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Modeling of COVID-19 epidemic in Italy 
 
Introduction 
We provide technical details on the implementation of the Global Epidemic and Mobility 
(GLEAM) model to describe and project the spreading of the COVID-19 epidemic in Italy.  
It is worth mentioning that the current transmission within Italy is generated within the context 
of the entire globe, including the early transmission in China. The focus on the presentation of 
the results here is the current situation in Italy, including the re-opening of the country starting 
on May 4, 2020. 

 
Modeling Framework 

Metapopulation approach 
The GLEAM framework is based on a metapopulation approach in which the world is divided 
into geographical subpopulations. The entire planet is divided into cells with resolution of 15 
x 15 arc minutes (approximately 25 x 25 kilometers). Subpopulations are constructed from 
these cells using a Voronoi tessellation of the Earth’s surface, with each subpopulation 
centered around a major transportation hub obtained from the International Air Transport 
Association (IATA) and OAG database. Hubs generally correspond to major urban areas and 
airports. By considering the distance between the cells and the transportation hubs, we assign 
each cell to a specific hub; this process generates over 3,200 subpopulations (census areas) 
worldwide. We then use highly detailed data on the cell populations to characterize the 
subpopulations. Other subpopulation attributes, such as the age structure of the population, 
health infrastructures, etc., are added according to available data. 
 
Human mobility between subpopulations is represented on a network. This mobility data layer 
identifies the numbers of individuals traveling from one sub-population to another. The 
mobility network is made up of different kinds of mobility processes, from short-range 
commuting between nearby subpopulations to intercontinental flights. The airline system layer 
integrates air travel mobility containing the list of daily passenger flows between airport pairs 
(origin and destination) worldwide. Individuals in the model travel on airplanes according to 
an explicit dynamic that considers the probability for each individual in the subpopulation to 
travel on a specific route. 
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To model short-range mobility such as commuting or car travel, we rely on databases collected 
from the Offices of Statistics of 30 countries on five continents. The full dataset includes more 
than 80,000 administrative regions and over five million commuting flow connections between 
them. To overcome differences in the spatial resolution of the commuting data across different 
countries, we define a worldwide homogeneous standard for GLEAM. Using this standardized 
approach, we are better able to model mobility between countries with a shared border. 
Where data are not available, the short-range mobility layer can be generated synthetically by 
relying on the “gravity law” and the more recent “radiation law,” both calibrated using the real 
data available. Briefly, these approaches assume more frequent travel to nearby 
subpopulations and less frequent travel to more distant subpopulations. The short-range 
mobility network is overlaid with the airline network forming the mobility system of the GLEAM 
synthetic world. Figure 1 shows a representation of the geographical resolution of the model 
for Italy. 
 
 
 

 
 
Figure 1. Schematic representation of the Global Epidemic and Mobility (GLEAM) model for Italy. The world 
surface is divided into census cells that are assigned to subpopulations centered around transportation hubs. 
The population layer describing the census cells is coupled with two mobility layers, the short-range 
commuting layer and the long-range air travel layer. 
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Infection transmission dynamics 
Superimposed on the worldwide population and mobility layers is an agent-based epidemic 
model that defines the infection and population dynamics. Individuals (agents) move and 
transmit the infection via their interactions with other people. The infection dynamics take place 
within each subpopulation and assumes a classic SLIR-like compartmentalization scheme for 
disease progression. Each individual at any given point in time is assigned to a compartment 
corresponding to their particular disease-related state (being, e.g., susceptible, exposed, 
symptomatic, hospitalized, recovered). Individuals stochastically transition between 
compartments based on underlying assumptions about the parameters from the available 
literature that define the natural history of disease, such as the incubation period and age-
specific infection fatality rate. In the GLEAM model, human mobility is allowed to vary as a 
function of disease status. In many cases, clinical symptoms are associated with reduced or no 
mobility of the sick individual. Reduced or no mobility also occurs in compartments 
representing the isolation or quarantine of individuals. 
 
GLEAM defines a synthetic world in which we can simulate the unfolding of epidemics. Initial 
conditions are set specifying the number and location of individuals capable of transmitting 
the infection. The GLEAM model is then able to track over time the proportion of the synthetic 
population in each disease compartment across all subpopulations. At the start of each 
simulated day, travelers move to their destinations via the flight network. The probability of air 
travel changes from day to day, varies by age group, and can be generalized to consider the 
effects of location specific airline traffic reductions. Short-range mobility (e.g. commuting) 
varies between workdays and weekends, by age group, and by disease status. The arrival time 
of the infection into a new subpopulation is the day on which the first infected traveler arrives. 
This seed individual may then go on to infect others in the subpopulation. Each full day is 
simulated using 12 distinct time steps, and this process is repeated for every simulated day. 
Individuals and their traveling patterns are tracked as shown in the pseudo-code for the 
GLEAM algorithm (Figure 2). 
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 Figure 2. Pseudo-code of GLEAM’s algorithm.  
 
The GLEAM model and the detailed presentation of the underlying algorithms have been 
previously published [1,2] and the model has been used in the analysis and projections of 
several disease outbreaks including the 2009 H1N1 pandemic [3], the West African Ebola virus 
epidemic [4], the Zika virus epidemic in the Americas [5]. 
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Transmission contact patterns  
Using detailed sociodemographic data from publicly available sources, ranging from macro 
data, such as census data, to micro data, such as surveys on socio demographic features, we 
construct representative synthetic populations for different countries around the world. In 
particular we focus on population features such as age structure, household composition, 
school structure, and employment rates. Individuals within these populations are assigned 
realistic age-specific contact patterns. Using the synthetic populations of interacting individuals 
from the agent-based model, we construct age-stratified contact matrices for the most 
common social settings in which individuals spend their time. Main settings where individuals 
can interact include households, schools, workplaces, and the general community. For each 
location, these age-based contact patterns are encoded in a contact matrix Fk, whose elements 
Fij

k describes the average frequency of contact between a given individual of age i and 
individuals of age j in setting k. The methodology used to build the contact pattern from the 
synthetic populations is detailed in Fumanelli et al. [7] and Mistry et al.[8]. 
 
 

 
 
Figure 3.   Contact matrices by age built from the synthetic populations, for Italy, China, and United States 
(among others) when we consider the aggregation of all the settings.  
 
We focus on four settings where individuals interact: households (H), schools (S), workplaces 
(W), and the general community (C). Here we adopt the frequency dependent (mass action) 
transmission model, with the implicit assumption that an increased population density has no 
effect on the per capita contact rate between individuals [6]. In Figure 3 we provide a visual 
representation of some of these matrices. From Fig. 3, where we show the contact matrices for 
Italy, China, and United States, we can observe the differences in the age contact patterns of 
each country. Although all matrices have a main diagonal representing increased contact 
among people of similar age, usually the couples in a population, the secondary diagonals, 
representing contact between children and parents, are not always present. This becomes 
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evident in China, known for their one-child policy in most of its regions, where we can see that 
children have much more contact with adults than adults with children. As contact patterns can 
differ even within the same country, using a country level contact matrix is not adequate if we 
want to capture the heterogeneities in populations.  
 
In our model, the basic reproductive number R0 not only depends on the disease parameters 
but also on the contact patterns within a particular region. This means that even when the 
disease parameters are the same in different places we should expect differences in R0 and the 
attack rate driven by differences in contact patterns.  
 

COVID-19 Model 
A compartmental representation of the disease under study is used to model human-to-human 
transmission. Within each subpopulation, individuals can occupy one of the following 
compartments: Susceptible (S), Latent (L), Infectious (I) and Removed (R). Individuals move 
through compartments with transitions mathematically defined by chain binomial and 
multinomial processes to preserve the discrete and stochastic nature of the transmission and 
disease evolution process. Susceptible individuals can acquire the virus through contacts with 
individuals in the infectious compartment, and become latent, meaning they are infected but 
cannot transmit the disease yet. Latent individuals progress to the infectious stage with a rate 
inversely proportional to the length of the latent period (which we assume to have the same 
duration as the incubation period). Infectious individuals progress into the recovered stage 
with a rate inversely proportional to the length of the infectious period. The sum of the mean 
latent and infectious periods defines the generation time. Disease carriers travel during the 
entire latent and infectious periods and are not traveling when they enter the removed stage. 
The removed stage includes those who can no longer infect others because they are 
recovered, isolated, hospitalized, or dead.  
 
Each subpopulation’s disease dynamic is coupled with the other subpopulations through the 
mechanistically simulated travel and commuting patterns of infected individuals. The model 
works in discrete time steps, simulating air travel and compartmental transitions (where the 
force of infection considers both the infection dynamics and the short-range movement of 
individuals). Data are reported at the scale of single day, aggregating results at the desired 
level of geographic resolution. All the technical details of the model have been previously 
published [9].  
 
Parameter ranges for the latent period, infectious period, and generation time are derived 
from early estimates of the epidemiological characteristics of COVID-19 [10-13]. We have 
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performed a sensitivity analysis by considering different combinations of average latent and 
infectious periods, detection rates, initial conditions, and a generation time (Tg) ranging from 
6 to 11 days. Details and sensitivity analysis on all parameters are reported in [12]. In the 
following we report the results for generation time Tg = 6.5 days. For the key time-to-event 
intervals we use values reported in the literature [14-16]. The obtained posterior distribution 
provides an average reproductive number R0 = 2.83 [90% CI 2.80-2.87], and a doubling time 
measured at Td = 3.3 days [90% CI 3.2-3.4]. The obtained values are in the same range as 
previous analyses based on early COVID-1 data. Although the calibration obtained for different 
generation times provides different posterior distributions for R0, in the early stages of the 
epidemic the prevalence of infections and case importations are determined by the epidemic 
growth rate and the obtained results are consistent with other modeling efforts[16-21]. Age-
specific infection fatality rates considered here are from reference [14]. 
 

Global model calibration 
We assume a starting date of the epidemic that falls between 11/15/2019 and 12/1/2019, with 
40 cases seeded by zoonotic exposure. For each generation time Tg, we perform an 
Approximate Bayesian Computation considering the international importations to estimate the 
posterior distribution of the basic reproductive number R0 of the outbreak. We simulate 
epidemics with R0 in the range 1.5 to 4.0, sampled with a uniform prior. This allows us to 
calculate the distribution P(D) for the evidence D, and for each value of R0, the likelihood 
P(D|R0). From these distributions we can calculate the posterior probability P(R0|D) of interest 
(see Fig. S1B). The evidence D is the growth rate of COVID-19 cases imported to international 
locations during the exponential growth period of the epidemic. We select the simulated 
epidemics that match the observed number of cumulative imported cases by January 23, 2020, 
before the travel ban in Wuhan, China, with a tolerance accounting for the 40% probability of 
detecting an importation [14]. We consider only statistically independent importation events 
by date of arrival at international destinations (details available in Ref [9]). Then, P(R0 = x|D) is 
computed as the number of simulations where R0 = x and the evidence constraint D is satisfied 
over the total number of simulations where R0 = x. 
 

COVID-19 epidemic specific mitigation policies in Italy 
The simulated epidemics include changes in mobility attributable to the travel ban in Wuhan. 
We implemented long-range travel restrictions beginning on January 23, 2020, and decreased 
local commuting patterns starting on January 25, 2020. Travel limitations in mainland China 
were modeled by using de-identified and aggregated domestic population movement data 
between Chinese provinces for February 2020 as derived from Baidu Location-Based Services 
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(LBS). Starting early February 2020, more than 60 airline companies suspended or limited 
flights to mainland China, and a number of countries including the US, Russia, Australia, and 
Italy had also imposed government issued travel restrictions. 
 
To estimate the seeding of the epidemic outside mainland China, we must assume the level of 
detection and isolation of imported infections in each country. There are several recent 
estimates for the rate of detection of imported infections across countries, suggesting overall 
values in the range of 30% to 40% [22-24]. We use the classification proposed in Ref [22], 
stratifying countries in three groups; namely high, medium and low surveillance capacity 
according to the Global Health Security Index [25]. We report a baseline scenario where high, 
medium, and low surveillance countries have a 40%, 20% and 10% detection rate, respectively.  
 
After the first case in Italy was confirmed on January 31, 2020, a series of interventions were 
considered. On January 31, flights to and from China were suspended, and later in February 
many municipalities in northern Italy identified as epicenters of several clusters were placed 
under quarantine. The different interventions were implemented at the different times, 
according to the evolution of the epidemic in different regions: 
• Starting in the north of Italy, on February 25, schools were closed and mobility restrictions 

(50%) were imposed on Lombardy, Veneto, Piedmont, Emilia-Romagna, Liguria, and Friuli. 
• On March 8, the Lombardy region was under lockdown, or “stay at home” situation. This 

kind of interventions were adopted as well partially in the regions of Veneto, Emilia-
Romagna, and Piedmont.  

• On March 12, the entire country was put under lockdown, without allowing any sort of 
mobility between regions.  

• After March 23, Italy has been under a strict “stay at home” order, where only essential 
businesses were allowed to keep functioning. 

 
We have an additional calibration step for Italy by using an information loss criterion on the 
actual deaths data for the model selection. We then explore different exit strategy by 
modulating the contact matrices for Italy according to the following scenarios: 
 
• Lockdown: This scenario has been calibrated on the past epidemiological data and 

considers that only essential work activities are allowed. This means school are closed, 
interaction in workplaces is reduced by 80%, and casual social interaction is reduced by 
90%. We also assume a 20% transmissibility reduction due to the awareness of population 
and behavioral changes. 
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• Full Lift: Starting on May 4th, 2020 social distancing measures are lifted. Full mobility 
resumed. Schools are open according to schedule.  

 
• Lift 1: Starting on May 4th, 2020 we assume that schools are closed, interaction in 

workplaces is reduced by 50%, and a 90% community social interaction reduction. Mobility 
is reduced of 50%. We also assume a 20% transmissibility reduction due to the awareness 
of population and behavioral changes. Total transmissibility reduction amounts to 60%. 
 

• Lift 2: Starting on May 4th, 2020 e assume that schools are closed, interaction in 
workplaces is reduced by 30%, and a 50% community social interaction reduction. Mobility 
is reduced of 50%. We also assume a 20% transmissibility reduction due to the awareness 
of population and behavioral changes. Total transmissibility reduction amounts to 50%. 

 
School closure and workplace reduced interactions are modeled following [26]. We implement 
contact matrices at country level resolution. The mobility restrictions are imposed on top of the 
“social distancing” mitigations described above.  
 
 

Limitations 
These results were obtained under several assumptions. The first is that we use modeling 
estimates for the effect of school closures, smart working and social distancing effects on the 
transmissibility of SARS-CoV-2. The model does not include currently pre-symptomatic 
transmission. All estimates do not consider the likely introduction of additional specific 
suppression or mitigation policies issued to lower the transmissibility in specific regions that 
experience elevated epidemic activity. On the other hand, modelling estimates for the impact 
of stay at home policies is driven by data on contact patterns from China. These results may 
not be directly generalizable as uptake and implementation of these policies will vary from 
country to country. Similarly, parameters characterizing the natural history of disease may vary 
from country to country. The current implementation of the model focuses on the impact of 
social distancing policies; thus, it does not address the role of other strategies such as contact 
tracing in reducing transmission. These should still be considered as part of any epidemic 
response. The model does not consider seasonal drivers on the transmissibility of SARS-CoV-
2, such as temperature or humidity. Finally, we are not considering superspreading events and 
differential transmissibility across age brackets. 
 
Even in the presence of these limitations we hope that the information provided here can be 
of help in assessing the impact of the COVID-19 epidemic in Italy. There are very large 
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uncertainties around the transmission of SARS-CoV-2, the effectiveness of different policies 
and the extent to which the population is compliant to social distancing policies. The presented 
material is based on modeling scenario assumptions informed by current knowledge of the 
disease, and subject to change as more data become available. Future decisions on when and 
for how long to relax policies will need to be informed by ongoing surveillance. Additional 
modeling and data studies are required to assess the level and effectiveness of additional non-
pharmaceuticals interventions required to lift current social distancing interventions. 
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