geographically redundant architecture is the final solution. Geo-clusters are always tricky,
especially when dealing with database replication and latency.
Clusters itself are deployed as IaaC (Infrastucture as a Code) so Gitlab Runners can build the same cluster in
multiple data centres easily. CICD cycles can propagate changes from DEV environment to as many PROD
environments as we need.

We decided to build a geo-cluster without need to sync neither configuration database (MongoDB) nor
indexed logs (Elasticsearch) between PRODs. MongoDB is propagated via CICD and pushed to as many
target clusters as we need and Kafka can help to keep Elasticsearch databases of dislocated clusters in sync
using data forking/replication. Both Graylog PROD clusters act as a separate consumers from Kafka
perspective. When talking to Kafka they introduce themselves using separate Consumer Group ID. Kafka

keeps separate offsets for separate Consumer Group IDs. You can put arbitrary amount of nodes to a single
Consumer Group and they all will share the load coming from Kafka. In real scenario you would use one
Consumer Group ID for Graylog cluster in location A and the other Consumer Group ID in location B.

When Graylog cluster fails in location A, Graylog cluster in location B continues in log processing from Kafka
and cab still act as a real-time customer-facing platform. Users are being forwarded to the working cluster
using standard blue-green switch methods. Recovered cluster in location A will consume the backlog as soon
as it is up again and notifies Kafka about being back again. It will catch up with Graylog cluster in location B
soon - depending on the outage duration and amount of accumulated backlog - known as Kafka lag.

Issue No. 14. SIEM Functions
Plugins:
You can extend the native SIEM functionalities via Graylog Marketplace (https://marketplace.graylog.org)
where you can find plenty of interesting add-ons, e.g. for data aggregation, geolocation or threat intelligence.
You have to be prepared that some external components might become native Graylog components in one
point in time, so do not pick up from Marketplace every possible plugin and be wise following need-driven
approach and assess and measure performance impact.
Not all plugins work smoothly and we had to customize code of some of them or found a workarounds to
reach claimed functionality of the plugin.

These plugins came in handy for our deployment:
• graylog-plugin-aggregates - crucial plugin for alerting
• graylog-plugin-beats – used for internal logging
• graylog-plugin-collector
• graylog-plugin-kafka-custom – customized community plugin
• graylog-plugin-map-widget
• graylog-plugin-pipeline-processor
• graylog-plugin-slack – notifications to slack
• graylog-plugin-stringfn – hex to dec conversion (own development)
• graylog-plugin-threatintel
• metrics-reporter-prometheus

In several environments egress traffic is going out via proxy. Some plugins may have own proxy setting
hardcoded inside and code level changes might be needed.

Time Sync:
Solid time source is very important not only for keeping clusters compact. SIEM use-cases and data
correlations need precise time as well, not talking about forensics.
Do not underestimate NTP topic for any log management system. Your time source must be build in HA setup,
easily reachable and precise.

Data Correlations and Enrichment:
Graylog 2.3 introduced powerful feature of Lookup Tables. It allows to search for and translate message field
values into new values. New values can be stored into new fields or can overwrite existing message fields.
This mechanism can be applied using message Extractors or Pipeline rules.
It is possible to build interesting correlation rules, e.g. to check whether user X present in log messages
belongs to the list of legitimate users stored in a dedicated lookup table. Data enrichment is also doable this

https://marketplace.graylog.org/

way, e.g. to translate virtual machine ID found in the logs into the human-readable VM name stored in lookup
table which is generated from an Openstack API data dump.

Having lookup tables either as local CSV on Graylog nodes or as static remote data source is not a long-term
option. We want our lookup tables to be dynamic and up to date. Since we found a significant benefit of
having external data sources for correlations and data enrichment we build a platform which we internally call
Lookup API Framework.

Lookup API framework aggregates multiple data sources, internal as well as external. Information inside are
collected and re-generated on a scheduled basis.
Combining our Lookup API Framework and Threat Intelligence plugin provides solid basis for data analytics
and SIEM capabilities for Graylog.
All the data collected within Lookup API Framework are exposed to Graylog via own Swagger based API layer.

Administrator access and data editing is possible via web GUI as well.

Graylog provides basic Alert management capabilities natively. It is worth considering collecting alerts outside
the Graylog. We have implemented alert notifications via Slack and also using home-made TTS (Text to
Speech) functionality to make daily operation as comfortable as possible. Slack and TTS platform are used by
L1 SIEM operators as the primary visual and audio notification interfaces. Subsequent analysis is executed
using Graylog application via search queries and various data mining techniques.

FINAL WORDS
Deciding for Open Source platforms for large deployments is a serious step with significant impact on the
overall operational model. It makes sense especially when the whole company, all interconnected systems and
supporting systems are operated in the same way, e.g. DevOps.

Open Source platforms minimize vendor lock-in. However it has to be combined with a modular design to
avoid platform lock-in or tightly coupled infrastructure with little ability to substitute one or the other
component.

DT Pan-Net decision for using Open Source supports investment to own personnel and keeping the
knowledge in-house. Of course you have to be prepared for longer time to delivery and time consuming
troubleshooting, escalating the issues to the community and waiting for fix or own development or code
customization. However we have identified much more benefits than drawback, increased flexibility when
evolving and extending our infrastructure resulting in overall cost efficiency.

	Summary
	Intro
	Design
	Lessons Learned
	Final Words

