Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement

Elyse Stachler,† Catherine Kelty,§ Mano Sivaganesan,§ Xiang Li,§ Kyle Bibby,*†‡ and Orin C. Shanks*†§

†Department of Civil and Environmental Engineering and ‡Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 United States
§U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, Ohio 45268 United States

Supporting Information

ABSTRACT: Environmental waters are monitored for fecal pollution to protect public health and water resources. Traditionally, general fecal-indicator bacteria are used; however, they cannot distinguish human fecal waste from other animal pollution sources. Recently, a novel bacteriophage, crAssphage, was discovered by metagenomic data mining and reported to be abundant in and closely associated with human fecal waste. To confirm bioinformatic predictions, 384 primer sets were designed along the length of the crAssphage genome. Based on initial screening, two novel crAssphage qPCR assays (CPQ_056 and CPQ_064) were designed and evaluated in reference fecal samples and water matrices. The assays exhibited high specificities (98.6%) when tested against an animal fecal reference library, and crAssphage genetic markers were highly abundant in raw sewage and sewage-impacted water samples. In addition, CPQ_056 and CPQ_064 performance was compared to HF183/BacR287 and HumM2 assays in paired experiments. Findings confirm that viral crAssphage qPCR assays perform at a similar level to well-established bacterial human-associated fecal-source-identification approaches. These new viral-based assays could become important water quality management and research tools.

INTRODUCTION

Many environmental waters are polluted with human fecal waste originating from numerous sources such as leaking sewer lines, faulty septic systems, improperly connected downspouts, and combined sewer overflows. Human fecal waste can harbor disease-causing pathogens that contribute to poor public health, reduced ecological outcomes, and economic burdens. Many public health managers rely on general fecal indicator methods (e.g., Escherichia coli and enterococci) to monitor fecal pollution levels, which do not discriminate between human and other potential animal sources of fecal pollution. General indicators provide limited information that prevents focused remediation because many areas are polluted by a combination of human, agricultural, and wildlife sources. Information on human waste (i.e., sewage) is particularly important because it may pose a greater risk to public health compared to fecal pollution from other animal sources.⁴ To compliment general indicator measurements and better-characterize human fecal pollution, many researchers and water quality managers use fecal-source-identification technologies.

Most currently available human fecal-source-identification technologies target fecal bacteria, mainly Bacteroides species.⁴ These fecal bacteria are abundant in the human gut and sewage, facilitating their detection in diluted environmental water samples. Bacterial human fecal genetic markers, such as HF183/BacR287 and HumM2, are highly human-associated and reproducible in multiple laboratory validation studies.⁴−⁶ Although bacterial methods exist for human fecal source characterization, technologies targeting viruses are also needed.⁷−⁹ Enteric viruses, such as noroviruses, adenoviruses, and enteroviruses are reported to be the dominant etiological agents of waterborne and shellfish-borne disease.¹⁰,¹¹ Several studies suggest enteric viruses react to environmental and waste treatment conditions in markedly different ways compared to bacterial fecal indicators.⁸,¹²−¹⁵ In addition, waterborne viral outbreaks have occurred when general bacterial fecal indicators are not detected or are below regulated levels.¹⁶ Reliance solely on bacterial indicators limits the ability of water quality managers to link measures of human fecal pollution with public health risk; thus, viral human-associated technologies offer an attractive alternative to bacterial fecal-source-identification methods. Researchers have previously recognized the potential

Received: May 25, 2017
Revised: July 5, 2017
Accepted: July 12, 2017
Published: July 12, 2017

DOI: 10.1021/acs.est.7b02703
value of viral human-associated methodologies, leading to the
development of technologies targeting enteroviruses,16−20 adeno-viruses,21,22 noroviruses,23,24 polyomaviruses BK and
JC,25 somatic coliphage,26,27 Bacteriophages28−30 and
pepper mild mottle viruses,31 among others. However, a recent
multiple laboratory study evaluated the performance of many of
these viral methods and concluded that the technologies tested
either lacked sensitivity or exhibited poor specificity, potentially
limiting the suitability for widespread water quality manage-
ment applications.32 A recent comparison of human poly-
omavirus levels to predicted public health risk also illustrates
that more-sensitive viral methodologies are needed.33

An ideal viral human-associated method for environmental
water quality testing would target a virus that is both highly
human-associated and consistently abundant in human waste
sources. Recently, a novel bacteriophage, “crAssphage”, was
described via metagenome cross-assembly and was predicted to
be a Bacteriodes phage by co-occurrence profiling.34 The
double-stranded DNA crAssphage putative genome was
assembled from shotgun metagenomic libraries isolated from
an individual human fecal sample.34 Further bioinformatic
testing predicted that the crAssphage genome is highly
abundant and was identified in 73% of human fecal
metagenomes surveyed.34 A subsequent metagenome
survey detected crAssphage in sewage from the United States and
Europe, while crAssphage was absent in other environments,
such as nonhuman fecal samples and water environments.35
In addition, the crAssphage genome is estimated to be up to 10
more times abundant in sewage than other known human-
associated viruses, including noroviruses and adenoviruses.35

Near-ubiquity across human fecal metagenomes and the high
abundance compared to other sewage-derived viruses, combined with
potential human specificity, motivates the development of crAssphage as a fecal-source-identification
technology.35 However, several unknown issues remain that
must be addressed for the successful development of a
crAssphage fecal-source-identification tool. For instance, the
crAssphage genome likely represents a viral quasi-species
consensus sequence compiled from a collection of DNA
regions with unknown sequence variability. Furthermore, most
information about the crAssphage genome has been generated
from computer predictions with minimal laboratory testing to
verify findings. Extensive laboratory testing of fecal samples
gathered from a wide variety of animal species and sewage
collected across a broad geographic range is necessary to
evaluate the suitability of the crAssphage genome for human
fecal-source-identification applications.

The goals of the present study are to survey the crAssphage
geno-mes for human-associated genetic regions, develop qPCR
methods as potential future environmental water quality
monitoring tools, and compare their performance to top
performing bacterial human-associated technologies. We
employed a “biased genome shotgun strategy”, in which select
genetic regions of the crAssphage genome were screened using
dependent PCR for highly specific and abundant human-
associated fecal pollution genetic regions. These genetic regions
were subsequently utilized to develop two novel qPCR fecal-
source-identification assays. Findings suggest that high-
throughput laboratory screening of novel virus genomes
discovered through metagenomic DNA sequence mining is a
successful strategy to develop host-associated qPCR methods
that may be important for future research and water quality
management activities.

\section*{MATERIALS AND METHODS}

\textbf{Sample Collection.} Individual fecal samples (n = 222)
were collected from various locations across the continental
United States, as previously described.8 Animal fecal samples
represent ten species including Anser spp. (Canada goose; n =
18), Canis familiaris (dog, n = 41), Bos taurus (cow, n = 61),
Larus spp. (gull, n = 25), Equus caballus (horse, n = 20), Cervus
canadensis (elk, n = 20), Gallus gallus (chicken, n = 11), Sus
scrofa (pig, n = 9), Castor canadensis (beaver, n = 8), and
Odocoileus virginianus (deer, n = 9) (see Table S1 for sample
details). Each fecal sample was collected from a different
individual as previously described and stored at −80 °C until
time of DNA extraction (<18 months). Primary influent sewage
samples were collected at nine geographically distributed
wastewater treatment plants within the United States (Table
S2) as previously described.7 Briefly, 1 L of primary influent
was collected and immediately packed in ice and shipped
overnight to Cincinnati, OH for laboratory testing. DNA
extraction of sewage samples was performed within 48 h of
collection as described below. Finally, as a proof-of-concept
pilot study, surface water samples were collected from the
Heiserman Stream (East Fork Watershed, southwest OH) in
close proximity to a treated sewage discharge area. These
samples were collected in a sterile 1 L container, immediately
stored on ice, and transported to the laboratory for DNA
extraction and testing (<4 h).

\textbf{DNA Extraction and Quantification.} DNA was extracted
from 10 mL of primary influent sewage with the QIAamp
Blood Maxi Kit according to the manufacturer’s instructions,
except that Buffer AVL was substituted for Buffer AL (Qiagen,
Valencia, CA). DNA was extracted from individual animal fecal
samples using the DNA-EZ Kit (GeneRite, North Brunswick,
NJ), substituting Buffer AE (Qiagen, Valencia, CA) for the
elution buffer in a modified protocol of the manufacturer’s
instructions. Briefly, fecal slurries were made by adding
molecular grade PBS and fecal matter to the bead mill tubes
and were homogenized in a bead beater at 6 m/s for 30 s. After
a prolonged centrifugation, 760 μL of binding buffer was added
to recovered supernatant, and the manufacturer’s instructions
were followed eluting with molecular grade water warmed to 60
°C. For environmental water samples, a 200 mL sample was
concentrated to a final volume of approximately 150 μL using
an automated Concentrating Pipette with a single-use ultra-
filtration hollow fiber poly(ether sulfone) tip following the
manufacturer’s instructions (InnovaPREP, Drexel, MO). DNA
extraction of concentrate was performed with the DNA-EZ Kit
(GeneRite, North Brunswick, NJ) as described above for
cecal-sample processing. Water sample DNA extracts were stored
at 4 °C in GeneMate Slick low-adhesion microcentrifuge tubes
(ISC BioExpress, Kaysville, UT) until the time of amplification
(<24 h).

Fecal and primary influent sewage DNA extract
concentration was determined with a NanoDrop ND-1000
UV spectrophotometer (NanoDrop Technologies, Wilmington,
DE), diluted to 0.5 ng/μL to normalize sample test quantities
for performance testing, and stored in low-adhesion micro-
centrifuge tubes at −20 °C (<6 months). For each batch of
DNA extractions, three method extraction blanks with purified
water substituted for fecal, sewage, or environmental water
were performed to monitor for potential contamination.

\textbf{Selection of Candidate Genetic Regions for PCR-
Based Assay Development.} To identify candidate genetic
regions for the development of human-associated fecal-source-
identification methods, select portions of the putative \(~97\) kbp crAssphage genome (accession code: JQ995537)\(^{34}\) were identified for end-point PCR laboratory testing. Due to the reported potential for rapid DNA mutation rates in the human gut virome, such as those described for Microviridae,\(^{36}\) efforts were focused on predicted coding regions to select for sequences with some evidence of genetic conservation. Metaviromic islands were also excluded due to increased genetic diversity leading to under-recruitment in metaviromes, suggesting the potential for low abundance in environmental samples.\(^{34,37}\) In addition, regions bordering modular junctions were eliminated. Finally, because orf00045 has homology with bat guano virome sequences,\(^{35}\) it was not considered for human-associated crAssphage assay development.

Candidate Primer Set Design. A total of \(384\) end-point PCR primer pairs were designed to amplify selected crAssphage genomic regions. Primer pairs were designed and tested in silico using Primer-BLAST\(^{38}\) with default parameters, except that PCR product length was constrained to \(90–180\) bps, and primer pair specificity was evaluated using the nr database (May, 2015). Only primer pairs that generated BLAST hits (E-value of \(<30\,000\)) to crAssphage or clone DNA sequences from human gut metagenome projects were selected as candidate primer pairs. Genetic regions where no primer sets met design criteria were eliminated from further consideration.

End-Point PCR Amplifications. Each \(25\) \(\mu\)L end-point PCR amplification consisted of TaKaRa Ex Taq Hot Start PCR reagents (Clontech Laboratories), \(100\) nM each of the forward and reverse primers, \(0.8\) \(\mu\)g of bovine serum albumin (BSA; Sigma-Aldrich, St. Louis, MO), \(2\) \(\mu\)L of template DNA, and molecular-grade water. End-point PCR tests were performed in duplicate or in triplicate on a Tetrad 2 Thermocycler (Bio-Rad Laboratories) under the following conditions: \(94\) °C for \(5\) min followed by \(40\) cycles of \(94\) °C for \(40\) s, \(57\) °C for \(1\) min, and \(72\) °C for \(30\) s, followed by a final extension at \(72\) °C for \(10\) min. To monitor for potential sources of extraneous DNA during end-point PCR amplification, a minimum of two no-template controls (reactions contained additional purified water instead of template DNA) were performed with each instrument run. PCR products were verified on a \(2\%\) agarose gel with \(1\%\) nucleic acid gel stain and visualized on a Gel Logic 100 Imaging System (Eastman Kodak Company, Rochester, NY).

Candidate End-Point PCR Primer Set Evaluation. To determine which candidate crAssphage genetic regions have human fecal-source-identification potential, all \(384\) primer sets were tested with end-point PCR in a three-round process. In the first round, candidate primer sets were challenged against two fecal DNA composites: sewage and nonhuman. A sewage DNA composite was created by combining primary influent sewage DNA from three geographic locales (\(1\) ng of total DNA per reaction) and a higher concentration of individual animal group composites for cow (\(n = 9\)), dog (\(n = 9\)), goose (\(n = 9\)), and pig (\(n = 9\)) using \(5\) ng of total DNA per reaction. Candidate primer sets proceeded to a third round of testing under the following conditions: (1) amplification of expected size in triplicate reactions when \(1 \times 10^{-2}\) ng of total DNA per reaction from primary influent sewage composite was used as the template, (2) absence of expected PCR product size in all reactions when a nonhuman DNA composite was used as the template, and (3) the absence of spurious PCR byproducts, including primer dimers.

DNA Sequence Verification of Top-Performing End-Point PCR Primer Sets. To verify that candidate primer sets passing round three screening were amplifying the intended crAssphage genetic region, amplification products from the round one primary influent sewage composite and an environmental water sample with known human sewage pollution impairment (Heiserman Stream, OH) were sequenced and evaluated. PCR was performed using primer sets passing round three, using the same amplification conditions as above. PCR products were cloned into plasmid vector pcR2.1-TOPO and transformed into TOP10 chemically competent cells using the TOPO TA Cloning Kit as described.
by the manufacturer (Invitrogen, Thermo Fisher Scientific). Transformed E. coli colonies plated on LB plates with kanamycin and X-gal for blue and white screening were sent to GENEWIZ for sequencing (South Plainfield, NJ). Sanger sequencing was performed from transformed bacterial colonies for each primer-template combination using the M13R primer for amplification. PCR products were aligned with the previously reported crAssphage sequence (accession: JQ995537) using CLC Genomics Workbench 8.5.1 (Qiagen, Valencia, CA).

CrAssphage qPCR Assay Development. Candidate primer sets passing round three end-point PCR testing were adapted to TaqMan qPCR chemistry. Primers and probes for putative human-associated crAssphage genetic regions were designed using default parameters of the Primer Express version 3.0.1 software (Thermo Fisher Scientific). Fluorogenic minor binding groove (MGB) probes were S’ labeled with 6-carboxyfluorescein.

qPCR Amplifications. A total of five qPCR assays were used in this study: two novel crAssphage assays (this study) and two previously reported human-associated bacterial fecal-source-identification methods (HF183/BacR287 and HumM2) as well as an environmental water-sample-processing control assay (Sketa22). Each 25 μL qPCR reaction was composed of 1X TaqMan Environmental Master Mix 2.0 (Thermo Fisher Scientific), 5 μg of BSA, 1 μM of each primer, 80 nM 6-carboxyfluorescein (FAM)-labeled probe, 80 nM VIC-labeled probe (HF183/BacR287 and HumM2 only), 2 μL of template DNA, and molecular-grade water. All qPCR tests were performed in triplicate using the QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher Scientific). The thermal cycling profile for all assays was 10 min at 95 °C followed by 40 cycles of 15 s at 95 °C and 1 min at 60 °C. The threshold for qPCR assays was manually set to 0.03 (crAssphage, HF183/BacR287, and Sketa22) or 0.08 (HumM2) and quantification cycle (Cq) values were exported with Microsoft Excel. A total of six y-intercept control reactions (standard reference material at 100 copies per reaction) were performed with each instrument run to utilize a mixed calibration model approach. To monitor for potential contamination, six no-template controls were performed with each instrument run. Amplification inhibition was monitored in all DNA extracts using the HF183/BacR287 and HumM2 IAC procedures as previously reported.

qPCR Standard DNA Material Preparation. Standard DNA material consisted of a customized gBlock gene fragment containing target sequences for crAssphage, HF183/BacR287, and HumM2 standard curve generation and an internal amplification control (IAC) plasmid construct for HF183/BacR287 and HumM2 amplification inhibition screening (Integrated DNA Technologies, Coralville, IA). Standard DNA concentrations were determined with a NanoDrop ND-1000 UV spectrophotometer (NanoDrop Technologies, Wilmington, DE). For standard curve reference material, five dilutions were prepared to contain 10 to 1 × 10^5 copies per 2 μL. IAC reference DNA material was prepared as previously described. All reference DNA material preparations were stored in GeneMate Slick low-adhesion microcentrifuge tubes (ISC BioExpress, Kaysville, UT) at −20 °C prior to use (<3 months).

Performance Testing of crAssphage qPCR Assays. To investigate the suitability of newly developed technologies for human fecal-source-identification application, the performance of crAssphage qPCR methods was evaluated in a series of head-to-head experiments with HF183/BacR287 and HumM2 bacterial human-associated methods. Calibration model performance including amplification efficiency (E = 10^{−1/slope} − 1), lower limit of quantification (LLOQ), and precision (percent coefficient of variation) at 10 copies per reaction were calculated from six standard curves generated from independent instrument runs. LLOQ (log_{10} copies per reaction) was defined as the upper bound of the 95% credible interval from repeated measures of the 10 copies per reaction standard curve dilutions. Next, the abundance of each genetic marker was measured in primary effluent sewage samples (n = 9) at a test concentration of 1 ng of total DNA per reaction (Table S2). The prevalence of putative human-associated genetic markers in nonhuman pollution sources was evaluated with a reference fecal collection consisting of 222 individual samples from 10 different animals (Table S1; test quantity of 1 ng of total DNA per reaction). Prevalence was expressed both quantitatively (log_{10} copies per ng of total DNA) and qualitatively (specificity = TNC/(TNC + TPI), where TNC represents the total number of negative individual samples that tested negative correctly, and TPI is the total number of individual samples that tested positive incorrectly). Finally, as a proof-of-concept pilot demonstration, genetic marker concentrations were estimated from two environmental water samples known to be impacted by human sewage pollution (Heiserman Stream, OH). Average log_{10} copies per ng of total DNA (sewage) and log_{10} copies per reaction (water) with 95% credible intervals were determined (mean Cq for each sample group and assay combination transformed using respective mixed calibration model followed by a nested analysis of variance to estimate standard deviation values) and compared to identify similarities and differences between qPCR genetic marker concentrations.

Data Analysis. Mixed-model calibration models, unknown DNA concentration estimates, and credible intervals were determined using a Monte Carlo Markov Chain (MCMC) approach. MCMC calculations were performed using the publically available software WinBUGS, version 1.4.1 (http://www.mrc-bsu.cam.ac.uk/bugs).

RESULTS

Putative Human-Associated CrAssphage Genetic Regions and Candidate Primer Set Design. A total of 46,564 bp (48%) of the crAssphage genome were selected for end-point PCR screening to identify potential human-associated genetic regions. Select genetic regions were excluded due to (1) noncoding regions (8%), (2) metaviromic island motifs (32%), (3) modular junction regions (3%), (4) evidence of similarity with nonhuman or non-crAssphage sequences (3%), and (5) regions not amenable for PCR testing based on primer design parameters (e.g., product size and melting temperature restrictions (6%)) (Figure 1). In total, 384 end-point PCR primer sets were designed with 90% coverage (41,794 bp) of select putative human-associated genetic regions (Figure 1 and Table S3).

Identification of Human-Associated CrAssphage Genetic Regions with End-Point PCR. Candidate primer sets were subjected to three rounds of performance testing to identify human-associated crAssphage genetic regions. The first round of testing composed of testing the primers against a sewage DNA composite and nonhuman animal fecal DNA composite. Round one testing eliminated 327 (85.2%) candidate primer sets: 34.6% (n = 133) failing to yield a clearly distinct PCR product of the expected size in the sewage
Round three testing included specificity determination with an expanded reference fecal collection, characterization of geographic distribution in sewage, and a limit of detection (LODₜₜ) assessment (Table S4). Primer sets crAss056 and crAss064 exhibited the best performance with 100% specificity and 100% detection in geographic sewage samples and were subject to LODₜₜ assessment. Both primer sets yielded an LODₜₜ of 1 × 10⁻² ng of total DNA per reaction. Primer sets crAss064 and crAss056 were detected in 52.5% and 45% of test replicates, respectively, at a DNA template concentration of 1 × 10⁻³ ng per reaction.

DNA Sequencing Verification. End-point PCR products from crAss056 and crAss064 primer sets were sequenced from a primary influent sewage composite and human fecal pollution impacted environmental water sample to confirm amplification of the expected crAssphage sequences. Sequencing efforts resulted in 91 sequences (Figure S1). Alignment of crAss056 sequences indicated that 84.1% (37 of 44) of sequences exhibited 100% similarity to the corresponding reference crAssphage genome region (accession: JQ995537; 14735 to 14836 bp). A total of five additional variants designated B–F were observed with 1 mismatch each (99% similarity to crAssphage genetic region). Primer set crAss064 alignments yielded 74.5% (35 of 47) of sequences with 100% similarity to reported crAssphage genomic region (16 058 to 16 152 bp). Variant D was observed in 12.8% (6 of 47) of the sequences with a 1 base pair substitution. The remaining six crAss064 sequences each exhibited sequence similarities ranging from 98% (2 mismatches) to 99% (1 mismatch) designated variants B, C, and E–H.

Performance of CrAssphage qPCR Assays. Candidate primer sets crAss056 and crAss064 were adapted as CPQ_056 and CPQ_064 to TaqMan qPCR chemistry, respectively (sequences in Table 1). A series of paired experiments were performed to characterize new crAssphage qPCR assays with established HF183/BacR287 and HumM2 methods. Calibration model performance metrics are reported in Table S5 and include slope, y-intercept range, amplification efficiency (E), LLOQ range, and precision at 10¹ copies per reaction. All assays had a range of quantification from 10⁻¹⁰ to 10⁹ copies per reaction (full range of tested standard concentrations). CPQ_056 and CPQ_064 both exhibited a specificity of 98.6% cross-reacting with the same three individual samples from gull (n = 2) and dog (n = 1), while HF183/BacR287 (100%) and HumM2 (99.5%; elk = 1) yielded slightly higher performance levels. CPQ_056 and CPQ_064 target log₁₀ copies per ng of total DNA concentrations were ≤ ± 0.04 in the 2 cross-reacting gull samples and ≤ ± 0.01 in 1 dog sample. HumM2 was detected in a single elk sample (1.02 ± 0.06 log₁₀ copies per ng of total DNA). Genetic marker log₁₀ copies per ng of total DNA concentrations in primary influent sewage samples collected from different geographic locations.

| Table 1. CrAssphage qPCR Assay Oligonucleotides and Targeted Genomic Regions |
|-----------------|-----------------|-----------------|-----------------|
| qPCR assay | primer or probe | sequence 5' → 3' | genomic region |
| CPQ_056 | 056F1 | CAGAAGTGTTAATCTCCCTTTAAAAAAAAACGCTGAG | 14731–14856 |
| | 056R1 | GATGACAAATAAAAAAGCCATTAGC | 14731–14856 |
| | 056P1 | [FAM] AATTACATTTACGTGATGTAAC [MGB] | 16030–16177 |
| CPQ_064 | 064F1 | TGTATAGTGTCGTCGAACTGTACTC | 16030–16177 |
| | 064R1 | CGTTGTGTATCTTTATCTGGCCAT | 16030–16177 |
| | 064P1 | [FAM] CTGAAATTTGCTCATAAGCAA [MGB] | 16030–16177 |

Figure 1. Map representation of the crAssphage genome. The outermost track represents the open reading frames (ORFs) on the forward and reverse strand of the crAssphage genome. The middle track represents the areas of the crAssphage genome that were eliminated from primer design, including noncoding regions, metaviromic islands, modular junction homology, and regions unsuitable for primer design. The innermost track represents the location of the 384 end-point primer pairs designed in this study and their amplification products.
ranged from 1.49 ± 0.05 to 3.37 ± 0.05 (CPQ_056), 1.83 ± 0.04 to 3.47 ± 0.05 (CPQ_064), 1.55 ± 0.02 to 3.18 ± 0.02 (HF183/BacR287), and 1.13 ± 0.02 to 2.09 ± 0.02 (HumM2). Total log_{10} copies per reaction concentrations in polluted environmental water samples ranged from 2.12 ± 0.04 to 2.50 ± 0.04 (CPQ_056), 2.33 ± 0.03 to 2.55 ± 0.03 (CPQ_064), 2.28 ± 0.07 to 2.45 ± 0.07 (HF183/BacR287), and 1.06 ± 0.06 to 1.49 ± 0.06 (HumM2). Wastewater qPCR reactions contained 1 ng of template DNA extracted from 10 mL of wastewater, while environmental water qPCR reactions contained 2 μL of DNA extracted from a total volume of 200 mL of impacted water. A comparison of mean estimates with 95% credible intervals both indicated that primary influent sewage (Figure 2, panel A) and environmental water samples

![Graph](https://via.placeholder.com/150)

Figure 2. Abundance of crAssphage and bacterial human-associated qPCR targets in primary influent sewage (panel A) and environmental water samples (panel B). Values are reported as mean log_{10} copies estimates per nanogram of total DNA (panel A) or per reaction (panel B) with 95% credible intervals. Sewage qPCR reactions contained 1 ng of template DNA extracted from 10 mL of wastewater, while environmental water qPCR reactions contained 2 μL of DNA extracted from a total volume of 200 mL of impacted water.

(Figure 2, panel B) show no significant difference between CPQ_056, CPQ_064, and HF183/BacR287 results, while HumM2 measurements were significantly lower (p < 0.05).

Experiment Controls. No template control amplifications indicated the absence of contamination in 99.7% of control reactions (n = 1884). All method extraction blanks were negative ensuring no contamination was introduced during sample DNA extraction procedures. All DNA preparations exhibited no evidence of amplification inhibition except three fecal sample preparations, which were discarded from the study (data not shown). All environmental water samples showed no evidence of matrix interference as determined using the Sketa22 approach (data not shown).

DISCUSSION

Identification of Human-Associated CrAssphage Genetic Regions. Data mining of human fecal metagenomic DNA libraries recently identified a putative crAssphage genome.²⁴ Previously reported comparative sequence analyses suggest this genome is both highly abundant and broadly distributed in human fecal and sewage metagenomic DNA sequence libraries.²⁴,³⁵ To investigate the potential use of crAssphage for human fecal-source-identification qPCR method development, we interrogated 43% of the crAssphage genome via laboratory testing to identify candidate qPCR target genetic regions. Approximately 65% of end-point PCR candidate primer sets generated expected PCR products in primary influent sewage samples, supporting bioinformatic predictions that the crAssphage genome is widespread in United States wastewaters.³⁵ In contrast, 35% of candidate primer sets targeting genetic regions selected by bioinformatic analysis were not detected in sewage. No PCR product amplification from these primer sets may have been due to a lack of assay optimization (e.g., reaction mixture and thermal cycling conditions) or sequence variation at primer hybridization sites. Another plausible explanation could be low genetic conservation between individuals leading to reduced template availability in sewage DNA extracts. The crAssphage genome is reported as a consensus sequence of a quasispecies population isolated from a single fecal sample,³³ whereas sewage is typically a mixture of fecal material contributed typically from thousands of individuals. Diversity between individuals in the crAssphage genome is limited. A recent study identified that patients in China were missing one open reading frame (ORF) and had low identity to another ORF of the crAssphage genome in their samples; however, these ORFs were identified as metaviromic islands and were not interrogated for primer design within this study.³⁴,³⁵ Additional studies are warranted to characterize within and between individual sequence variation in these genetic regions.

Nearly 95% (n = 366) of end-point PCR primer sets in round one testing did not yield amplification products of the expected size with nonhuman animal sources used as DNA template. These findings support bioinformatic predictions of a close association of the crAssphage genome with human fecal waste.³⁴,³⁵ The bioinformatic analysis limited the number of false-positives observed in laboratory testing; however, some false positives were identified, suggesting that parts of the crAssphage genome share homology with gut microbiome associated microorganisms of animals tested. A total of 14 of the 18 false-positive results in round one testing were located within ORFs with reported homology to known or hypothetical proteins.³⁴ In addition, 169 (44%) of the primer sets yielded spurious PCR products (e.g., incorrect size and primer dimerization) during round one end-point PCR screening of sewage and fecal DNA preparations. Primer dimerization products can occur when a short region of complementary bases is shared between oligonucleotides in the same reaction, while byproducts of the incorrect size may result from the improper annealing of primers or the potential amplification of pseudogenes or conserved sequence motifs in DNA template preparations. Because the generation of spurious PCR products leads to competition for reagents between the DNA target of interest and amplification byproducts, these genetic regions were not considered for qPCR method development. However, because the current study did not employ any optimization of PCR reaction conditions, these genome regions may be human-associated and may yield adequate methods with additional optimization.
After three rounds of screening, the crAss056 and crAss064 primer sets were selected for qPCR method development. These genetic regions represent the most human-associated and abundant candidate DNA targets based on end-point PCR amplification conditions and reference fecal and sewage collections utilized in this study. Both primer sets target the forward strand of the crAssphage genome (Figure 1). Primer set crAss056 (14 712−14 860 bp) amplifies a region within orf00024, which currently has no known protein homologue.34 Primer set crAss064 (16 038−16 177 bp) targets a region within orf00025, which was previously reported to have homology with a DNA primase−helicase protein from Veillonella sp.34, a bacterial genera commonly found in the intestines and oral mucosa of mammals. DNA sequencing efforts verified that crAssphage amplification products from primer sets crAss056 and crAss064 are conserved in primary influent sewage and environmental samples tested in this study (Figure S1), implying a level of genetic stability for the crAss056 and crAss064 target regions. Limited information exists on DNA mutation rates of intestinal viruses; however, several studies report considerable variation in the human gut virome in samples taken from different individuals.36,44,45 In this study, we attempted to avoid genetic regions with high mutagenic or recombination potential by focusing only on predicted protein coding regions without metaviromic islands or proximity to modular junction regions. The crAssphage assays may need to be monitored in the future to ensure DNA sequence stability of the targeted gene sequences.

Performance of CrAssphage qPCR Assays. Systematic testing of 384 candidate primer sets identified two genetic regions (primer sets crAss056 and crAss064) that were selected for qPCR method development based on the study design. The performance of crAssphage CPQ_056 (based on primer set crAss056) and CPQ_064 (based on primer set crAss064) qPCR assays was evaluated through a series of paired experiments with established HF183/BacR287 and HumM2 assays. The crAssphage-based assays exhibited high calibration model performance, comparable to the performance of HF183/BacR287 and HumM2 (Table S5). In addition, the crAssphage qPCR genetic markers were present at similar concentrations to HF183/BacR287 and were significantly more abundant (p > 0.05) compared to HumM2 in primary influent sewage and impacted environmental water samples tested in this study. In contrast, a recent multiple laboratory evaluation of fecal-source-identification technologies found sensitivities ranging from 0 to 60.5% for human-associated viral and bacteriophage genetic markers in challenge samples, in contrast to much-higher levels reported for bacterial HF183SYBR (all laboratories reporting >87% sensitivity).3,32 The high sensitivity exhibited by the crAssphage qPCR assays in this study (100%) is only matched by the pepper mild mottle virus assay3 and could be another useful alternative to other currently available human-associated viral methods.

In addition to exceptional sensitivity, the crAssphage qPCR assays designed in this study exhibited high specificity (98.6%) based on a fecal reference collection consisting of 222 individual samples from 10 different animal groups. All qPCR assays evaluated in this study exhibited high specificities ranging from 98.6 to 100%, well above the recommended 80% threshold for water quality management applications.3 CrAssphage qPCR assays cross-reacted with gull (n = 2; 8%) and dog (n = 1; 2.4%) samples, both common sources in recreational and residential areas. However, the crAssphage marker concentration was often lower in nonhuman sources compared to primary influent sewage. In addition, false positives in dog and gull sources was rare, occurring in only 2.4% (1 of 41) dog samples and 8% (2 of 25) gull samples. Other human-associated methods cross-react with these same animal sources likely due to cohabitation with dogs and animal food scavenging.6,25,31 HF183/BacR287 did not cross-react with any samples in the quantifiable range; however, it has been shown to cross-react with chicken and turkey at a much lower concentration than in sewage.6 Despite the high-specificity performance of the crAssphage qPCR assays, it is recommended that specificity is confirmed with reference samples from the local area of interest before implementation.

Fecal Source Identification and the Human Fecal Viral Metagenome. This study demonstrates that viral metagenomes are a valuable source of genetic information that can be mined for host-associated sequences to develop novel fecal-source-identification technologies; however, using metagenomic sequences for method development presents several challenges. First, compiled genomes are constructed from viral quasispecies, resulting in a genome sequence with unknown variability and stability. In addition, novel genomes discovered through metagenomic sequences may lack homology with known annotated genes, resulting in poor-quality sequence annotation within compiled genomes. Hence, it is difficult to infer specificity of these sequences in silico without laboratory testing. To overcome these challenges, we performed laboratory testing of select regions of the crAssphage genome to find the most-abundant and broadly distributed human-associated genetic regions. This approach builds off of bioinformatic predictions, with extensive end-point PCR laboratory screening to narrow down regions for future genetic marker development. This strategy could also be used for other human-associated viruses; for example, bacteriophages that infect Bacteroides strain GB-124.28,29 Currently, no qPCR assays are available for these phages, and they may require the isolation of new hosts based on geographic distribution.30 This approach will continue to be of use as viral metagenome mining continues to improve with additional research efforts leading to more publicly available data sets.

CrAssphage Fecal-Source-Identification Application. Findings in this study highlight the benefits of crAssphage qPCR methods for human fecal source identification. First, the abundance of the crAssphage markers in sewage and polluted environmental waters implies that it will be possible to monitor in smaller sample volumes (<200 mL) compared to typical virus assays requiring ≥1 L. The isolation strategy used in this study allows for the simultaneous recovery of bacterial and viral genetic markers as well as the same DNA-purification technique because the crAssphage genome is dsDNA. In addition, there is some evidence of genetic stability for the crAssphage method genome regions based on Sanger sequencing in this study, further showing the potential utility of these assays. Findings also indicate that the crAssphage qPCR assays possess a strong human host association (>98%), performing on par with top bacterial human fecal-source-identification methods. Lastly, as a viral genetic marker, the crAssphage qPCR assays could be a convenient tool with which to compliment bacterial fecal pollution monitoring tools in future studies.

Despite the high performance observed with the crAssphage qPCR assays, necessary developments remain prior to application of these methods. In this study, environmental samples were processed with ultrafiltration, which is expensive...
and time-consuming. The concentrating pipet procedure used worked well but was only tested with a small number of samples. More research should be conducted to determine the best concentration strategies for crAssphage, including how matrix composition influences recovery efficiencies. In addition, the crAssphage qPCR assays were found to be 98.6% human-associated. This requires specificity testing to be completed in each geographic region prior to implementation, especially in areas with high densities of dogs or gulls. Due to this cross-reactivity, it may be necessary to pair these methods with other established human fecal identification technologies in a toolbox approach to improve confidence in results. In addition, future studies may be needed to verify the temporal genetic stability of the crAssphage DNA target sequences, even though the results of this study suggest some level of conservation. Additional studies are necessary to understand linkages of the crAssphage methods to currently recommended fecal indicators, other fecal-source-identification targets, and pathogens with public health relevance. Lastly, the bacterial host and genome sequence variability of crAssphage remains unconfirmed. While this information is not required to exploit crAssphage for fecal source identification, this information could prove valuable to further utilize this virus for other water quality management applications. The availability of reliable viral assays that are abundant in impacted waters could have broad implications for water quality monitoring and human fecal waste treatment.

Associated Content

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.7b02703.

Tables showing summaries of reference fecal sample collection, primary influent sewage sample collection, primer set sequence information, round three candidate primer set testing, and qPCR calibration model performance metrics. A figure showing crAssphage sequence verification alignment. (PDF)

Author Information

Corresponding Authors

*E-mail: shanks.orin@epa.gov.
*E-mail: BibbyKJ@pitt.edu.

ORCID

Kyle Bibby: 0000-0003-3142-6090
Orin C. Shanks: 0000-0003-3203-0645

Notes

The authors declare the following competing financial interest(s): The primers reported in the manuscript are the subject of a patent application entitled Cross-Assembly Phage DNA Sequences, Primers and Probes for PCR-based Identification of Human Fecal Pollution Sources (Application Number: 62/386,532).

Acknowledgments

This material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under grant no. 1247842 and NSF grant no. 1510925. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Information has been subjected to U.S. EPA peer and administrative review and has been approved for external publication. Any opinions expressed in this paper are those of the authors and do not necessarily reflect the official positions and policies of the U.S. EPA. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.

References

