Toward Identifying the Most Effective Samplers for Airborne Viruses

Peter C. Raynor¹, Adepeju Adesina¹, Hamada Aboubakr², My Yang², Montse Torremorell², Sagar M. Goyal²

¹Division of Environmental Health Sciences, School of Public Health, University of Minnesota
²Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota
Motivation

• Emerging zoonotic influenza viruses pose real or potential risks to swine, poultry, and veterinary workers
• Many viruses may be transmitted through air among animals or between animals and people, or have potential to develop transmissibility
• Animals in agricultural facilities generate virus-containing particles small enough to be transported substantial distances
• Little is known about typical concentrations and sizes of airborne virus-containing particles in animal agriculture, or if viruses remain infectious
Why do we care about particle size?

• We want to know how far virus-containing particles are able to travel through air
• We want to determine where virus-containing particles deposit in human or animal respiratory tract
• We want to identify technologies that can remove virus-containing particles from air
Research Objective

Identify/develop a high-volume, field-portable, size-differentiating viral aerosol sampler and use it to measure worker exposures to live airborne influenza viruses in animal agriculture facilities.

- We want large samples to achieve low limits of detection.
- We want to do this in the real world.
- Our focus is animal agriculture.
- We're working with viruses.
- The particles that we're considering are airborne.
- We're collecting samples from the air.
- We want to know if the viruses in the air are infectious.

Hey...we already talked about this.
First Step: Evaluate Existing Samplers

• Assemble wide range of existing samplers that collect viral aerosols by variety of principles
• Test samplers side-by-side in an isolation room using mechanically-generated influenza virus aerosols
• Determine combinations of sampling parameters and technologies that collect greatest quantity of viral RNA and live virus
Sampling Technologies

- Impingers
- Cyclones
- Impactors
- Filters
- Electrostatic collection
- Combinations

Samplers Evaluated

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Viable Andersen Cascade Impactor (ThermoFisher)*</td>
<td>Non-Viable Andersen Cascade Impactor (ThermoFisher)*</td>
<td>Non-Viable Andersen Cascade Impactor (ThermoFisher)*</td>
</tr>
<tr>
<td>Cyclonic Collector (Midwest Micro-Tek)*</td>
<td>Cyclonic Collector (Midwest Micro-Tek)*</td>
<td>Cyclonic Collector (Midwest Micro-Tek)*</td>
</tr>
<tr>
<td>AGI-30 impinger (Ace Glass, Inc.)</td>
<td>47mm fiberglass filter</td>
<td>MOUDI (MSP Corp.)</td>
</tr>
<tr>
<td>BioSampler (SKC Inc.)</td>
<td>47mm gelatin filter</td>
<td>Trichotomous Virtual Impactor Sampler</td>
</tr>
<tr>
<td>Cyclone Bioaerosol Sampler (NIOSH)</td>
<td>PEMS PM2.5 sampler (SKC Inc.)</td>
<td>University of Minnesota)</td>
</tr>
<tr>
<td>SpinCon II (InnovaPrep)</td>
<td>Hi-Vol TSP sampler</td>
<td>Series 230 High Volume Cascade Impactor</td>
</tr>
<tr>
<td>Bobcat (InnovaPrep)</td>
<td>Electrostatic sampler</td>
<td>(Tisch Environmental)</td>
</tr>
<tr>
<td>VIVAS (UF & Aerosol Dynamics)</td>
<td>(UNC-Chapel Hill)</td>
<td></td>
</tr>
</tbody>
</table>

Sampler was used in all three groups as a control
Methods

• H3N2 swine influenza virus (SIV) grown and titrated in Madin-Darby canine kidney (MDCK) cells grown in Eagle’s MEM with supplements
• Fluorescein dye added to virus suspensions to track physical collection efficiency
• SIV suspension aerosolized at pressure of 20 psi using 6-jet Collison-type nebulizer in an isolation room in the BSL-2 Veterinary Isolation Building on University of Minnesota St. Paul campus
• Simultaneous samples collected by samplers in each group for 30 minutes
• Samplers were tested in three replicate tests
• Resulting nebulizer suspensions and air samples analyzed
 – SIV titrated to determine quantities of live virus
 – Viral RNA extracted and used for qRT-PCR (quantitative real time-PCR) to determine quantities of total virus
 – Intensity of fluorescein dye measured by spectrofluorometry
• Relative recovery calculated to determine fraction of collected virus still active
• Recoveries among the samplers were compared descriptively and statistically
Isolation Room Setup
Live Virus Titer, Set #1

![Bar chart showing geometric mean live virus titer (TCID50/mL) for different samplers: Andersen Impactor, Cyclonic Collector, AGI-30, BioSampler, NIOSH, Spin Con II, Bobcat, VIVAS. Each bar represents the mean titer with error bars indicating variability.](umash.umn.edu)
Live Virus Sampled, Set #1

![Bar chart showing the geometric mean live virus sampled (TCID50) for different samplers.](image_url)
Live Virus Air Concentration, Set #1

![Graph showing geometric mean live virus air concentration (TCID50/m³) for different samplers](umash.umn.edu)
Total Virus Observed, Set #1

Geometric Mean Total Virus Observed (RNA copies/mL)

- Andersen Impactor
- Cyclonic Collector
- AGI-30
- BioSampler
- NIOSH
- Spin Con II
- Bobcat
- VIVAS
Total Virus Air Concentration, Set #1

Geo Mean Total Virus Air Concentration (RNA copies/m3)

- Andersen Impactor
- Cyclonic Collector
- AGI-30
- BioSampler
- NIOSH
- Spin Con II
- Bobcat
- VIVAS

umash.umn.edu
Relative Recovery, Set #1

Andersen Impactor
Cyclonic Collector
AGI-30
BioSampler
NIOSH
Spin Con II
Bobcat
VIVAS

Geometric Mean Fluorescein Relative Recovery
Total Virus Observed, All Sets

![Graph showing geometric mean total virus observed for different samplers. The x-axis represents samplers, and the y-axis represents RNA copies/mL. Different samplers have bars indicating the mean and error bars showing variability.]
Total Virus Air Concentration, All Sets

Geo Mean Total Virus Air Concentration (RNA copies/m³)

Samplers

Andersen Impactor, Cyclonic Collector, AGF-30 Biobase, NIOSH Spin Con, Bobcat, VIVAS Andersen Impactor, Cyclonic Collector, Glass Fiber Filter, Gelatin Filter, PEMS Hi-Vol TSP Filter, Electrostatic-Sampler, Andersen Impactor, Cyclonic Collector, MOUDI Impactor, Trichotomous Sampler, Series 250 Impactor
Discussion

• High flow rate samplers tend to yield higher titers/more RNA copies
 – High flow samplers consolidate sample more than lower flow samplers
 – Likely better for detection of airborne viruses at low concentrations

• Highest airborne virus concentrations observed among lower flow rate samplers
Discussion (continued)

• Impinger samplers may keep virus live more effectively than other types of samplers
• Ease of use important but should not drive decisions
• Two-sampler strategy may have benefits during outbreak investigations
 – High flow, non-sizing sampler for detection
 – Lower flow, size-separating sampler for concentration measurements
Bottom Line
No sampler that we have tested is “best” so far

Next Steps
• Compare several of best-performing samplers in field tests this flu season
• Design and build novel size-separating sampler
• Compare novel sampler to existing ones
Acknowledgements

Upper Midwest Agricultural Safety and Health (UMASH) Center funded by National Institute for Occupational Safety and Health (NIOSH) under Cooperative Agreement U54 OH010170
Dr. Pete Raynor
University of Minnesota
Mayo MC 807, 420 Delaware St. SE
Minneapolis, MN 55455

Phone: (612) 625-7135
Email: praynor@umn.edu